Chapter 1
Tolerances and Specifications for Commercial Weighing and Measuring Devices

Part 7: NIST Handbook 44 Appendices

Appendix A. Fundamental Considerations Associated with the Enforcement of Handbook 44 Codes
Appendix B. Units and Systems of Measurement Their Origin, Development, and Present Status
Appendix C. General Tables of Units of Measurement
Appendix D. Definitions
DISCLAIMER

This document represents the Division of Measurement Standards’ field manual for enforcing regulations pertaining to weights and measures in California. This field manual is not to be considered as the official Code of Regulations, as published by Barclays Law Publishers.

NOTE: Language in Handbook 44 that is not adopted is annotated “[NOT ADOPTED]” in this document.

NOTE: Requirements that are different from, or in addition to, the requirements of Handbook 44 are included in the appropriate section this document. They are shaded, bordered, and numbered in the 4002 series to differentiate them from the Handbook 44 requirements.

To find the latest online version of the California Code of Regulations (CCR) Title 4, Division 9, visit the California Office of Administration Law (OAL) at:

http://ccr.oal.ca.gov/linkedslice/default.asp?SP=CCR-1000&Action=Welcome

The CCR may also be accessed at http://oal.ca.gov/ by selecting the link Titled “California Code of Regulations” under the list of “Sponsored Links” in the left column on the OAL Home page.

For information concerning the contents of this document, please contact the Division of Measurement Standards by e-mail at dms@cdfa.ca.gov.

NIST Handbook 44 (2019 Edition) - Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices as adopted by the 103rd National Conference on Weights and Measures in July 2018 is available at:

www.nist.gov/pml/wmd/pubs/hb44.cfm
Table of Contents

Appendix A. Fundamental Considerations Associated with the Enforcement of Handbook 44 Codes

1. Uniformity of Requirements
 1.1. National Conference Codes.
 1.2. Form of Promulgation.

2. Tolerances for Commercial Equipment
 2.1. Acceptance and Maintenance Tolerances.
 2.2. Theory of Tolerances.
 2.3. Tolerances and Adjustments.

3. Testing Apparatus
 3.1. Adequacy.
 3.2. Tolerances for Standards.
 3.3. Accuracy of Standards.

4. Inspection of Commercial Equipment
 4.1. Inspection Versus Testing.
 4.2. Necessity for Inspection.
 4.3. Specification Requirements.
 4.4. General Considerations.
 4.5. Misuse of Equipment.
 4.6. Recommendations.
 4.7. Accurate and Correct Equipment.

5. Correction of Commercial Equipment
 5.1. Adjustable Elements.
 5.2. When Corrections Should Be Made.
 5.3. Gauging.

6. Rejection of Commercial Equipment
 6.1. Rejection and Condemnation.

7. Tagging of Equipment
 7.1. Rejected and Condemned.
 7.2. Nonsealed and Noncommercial.

8. Records of Equipment

9. Sealing of Equipment
 9.1. Types of Seals and Their Locations.
 9.2. Exceptions.

10. Rounding Off Numerical Values
 10.1. Definition.
 10.2. General Rules.
 10.3. Rules for Reading of Indications.
 10.4. Rules for Common Fractions.
Appendix A. Fundamental Considerations
Associated with the Enforcement of Handbook 44 Codes

1. Uniformity of Requirements

1.1. National Conference Codes. – Weights and measures jurisdictions are urged to promulgate and adhere to the National Conference codes, to the end that uniform requirements may be in force throughout the country. This action is recommended even though a particular jurisdiction does not wholly agree with every detail of the National Conference codes. Uniformity of specifications and tolerances is an important factor in the manufacture of commercial equipment. Deviations from standard designs to meet the special demands of individual weights and measures jurisdictions are expensive, and any increase in costs of manufacture is, of course, passed on to the purchaser of equipment. On the other hand, if designs can be standardized by the manufacturer to conform to a single set of technical requirements, production costs can be kept down, to the ultimate advantage of the general public. Moreover, it seems entirely logical that equipment that is suitable for commercial use in the “specification” states should be equally suitable for such use in other states.

Another consideration supporting the recommendation for uniformity of requirements among weights and measures jurisdictions is the cumulative and regenerative effect of the widespread enforcement of a single standard of design and performance. The enforcement effort in each jurisdiction can then reinforce the enforcement effort in all other jurisdictions. More effective regulatory control can be realized with less individual effort under a system of uniform requirements than under a system in which even minor deviations from standard practice are introduced by independent state action.

Since the National Conference codes represent the majority opinion of a large and representative group of experienced regulatory officials, and since these codes are recognized by equipment manufacturers as their basic guide in the design and construction of commercial weighing and measuring equipment, the acceptance and promulgation of these codes by each state are strongly recommended.

1.2. Form of Promulgation. – A convenient and very effective form of promulgation already successfully used in a considerable number of states is promulgation by citation of National Institute of Standards and Technology Handbook 44. It is especially helpful when the citation is so made that, as amendments are adopted from time to time by the National Conference on Weights and Measures, these automatically go into effect in the state regulatory authority. For example, the following form of promulgation has been used successfully and is recommended for consideration:

The specifications, tolerances, and other technical requirements for weighing and measuring devices as recommended by the National Conference on Weights and Measures and published in the National Institute of Standards and Technology Handbook 44, “Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices,” and supplements thereto or revisions thereof, shall apply to commercial weighing and measuring devices in the state.

In some states, it is preferred to base technical requirements upon specific action of the state legislature rather than upon an act of promulgation by a state officer. The advantages cited above may be obtained and may yet be surrounded by adequate safeguards to insure proper freedom of action by the state enforcing officer if the legislature adopts the National Conference requirements by language somewhat as follows:

The specifications, tolerances, and other technical requirements for weighing and measuring devices as recommended by the National Conference on Weights and Measures shall be the specifications, tolerances, and other technical requirements for weighing and measuring devices of the state except insofar as specifically modified, amended, or rejected by a regulation issued by the state (insert title of enforcing officer).
2. Tolerances for Commercial Equipment

2.1. Acceptance and Maintenance Tolerances. – The official tolerances prescribed by a weights and measures jurisdiction for commercial equipment are the limits of inaccuracy officially permissible within that jurisdiction. It is recognized that errorless value or performance of mechanical equipment is unattainable. Tolerances are established, therefore, to fix the range of inaccuracy within which equipment will be officially approved for commercial use. In the case of classes of equipment on which the magnitude of the errors of value or performance may be expected to change as a result of use, two sets of tolerances are established: acceptance tolerances and maintenance tolerances.

Acceptance tolerances are applied to new or newly reconditioned or adjusted equipment, and are smaller than (usually one-half of) the maintenance tolerances. Maintenance tolerances thus provide an additional range of inaccuracy within which equipment will be approved on subsequent tests, permitting a limited amount of deterioration before the equipment will be officially rejected for inaccuracy and before reconditioning or adjustment will be required. In effect, there is assured a reasonable period of use for equipment after it is placed in service before reconditioning will be officially required. The foregoing comments do not apply, of course, when only a single set of tolerance values is established, as is the case with equipment such as glass milk bottles and graduates, which maintain their original accuracy regardless of use, and measure-containers, which are used only once.

2.2. Theory of Tolerances. – Tolerance values are so fixed that the permissible errors are sufficiently small that there is no serious injury to either the buyer or the seller of commodities, yet not so small as to make manufacturing or maintenance costs of equipment disproportionately high. Obviously, the manufacturer must know what tolerances his equipment is required to meet, so that he can manufacture economically. His equipment must be good enough to satisfy commercial needs, but should not be subject to such stringent tolerance values as to make it unreasonably costly, complicated, or delicate.

2.3. Tolerances and Adjustments. – Tolerances are primarily accuracy criteria for use by the regulatory official. However, when equipment is being adjusted for accuracy, either initially or following repair or official rejection, the objective should be to adjust as closely as practicable to zero error. Equipment owners should not take advantage of tolerances by deliberately adjusting their equipment to have a value, or to give performance, at or close to the tolerance limit. Nor should the repair or service personnel bring equipment merely within tolerance range when it is possible to adjust closer to zero error.¹

3. Testing Apparatus

3.1. Adequacy.² – Tests can be made properly only if, among other things, adequate testing apparatus is available. Testing apparatus may be considered adequate only when it is properly designed for its intended use, when it is so constructed that it will retain its characteristics for a reasonable period under conditions of normal use, when it is available in denominations appropriate for a proper determination of the value or performance of the commercial equipment under test, and when it is accurately calibrated.

3.2. Tolerances for Standards. – Except for work of relatively high precision, it is recommended that the accuracy of standards used in testing commercial weighing and measuring equipment be established and maintained so that the use of corrections is not necessary. When the standard is used without correction, its combined error and uncertainty must be less than one-third of the applicable device tolerance.

Device testing is complicated to some degree when corrections to standards are applied. When using a correction for a standard, the uncertainty associated with the corrected value must be less than one-third of the applicable device tolerance.

¹ See General Code, Section 1.10.; User Requirement G-UR.4.3. Use of Adjustments.

² Recommendations regarding the specifications and tolerances for suitable field standards may be obtained from the Office of Weights and Measures of the National Institute of Standards and Technology. Standards will meet the specifications of the National Institute of Standards and Technology Handbook 105-Series standards (or other suitable and designated standards). This section shall not preclude the use of additional field standards and/or equipment, as approved by the Director, for uniform evaluation of device performance.
tolerance. The reason for this requirement is to give the device being tested as nearly as practicable the full benefit of its own tolerance.

3.3. **Accuracy of Standards.** – Prior to the official use of testing apparatus, its accuracy should invariably be verified. Field standards should be calibrated as often as circumstances require. By their nature, metal volumetric field standards are more susceptible to damage in handling than are standards of some other types. A field standard should be calibrated whenever damage is known or suspected to have occurred or significant repairs have been made. In addition, field standards, particularly volumetric standards, should be calibrated with sufficient frequency to affirm their continued accuracy, so that the official may always be in an unassailable position with respect to the accuracy of his testing apparatus. Secondary field standards, such as special fabric testing tapes, should be verified much more frequently than such basic standards as steel tapes or volumetric provers to demonstrate their constancy of value or performance.

Accurate and dependable results cannot be obtained with faulty or inadequate field standards. If either the service person or official is poorly equipped, their results cannot be expected to check consistently. Disagreements can be avoided and the servicing of commercial equipment can be expedited and improved if service persons and officials give equal attention to the adequacy and maintenance of their testing apparatus.

4. **Inspection of Commercial Equipment**

4.1. **Inspection Versus Testing.** – A distinction may be made between the inspection and the testing of commercial equipment that should be useful in differentiating between the two principal groups of official requirements; i.e., specifications and performance requirements. Although the term inspection is frequently loosely used to include everything that the official has to do in connection with commercial equipment, it is useful to limit the scope of that term primarily to examinations made to determine compliance with design, maintenance, and user requirements. The term testing may then be limited to those operations carried out to determine the accuracy of value or performance of the equipment under examination by comparison with the actual physical standards of the official. These two terms will be used herein in the limited senses defined.

4.2. **Necessity for Inspection.** – It is not enough merely to determine that the errors of equipment do not exceed the appropriate tolerances. Specification and user requirements are as important as tolerance requirements and should be enforced. Inspection is particularly important, and should be carried out with unusual thoroughness whenever the official examines a type of equipment not previously encountered.

This is the way the official learns whether or not the design and construction of the device conform to the specification requirements. But even a device of a type with which the official is thoroughly familiar and that he has previously found to meet specification requirements should not be accepted entirely on faith. Some part may have become damaged, or some detail of design may have been changed by the manufacturer, or the owner or operator may have removed an essential element or made an objectionable addition. Such conditions may be learned only by inspection. Some degree of inspection is therefore an essential part of the official examination of every piece of weighing or measuring equipment.

4.3. **Specification Requirements.** – A thorough knowledge by the official of the specification requirements is a prerequisite to competent inspection of equipment. The inexperienced official should have his specifications before him when making an inspection, and should check the requirements one by one against the equipment itself. Otherwise some important requirement may be overlooked. As experience is gained, the official will become progressively less dependent on the handbook, until finally observance of faulty conditions becomes almost automatic and the time and effort required to do the inspecting are reduced to a minimum. The printed specifications, however, should always be available for reference to refresh the official’s memory or to be displayed to support his decisions, and they are an essential item of his kit.

Specification requirements for a particular class of equipment are not all to be found in the separate code for that class. The requirements of the General Code apply, in general, to all classes of equipment, and these must always be considered in combination with the requirements of the appropriate separate code to arrive at the total of the requirements applicable to a piece of commercial equipment.
4.4. **General Considerations.** – The simpler the commercial device, the fewer are the specification requirements affecting it, and the more easily and quickly can adequate inspection be made. As mechanical complexity increases, however, inspection becomes increasingly important and more time consuming, because the opportunities for the existence of faulty conditions are multiplied. It is on the relatively complex device, too, that the official must be on the alert to discover any modification that may have been made by an operator that might adversely affect the proper functioning of the device.

It is essential for the officials to familiarize themselves with the design and operating characteristics of the devices that he inspects and tests. Such knowledge can be obtained from the catalogs and advertising literature of device manufacturers, from trained service persons and plant engineers, from observation of the operations performed by service persons when reconditioning equipment in the field, and from a study of the devices themselves.

Inspection should include any auxiliary equipment and general conditions external to the device that may affect its performance characteristics. In order to prolong the life of the equipment and forestall rejection, inspection should also include observation of the general maintenance of the device and of the proper functioning of all required elements. The official should look for worn or weakened mechanical parts, leaks in volumetric equipment, or elements in need of cleaning.

4.5. **Misuse of Equipment.** – Inspection, coupled with judicious inquiry, will sometimes disclose that equipment is being improperly used, either through ignorance of the proper method of operation or because some other method is preferred by the operator. Equipment should be operated only in the manner that is obviously indicated by its construction or that is indicated by instructions on the equipment, and operation in any other manner should be prohibited.

4.6. **Recommendations.** – A comprehensive knowledge of each installation will enable the official to make constructive recommendations to the equipment owner regarding proper maintenance of his weighing and measuring devices and the suitability of his equipment for the purposes for which it is being used or for which it is proposed that it be used. Such recommendations are always in order and may be very helpful to an owner. The official will, of course, carefully avoid partiality toward or against equipment of specific makes, and will confine his recommendations to points upon which he is qualified, by knowledge and experience, to make suggestions of practical merit.

4.7. **Accurate and Correct Equipment.** – Finally, the weights and measures official is reminded that commercial equipment may be accurate without being correct. A piece of equipment is accurate when its performance or value (that is, its indications, its deliveries, its recorded representations, or its capacity or actual value, etc., as determined by tests made with suitable standards) conforms to the standard within the applicable tolerances and other performance requirements. Equipment that fails so to conform is inaccurate. A piece of equipment is correct when, in addition to being accurate, it meets all applicable specification requirements. Equipment that fails to meet any of the requirements for correct equipment is incorrect. Only equipment that is correct should be sealed and approved for commercial use.3

5. **Correction of Commercial Equipment**

5.1. **Adjustable Elements.** – Many types of weighing and measuring instruments are not susceptible to adjustment for accuracy by means of adjustable elements. Linear measures, liquid measures, graduates, measure-containers, milk and lubricating-oil bottles, farm milk tanks, dry measures, and some of the more simple types of scales are in this category. Other types (for example, taximeters and odometers and some metering devices) may be adjusted in the field, but only by changing certain parts such as gears in gear trains.

Some types, of which fabric-measuring devices and cordage-measuring devices are examples, are not intended to be adjusted in the field and require reconditioning in shop or factory if inaccurate. Liquid-measuring devices and most scales are equipped with adjustable elements, and some vehicle-tank compartments have adjustable indicators. Field adjustments may readily be made on such equipment. In the discussion that follows, the principles pointed out and the recommendations made apply to adjustments on any commercial equipment, by whatever means accomplished.

3 See Section 1.10. General Code and Appendix D. Definitions.
5.2. When Corrections Should Be Made. – One of the primary duties of a weights and measures official is to determine whether equipment is suitable for commercial use. If a device conforms to all legal requirements, the official “marks” or “seals” it to indicate approval. If it does not conform to all official requirements, the official is required to take action to ensure that the device is corrected within a reasonable period of time. Devices with performance errors that could result in serious economic injury to either party in a transaction should be prohibited from use immediately and not allowed to be returned to service until necessary corrections have been made. The official should consider the most appropriate action, based on all available information and economic factors.

Some officials contend that it is justifiable for the official to make minor corrections and adjustments if there is no service agency nearby or if the owner or operator depends on this single device and would be “out of business” if the use of the device were prohibited until repairs could be made. Before adjustments are made at the request of the owner or the owner’s representative, the official should be confident that the problem is not due to faulty installation or a defective part, and that the adjustment will correct the problem. The official should never undertake major repairs, or even minor corrections, if services of commercial agencies are readily available. The official should always be mindful of conflicts of interest before attempting to perform any services other than normal device examination and testing duties.

(Amended 1995)

5.3. Gauging. – In the majority of cases, when the weights and measures official tests commercial equipment, he is verifying the accuracy of a value or the accuracy of the performance as previously established either by himself or by someone else. There are times, however, when the test of the official is the initial test on the basis of which the calibration of the device is first determined or its performance first established. The most common example of such gauging is in connection with vehicle tanks the compartments of which are used as measures. Frequently the official makes the first determination on the capacities of the compartments of a vehicle tank, and his test results are used to determine the proper settings of the compartment indicators for the exact compartment capacities desired. Adjustments of the position of an indicator under these circumstances are clearly not the kind of adjustments discussed in the preceding paragraph.

6. Rejection of Commercial Equipment

6.1. Rejection and Condemnation. – The Uniform Weights and Measures Law contains a provision stating that the director shall reject and order to be corrected such physical weights and measures or devices found to be incorrect. Weights and measures and devices that have been rejected, may be seized if not corrected within a reasonable time or if used or disposed of in a manner not specifically authorized. The director shall remove from service and may seize weights and measures found to be incorrect that are not capable of being made correct.

These broad powers should be used by the official with discretion. The director should always keep in mind the property rights of an equipment owner, and cooperate in working out arrangements whereby an owner can realize at least something from equipment that has been rejected. In cases of doubt, the official should initially reject rather than condemn outright. Destruction and confiscation of equipment are harsh procedures. Power to seize and destroy is necessary for adequate control of extreme situations, but seizure and destruction should be resorted to only when clearly justified.

On the other hand, rejection is clearly inappropriate for many items of measuring equipment. This is true for most linear measures, many liquid and dry measures, graduates, measure-containers, milk bottles, lubricating-oil bottles, and some scales. When such equipment is “incorrect,” it is either impractical or impossible to adjust or repair it, and the official has no alternative to outright condemnation. When only a few such items are involved, immediate destruction or confiscation is probably the best procedure. If a considerable number of items are involved (as, for example, a stock of measures in the hands of a dealer or a large shipment of bottles), return of these to the manufacturer for credit or replacement should ordinarily be permitted provided that the official is assured that they will not get into commercial use. In rare instances, confiscation and destruction are justified as a method of control when less harsh methods have failed.

In the case of incorrect mechanisms such as fabric-measuring devices, taximeters, liquid-measuring devices, and most scales, repair of the equipment is usually possible, so rejection is the customary procedure. Seizure may occasionally
be justified, but in the large majority of instances this should be unnecessary. Even in the case of worn-out equipment, some salvage is usually possible, and this should be permitted under proper controls.
(Amended 1995)

7. Tagging of Equipment

7.1. Rejected and Condemned. – It will ordinarily be practicable to tag or mark as rejected each item of equipment found to be incorrect and considered susceptible of proper reconditioning. However, it can be considered justifiable not to mark as rejected incorrect devices capable of meeting acceptable performance requirements if they are to be allowed to remain in service for a reasonable time until minor problems are corrected since marks of rejection may tend to be misleading about a device’s ability to produce accurate measurements during the correction period. The tagging of equipment as condemned, or with a similar label to indicate that it is permanently out of service, is not recommended if there is any other way in which the equipment can definitely be put out of service. Equipment that cannot successfully be repaired should be dismantled, removed from the premises, or confiscated by the official rather than merely being tagged as “condemned.”
(Amended 1995)

7.2. Nonsealed and Noncommercial. – Rejection is not appropriate if measuring equipment cannot be tested by the official at the time of his regular visit—for example, when there is no gasoline in the supply tank of a gasoline-dispensing device. Some officials affix to such equipment a nonsealed tag stating that the device has not been tested and sealed and that it must not be used commercially until it has been officially tested and approved. This is recommended whenever considerable time will elapse before the device can be tested.

Where the official finds in the same establishment, equipment that is in commercial use and also equipment suitable for commercial use that is not presently in service, but which may be put into service at some future time, he may treat the latter equipment in any of the following ways:

(a) Test and approve the same as commercial equipment in use.
(b) Refrain from testing it and remove it from the premises to preclude its use for commercial purposes.
(c) Mark the equipment nonsealed.

Where the official finds commercial equipment and noncommercial equipment installed or used in close proximity, he may treat the noncommercial equipment in any of the following ways:

(a) Test and approve the same as commercial equipment.
(b) Physically separate the two groups of equipment so that misuse of the noncommercial equipment will be prevented.
(c) Tag it to show that it has not been officially tested and is not to be used commercially.

8. Records of Equipment

8.1. The official will be well advised to keep careful records of equipment that is rejected, so that he may follow up to insure that the necessary repairs have been made. As soon as practicable following completion of repairs, the equipment should be retested. Complete records should also be kept of equipment that has been tagged as nonsealed or noncommercial. Such records may be invaluable should it subsequently become necessary to take disciplinary steps because of improper use of such equipment.

9. Sealing of Equipment

9.1. Types of Seals and Their Locations. – Most weights and measures jurisdictions require that all equipment officially approved for commercial use (with certain exceptions to be pointed out later) be suitably marked or sealed
to show approval. This is done primarily for the benefit of the public to show that such equipment has been officially examined and approved. The seal of approval should be as conspicuous as circumstances permit and should be of such a character and so applied that it will be reasonably permanent. Uniformity of position of the seal on similar types of equipment is also desirable as a further aid to the public.

The official will need more than one form of seal to meet the requirements of different kinds of equipment. Good quality, weather-resistant, water-adhesive, or pressure-sensitive seals or decalcomania seals are recommended for fabric-measuring devices, liquid-measuring devices, taximeters, and most scales, because of their permanence and good appearance. Steel stamps are most suitable for liquid and dry measures, for some types of linear measures, and for weights. An etched seal, applied with suitable etching ink, is excellent for steel tapes, and greatly preferable to a seal applied with a steel stamp. The only practicable seal for a graduate is one marked with a diamond or carbide pencil, or one etched with glass-marking ink. For a vehicle tank, the official may wish to devise a relatively large seal, perhaps of metal, with provision for stamping data relative to compartment capacities, the whole to be welded or otherwise permanently attached to the shell of the tank. In general, the lead-and-wire seal is not suitable as an approval seal.

9.2. Exceptions. – Commercial equipment such as measure-containers, milk bottles, and lubricating-oil bottles are not tested individually because of the time element involved. Because manufacturing processes for these items are closely controlled, an essentially uniform product is produced by each manufacturer. The official normally tests samples of these items prior to their sale within his jurisdiction and subsequently makes spot checks by testing samples selected at random from new stocks.

Another exception to the general rule for sealing approved equipment is found in certain very small weights whose size precludes satisfactory stamping with a steel die.

10. Rounding Off Numerical Values

10.1. Definition. – To round off or round a numerical value is to change the value of recorded digits to some other value considered more desirable for the purpose at hand by dropping or changing certain figures. For example, if a computed, observed, or accumulated value is 4738, this can be rounded off to the nearest thousand, hundred, or ten, as desired. Such rounded-off values would be, respectively, 5000, 4700, and 4740. Similarly, a value such as 47.382 can be rounded off to two decimal places, to one decimal place, or to the units place. The rounded-off figures in this example would be, respectively, 47.38, 47.4, and 47.

10.2. General Rules. – The general rules for rounding off may be stated briefly as follows:

(a) When the figure next beyond the last figure or place to be retained is less than 5, the figure in the last place retained is to be kept unchanged. When rounding off 4738 to the nearest hundred, it is noted that the figure 3 (next beyond the last figure to be retained) is less than 5. Thus the rounded-off value would be 4700. Likewise, 47.382 rounded to two decimal places becomes 47.38.

(b) When the figure next beyond the last figure or place to be retained is greater than 5, the figure in the last place retained is to be increased by 1. When rounding off 4738 to the nearest thousand, it is noted that the figure 7 (next beyond the last figure to be retained) is greater than 5. Thus the rounded-off value would be 5000. Likewise, 47.382 rounded to one decimal place becomes 47.4.

(c) When the figure next beyond the last figure to be retained is 5 followed by any figures other than zero(s), treat as in (b) above; that is, the figure in the last place retained is to be increased by 1. When rounding off 4501 to the nearest thousand, 1 is added to the thousands figure and the result becomes 5000.

(d) When the figure next beyond the last figure to be retained is 5 and there are no figures, or only zeros, beyond this 5, the figure in the last place to be retained is to be left unchanged if it is even (0, 2, 4, 6, or 8) and to be increased by 1 if it is odd (1, 3, 5, 7, or 9). This is the odd and even rule, and may be stated as follows: “If odd, then add.” Thus, rounding off to the first decimal place, 47.25 would become 47.2 and 47.15 would become 47.2. Also, rounded to the nearest thousand, 4500 would become 4000 and 1500 would become 2000.
It is important to remember that, when there are two or more figures to the right of the place where the last significant figure of the final result is to be, the entire series of such figures must be rounded off in one step and not in two or more successive rounding steps. [Expressed differently, when two or more such figures are involved, these are not to be rounded off individually, but are to be rounded off as a group.] Thus, when rounding off 47.3499 to the first decimal place, the result becomes 47.3. In arriving at this result, the figures “499” are treated as a group. Since the 4 next beyond the last figure to be retained is less than 5, the “499” is dropped (see subparagraph (a) above). It would be incorrect to round off these figures successively to the left so that 47.3499 would become 47.350 and then 47.35 and then 47.4.

10.3. Rules for Reading of Indications. – An important aspect of rounding off values is the application of these rules to the reading of indications of an indicator-and-graduated-scale combination (where the majority of the indications may be expected to lie somewhere between two graduations) if it is desired to read or record values only to the nearest graduation. Consider a vertical graduated scale and an indicator. Obviously, if the indicator is between two graduations but is closer to one graduation than it is to the other adjacent graduation, the value of the closer graduation is the one to be read or recorded.

In the case where, as nearly as can be determined, the indicator is midway between two graduations, the odd-and-even rule is invoked, and the value to be read or recorded is that of the graduation whose value is even. For example, if the indicator lies exactly midway between two graduations having values of 471 and 472, respectively, the indication should be read or recorded as 472, this being an even value. If midway between graduations having values of 474 and 475, the even value 474 should be read or recorded. Similarly, if the two graduations involved had values of 470 and 475, the even value of 470 should be read or recorded.

A special case not covered by the foregoing paragraph is that of a graduated scale in which successive graduations are numbered by twos, all graduations thus having even values; for example, 470, 472, 474, etc. When, in this case, an indication lies midway between two graduations, the recommended procedure is to depart from the practice of reading or recording only to the value of the nearest graduation and to read or record the intermediate odd value. For example, an indication midway between 470 and 472 should be read as 471.

10.4. Rules for Common Fractions. – When applying the rounding-off rules to common fractions, the principles are to be applied to the numerators of the fractions that have, if necessary, been reduced to a common denominator. The principle of “5s” is changed to the one-half principle; that is, add if more than one-half, drop if less than one-half, and apply the odd-and even rule if exactly one-half.

For example, a series of values might be 1\(\frac{1}{32}\), 1\(\frac{1}{32}\), 1\(\frac{1}{32}\), 1\(\frac{1}{32}\), 1\(\frac{1}{32}\), 1\(\frac{1}{32}\), 1\(\frac{1}{32}\), 1\(\frac{1}{32}\). Assume that these values are to be rounded off to the nearest eighth (4\(\frac{1}{32}\)). Then,

1\(\frac{1}{32}\) becomes 1. (\(\frac{1}{32}\) is less than half of 4\(\frac{1}{32}\) and accordingly is dropped.)
1\(\frac{1}{32}\) becomes 1. (\(\frac{1}{32}\) is exactly one-half of 4\(\frac{1}{32}\); it is dropped because it is rounded (down) to the “even” eighth, which in this instance is \(\frac{1}{8}\).)
1\(\frac{1}{32}\) becomes 1\(\frac{1}{8}\) or \(\frac{13}{32}\). (\(\frac{1}{32}\) is more than half of 4\(\frac{1}{32}\), and accordingly is rounded “up” to 4\(\frac{1}{32}\) or \(\frac{1}{8}\).)
1\(\frac{1}{32}\) remains unchanged, being an exact eighth (1\(\frac{1}{8}\)).
1\(\frac{1}{32}\) becomes 1\(\frac{1}{8}\) or \(\frac{13}{32}\) more than an exact \(\frac{1}{8}\); \(\frac{1}{32}\) is less than half of 4\(\frac{1}{32}\) and accordingly is dropped.)
1\(\frac{1}{32}\) becomes 1\(\frac{1}{8}\) or \(\frac{13}{32}\). (\(\frac{1}{32}\) is 4\(\frac{1}{32}\) more than an exact \(\frac{1}{8}\); \(\frac{1}{32}\) is exactly one-half of \(\frac{1}{8}\), and the final fraction is rounded (up) to the “even” eighth, which in this instance is \(\frac{1}{8}\).)
1\(\frac{1}{32}\) becomes 1\(\frac{1}{8}\) or \(\frac{13}{32}\). (\(\frac{1}{32}\) is \(\frac{3}{32}\) more than an exact \(\frac{1}{8}\); \(\frac{3}{32}\) is more than one-half of \(\frac{1}{8}\) and accordingly the final fraction is rounded (up) to \(\frac{3}{8}\) or \(\frac{3}{4}\).)
1\(\frac{1}{32}\) remains unchanged, being an exact eighth (1\(\frac{1}{8}\) or 1\(\frac{1}{4}\)).
1\(\frac{1}{32}\) becomes 1\(\frac{1}{8}\) or \(\frac{13}{32}\). (\(\frac{1}{32}\) is \(\frac{1}{32}\) more than an exact \(\frac{1}{8}\); \(\frac{1}{32}\) is less than half of \(\frac{1}{8}\) and accordingly is dropped.)
Appendix B - Units and Systems of Measurement

Table of Contents

Appendix B. Units and Systems of Measurement Their Origin, Development, and Present Status

1. **Introduction** .. B-3
2. **Units and Systems of Measurement** ... B-3
 2.1. Origin and Early History of Units and Standards. .. B-3
 2.1.2. Origin and Development of Some Common Customary Units. ... B-4
 2.2. The Metric System... B-5
 2.2.1. Definition, Origin, and Development. .. B-5
 2.2.2. International System of Units. .. B-6
 2.2.3. Units and Standards of the Metric System. .. B-6
 2.2.4. International Bureau of Weights and Measures.. B-7
 2.2.5. Status of the Metric System in the United States.. B-7
 2.3. British and United States Systems of Measurement. .. B-8
 2.4. Subdivision of Units. .. B-9
 2.5. Arithmetical Systems of Numbers. ... B-9
3. **Standards of Length, Mass, and Capacity or Volume** .. B-9
 3.1. Standards of Length... B-9
 3.1.1. Calibration of Length Standards. .. B-10
 3.2. Standards of Mass.. B-10
 3.2.1. Mass and Weight. ... B-10
 3.2.2. Effect of Air Buoyancy. ... B-11
 3.2.3. Calibrations of Standards of Mass... B-11
 3.3. Standards of Capacity.. B-11
 3.3.1. Calibrations of Standards of Capacity. ... B-11
 3.4. Maintenance and Preservation of Fundamental Standard of Mass.. B-11
4. **Specialized Use of the Terms “Ton” and “Tonnage”** .. B-12
Appendix B. Units and Systems of Measurement Their Origin, Development, and Present Status

1. Introduction

The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards) was established by Act of Congress in 1901 to serve as a national scientific laboratory in the physical sciences, and to provide fundamental measurement standards for science and industry. In carrying out these related functions the Institute conducts research and development in many fields of physics, mathematics, chemistry, and engineering. At the time of its founding, the Institute had custody of two primary standards – the meter bar for length and the kilogram cylinder for mass. With the phenomenal growth of science and technology over the past century, the Institute has become a major research institution concerned not only with everyday weights and measures, but also with hundreds of other scientific and engineering standards that are necessary to the industrial progress of the nation. Nevertheless, the country still looks to NIST for information on the units of measurement, particularly their definitions and equivalents.

The subject of measurement systems and units can be treated from several different standpoints. Scientists and engineers are interested in the methods by which precision measurements are made. State weights and measures officials are concerned with laws and regulations that assure equity in the marketplace, protect public health and safety, and with methods for verifying commercial weighing and measuring devices. But a vastly larger group of people is interested in some general knowledge of the origin and development of measurement systems, of the present status of units and standards, and of miscellaneous facts that will be useful in everyday life. This material has been prepared to supply that information on measurement systems and units that experience has shown to be the common subject of inquiry.

2. Units and Systems of Measurement

The expression “weights and measures” is often used to refer to measurements of length, mass, and capacity or volume, thus excluding such quantities as electrical and time measurements and thermometry. This section on units and measurement systems presents some fundamental information to clarify the concepts of this subject and to eliminate erroneous and misleading use of terms.

It is essential that the distinction between the terms “units” and “standards” be established and kept in mind.

A unit is a special quantity in terms of which other quantities are expressed. In general, a unit is fixed by definition and is independent of such physical conditions as temperature. Examples: the meter, the liter, the gram, the yard, the pound, the gallon.

A standard is a physical realization or representation of a unit. In general, it is not entirely independent of physical conditions, and it is a representation of the unit only under specified conditions. For example, a meter standard has a length of one meter when at some definite temperature and supported in a certain manner. If supported in a different manner, it might have to be at a different temperature to have a length of one meter.

2.1. Origin and Early History of Units and Standards.

2.1.1. General Survey of Early History of Measurement Systems. – Weights and measures were among the earliest tools invented by man. Primitive societies needed rudimentary measures for many tasks: constructing dwellings of an appropriate size and shape, fashioning clothing, or bartering food or raw materials.

Man understandably turned first to parts of the body and the natural surroundings for measuring instruments. Early Babylonian and Egyptian records and the Bible indicate that length was first measured with the forearm, hand, or finger and that time was measured by the periods of the sun, moon, and other heavenly bodies. When it was necessary to compare the capacities of containers such as gourds or clay or metal vessels, they were filled.
with plant seeds which were then counted to measure the volumes. When means for weighing were invented, seeds and stones served as standards. For instance, the “carat,” still used as a unit for gems, was derived from the carob seed.

Our present knowledge of early weights and measures comes from many sources. Archaeologists have recovered some rather early standards and preserved them in museums. The comparison of the dimensions of buildings with the descriptions of contemporary writers is another source of information. An interesting example of this is the comparison of the dimensions of the Greek Parthenon with the description given by Plutarch from which a fairly accurate idea of the size of the Attic foot is obtained. In some cases, we have only plausible theories and we must sometimes select the interpretation to be given to the evidence.

For example, does the fact that the length of the double-cubit of early Babylonia was equal (within two parts per thousand) to the length of the seconds pendulum at Babylon suggest a scientific knowledge of the pendulum at a very early date, or do we merely have a curious coincidence? By studying the evidence given by all available sources, and by correlating the relevant facts, we obtain some idea of the origin and development of the units. We find that they have changed more or less gradually with the passing of time in a complex manner because of a great variety of modifying influences. We find the units modified and grouped into measurement systems: the Babylonian system, the Egyptian system, the Philetarian system of the Ptolemaic age, the Olympic system of Greece, the Roman system, and the British system, to mention only a few.

2.1.2. Origin and Development of Some Common Customary Units. – The origin and development of units of measurement has been investigated in considerable detail and a number of books have been written on the subject. It is only possible to give here, somewhat sketchily, the story about a few units.

Units of length: The cubit was the first recorded unit used by ancient peoples to measure length. There were several cubits of different magnitudes that were used. The common cubit was the length of the forearm from the elbow to the tip of the middle finger. It was divided into the span of the hand (one-half cubit), the palm or width of the hand (one sixth), and the digit or width of a finger (one twenty-fourth). The Royal or Sacred Cubit, which was 7 palms or 28 digits long, was used in constructing buildings and monuments and in surveying. The inch, foot, and yard evolved from these units through a complicated transformation not yet fully understood. Some believe they evolved from cubic measures; others believe they were simple proportions or multiples of the cubit. In any case, the Greeks and Romans inherited the foot from the Egyptians. The Roman foot was divided into both 12 unciae (inches) and 16 digits. The Romans also introduced the mile of 1000 paces or double steps, the pace being equal to five Roman feet. The Roman mile of 5000 feet was introduced into England during the occupation. Queen Elizabeth, who reigned from 1558 to 1603, changed, by statute, the mile to 5280 feet or 8 furlongs, a furlong being 40 rods of 5½ yards each.

The introduction of the yard as a unit of length came later, but its origin is not definitely known. Some believe the origin was the double cubit, others believe that it originated from cubic measure. Whatever its origin, the early yard was divided by the binary method into 2, 4, 8, and 16 parts called the half-yard, span, finger, and nail. The association of the yard with the “gird” or circumference of a person’s waist or with the distance from the tip of the nose to the end of the thumb of Henry I are probably standardizing actions, since several yards were in use in Great Britain.

The point, which is a unit for measuring print type, is recent. It originated with Pierre Simon Fournier in 1737. It was modified and developed by the Didot brothers, Francois Ambroise and Pierre Francois, in 1755. The point was first used in the United States in 1878 by a Chicago type foundry (Marder, Luse, and Company). Since 1886, a point has been exactly 0.351 459 8 millimeters, or about 1/72 inch.

Units of mass: The grain was the earliest unit of mass and is the smallest unit in the apothecary, avoirdupois, Tower, and Troy systems. The early unit was a grain of wheat or barleycorn used to weigh the precious metals silver and gold. Larger units preserved in stone standards were developed that were used as both units of mass and of monetary currency. The pound was derived from the mina used by ancient civilizations. A smaller unit was the shekel, and a larger unit was the talent. The magnitude of these units varied from place to place. The Babylonians and Sumerians had a system in which there were 60 shekels in a mina and 60 minas in a talent. The Roman talent consisted of 100 libra (pound) which were smaller in magnitude than the mina. The Troy
pound used in England and the United States for monetary purposes, like the Roman pound, was divided into 12 ounces, but the Roman uncia (ounce) was smaller. The carat is a unit for measuring gemstones that had its origin in the carob seed, which later was standardized at 1/444 ounce and then 0.2 gram.

Goods of commerce were originally traded by number or volume. When weighing of goods began, units of mass based on a volume of grain or water were developed. For example, the talent in some places was approximately equal to the mass of one cubic foot of water. Was this a coincidence or by design? The diverse magnitudes of units having the same name, which still appear today in our dry and liquid measures, could have arisen from the various commodities traded. The larger avoirdupois pound for goods of commerce might have been based on volume of water, which has a higher bulk density than grain. For example, the Egyptian hon was a volume unit about 11% larger than a cubic palm and corresponded to one mina of water. It was almost identical in volume to the present U.S. pint.

The stone, quarter, hundredweight, and ton were larger units of mass used in Great Britain. Today only the stone continues in customary use for measuring personal body weight. The present stone is 14 pounds, but an earlier unit appears to have been 16 pounds. The other units were multiples of 2, 8, and 160 times the stone, or 28, 112, and 2240 pounds, respectively. The hundredweight was approximately equal to two talents. In the United States the ton of 2240 pounds is called the “long ton.” The “short ton” is equal to 2000 pounds.

Units of time and angle: We can trace the division of the circle into 360 degrees and the day into hours, minutes, and seconds to the Babylonians who had a sexagesimal system of numbers. The 360 degrees may have been related to a year of 360 days.

2.2. The Metric System.

2.2.1. Definition, Origin, and Development. – Metric systems of units have evolved since the adoption of the first well-defined system in France in 1791. During this evolution the use of these systems spread throughout the world, first to the non-English-speaking countries, and more recently to the English-speaking countries. The first metric system was based on the centimeter, gram, and second (cgs) and these units were particularly convenient in science and technology. Later metric systems were based on the meter, kilogram, and second (mks) to improve the value of the units for practical applications. The present metric system is the International System of Units (SI). It is also based on the meter, kilogram and second as well as additional base units for temperature, electric current, luminous intensity, and amount of substance. The International System of Units is referred to as the modern metric system.

The adoption of the metric system in France was slow, but its desirability as an international system was recognized by geodesists and others. On May 20, 1875, an international treaty known as the International Metric Convention or the Treaty of the Meter was signed by seventeen countries including the United States. This treaty established the following organizations to conduct international activities relating to a uniform system for measurements:

(1) The General Conference on Weights and Measures (French initials: CGPM), an intergovernmental conference of official delegates of member nations and the supreme authority for all actions;

(2) The International Committee of Weights and Measures (French initials: CIPM), consisting of selected scientists and metrologists, which prepares and executes the decisions of the CGPM and is responsible for the supervision of the International Bureau of Weights and Measures;

(3) The International Bureau of Weights and Measures (French initials: BIPM), a permanent laboratory and world center of scientific metrology, the activities of which include the establishment of the basic standards and scales of the principal physical quantities and maintenance of the international prototype standards.

The National Institute of Standards and Technology provides official United States representation in these organizations. The CGPM, the CIPM, and the BIPM have been major factors in the continuing refinement of the metric system on a scientific basis and in the evolution of the International System of Units.
Multiples and submultiples of metric units are related by powers of ten. This relationship is compatible with the decimal system of numbers and it contributes greatly to the convenience of metric units.

2.2.2. **International System of Units.** – At the end of World War II, a number of different systems of measurement still existed throughout the world. Some of these systems were variations of the metric system, and others were based on the customary U.S. customary system of the English-speaking countries. It was recognized that additional steps were needed to promote a worldwide measurement system. As a result the 9th GCPM, in 1948, asked the ICPM to conduct an international study of the measurement needs of the scientific, technical, and educational communities. Based on the findings of this study, the 10th General Conference in 1954 decided that an international system should be derived from six base units to provide for the measurement of temperature and optical radiation in addition to mechanical and electromagnetic quantities. The six base units recommended were the meter, kilogram, second, ampere, Kelvin degree (later renamed the kelvin), and the candela.

In 1960, the 11th General Conference of Weights and Measures named the system based on the six base quantities the International System of Units, abbreviated SI from the French name: Le Système International d’Unités. The SI metric system is now either obligatory or permissible throughout the world.

2.2.3. **Units and Standards of the Metric System.** – In the early metric system there were two fundamental or base units, the meter and the kilogram, for length and mass. The other units of length and mass, and all units of area, volume, and compound units such as density were derived from these two fundamental units.

The meter was originally intended to be one ten-millionth part of a meridional quadrant of the earth. The Meter of the Archives, the platinum length standard which was the standard for most of the 19th century, at first was supposed to be exactly this fractional part of the quadrant. More refined measurements over the earth’s surface showed that this supposition was not correct. In 1889, a new international metric standard of length, the International Prototype Meter, a graduated line standard of platinum-iridium, was selected from a group of bars because precise measurements found it to have the same length as the Meter of the Archives. The meter was then defined as the distance, under specified conditions, between the lines on the International Prototype Meter without reference to any measurements of the earth or to the Meter of the Archives, which it superseded. Advances in science and technology have made it possible to improve the definition of the meter and reduce the uncertainties associated with artifacts. From 1960 to 1983, the meter was defined as the length equal to 1 650 763.73 wavelengths in a vacuum of the radiation corresponding to the transition between the specified energy levels of the krypton 86 atom. Since 1983 the meter has been defined as the length of the path traveled by light in a vacuum during an interval of 1/299 792 458 of a second.

The kilogram, originally defined as the mass of one cubic decimeter of water at the temperature of maximum density, was known as the Kilogram of the Archives. It was replaced after the International Metric Convention in 1875 by the International Prototype Kilogram which became the unit of mass without reference to the mass of a cubic decimeter of water or to the Kilogram of the Archives. Each country that subscribed to the International Metric Convention was assigned one or more copies of the international standards; these are known as National Prototype Meters and Kilograms.

The liter is a unit of capacity or volume. In 1964, the 12th GCPM redefined the liter as being one cubic decimeter. By its previous definition – the volume occupied, under standard conditions, by a quantity of pure water having a mass of one kilogram – the liter was larger than the cubic decimeter by 28 parts per 1 000 000. Except for determinations of high precision, this difference is so small as to be of no consequence.

The modern metric system (SI) includes two classes of units:

(a) **base** units for length, mass, time, temperature, electric current, luminous intensity, and amount of substance; and

(b) **derived** units for all other quantities (e.g., work, force, power) expressed in terms of the seven base units.
For details, see NIST Special Publication 330 (2008), The International System of Units (SI) and NIST Special Publication 811 (2008), Guide for the Use of the International System of Units.

2.2.4. International Bureau of Weights and Measures. – The International Bureau of Weights and Measures (BIPM) was established at Sèvres, a suburb of Paris, France, by the International Metric Convention of May 20, 1875. The BIPM maintains the International Prototype Kilogram, many secondary standards, and equipment for comparing standards and making precision measurements. The Bureau, funded by assessment of the signatory governments, is truly international. In recent years the scope of the work at the Bureau has been considerably broadened. It now carries on researches in the fields of electricity, photometry and radiometry, ionizing radiations, and time and frequency besides its work in mass, length, and thermometry.

2.2.5. Status of the Metric System in the United States. – The use of the metric system in this country was legalized by Act of Congress in 1866, but was not made obligatory then or since. Following the signing of the Convention of the Meter in 1875, the United States acquired national prototype standards for the meter and the kilogram. U.S. Prototype Kilogram No. 20 continues to be the primary standard for mass in the United States. It is recalibrated from time to time at the BIPM. The prototype meter has been replaced by modern stabilized lasers following the most recent definition of the meter.

From 1893 until 1959, the yard was defined as equal exactly to \(\frac{3937}{1360} \) meter. In 1959, a small change was made in the definition of the yard to resolve discrepancies both in this country and abroad. Since 1959, we define the yard as equal exactly to 0.9144 meter; the new yard is shorter than the old yard by exactly two parts in a million. At the same time, it was decided that any data expressed in feet derived from geodetic surveys within the United States would continue to bear the relationship as defined in 1893 (one foot equals \(\frac{1360}{3937} \) meter). We call this foot the U.S. Survey Foot, while the foot defined in 1959 is called the International Foot. Measurements expressed in U.S. statute miles, survey feet, rods, chains, links, or the squares thereof, and acres should be converted to the corresponding metric values by using pre-1959 conversion factors if more than five significant figure accuracy is required.

Since 1970, actions have been taken to encourage the use of metric units of measurement in the United States. A brief summary of actions by Congress is provided below as reported in the Federal Register Notice dated July 28, 1998.

Section 403 of Public Law 93-380, the Education Amendment of 1974, states that it is the policy of the United States to encourage educational agencies and institutions to prepare students to use the metric system of measurement as part of the regular education program. Under both this act and the Metric Conversion Act of 1975, the “metric system of measurement” is defined as the International System of Units as established in 1960 by the General Conference on Weights and Measures and interpreted or modified for the United States by the Secretary of Commerce (Section 4(4)–Public Law 94-168; Section 403(a)(3)–Public Law 93-380). The Secretary has delegated authority under these subsections to the Director of the National Institute of Standards and Technology.

Section 5164 of Public Law 100-418, the Omnibus Trade and Competitiveness Act of 1988, amends Public Law 94-168, The Metric Conversion Act of 1975. In particular, Section 3, The Metric Conversion Act is amended to read as follows:

“Sec. 3. It is therefore the declared policy of the United States–

1. to designate the metric system of measurement as the preferred system of weights and measures for United States trade and commerce;

2. to require that each federal agency, by a date certain and to the extent economically feasible by the end of the fiscal year 1992, use the metric system of measurement in its procurements, grants, and other business-related activities, except to the extent that such use is impractical or is likely to cause
significant inefficiencies or loss of markets to U.S. firms, such as when foreign competitors are producing competing products in non-metric units;

(3) to seek ways to increase understanding of the metric system of measurement through educational information and guidance and in government publications; and

(4) to permit the continued use of traditional systems of weights and measures in nonbusiness activities.”

2.3. **British and United States Systems of Measurement.** – In the past, the customary system of weights and measures in the British Commonwealth countries and that in the United States were very similar; however, the SI metric system is now the official system of units in the United Kingdom, while the customary units are still predominantly used in the United States. Because references to the units of the old British customary system are still found, the following discussion describes the differences between the U.S. and British customary systems of units.

After 1959, the U.S. and the British inches were defined identically for scientific work and were identical in commercial usage. A similar situation existed for the U.S. and the British pounds, and many relationships, such as 12 inches = 1 foot, 3 feet = 1 yard, and 1760 yards = 1 international mile, were the same in both countries; but there were some very important differences.

In the first place, the U.S. customary bushel and the U.S. gallon, and their subdivisions differed from the corresponding British Imperial units. Also the British ton is 2240 pounds, whereas the ton generally used in the United States is the short ton of 2000 pounds. The American colonists adopted the English wine gallon of 231 cubic inches. The English of that period used this wine gallon and they also had another gallon, the ale gallon of 282 cubic inches. In 1824, the British abandoned these two gallons when they adopted the British Imperial gallon, which they defined as the volume of 10 pounds of water, at a temperature of 62 °F, which, by calculation, is equivalent to 277.42 cubic inches. At the same time, they redefined the bushel as 8 gallons.

In the customary British system, the units of dry measure are the same as those of liquid measure. In the United States these two are not the same; the gallon and its subdivisions are used in the measurement of liquids and the bushel, with its subdivisions, is used in the measurement of certain dry commodities. The U.S. gallon is divided into four liquid quarts and the U.S. bushel into 32 dry quarts. All the units of capacity or volume mentioned thus far are larger in the customary British system than in the U.S. system. But the British fluid ounce is smaller than the U.S. fluid ounce, because the British quart is divided into 40 fluid ounces whereas the U.S. quart is divided into 32 fluid ounces.

From this we see that in the customary British system an avoirdupois ounce of water at 62 °F has a volume of one fluid ounce, because 10 pounds is equivalent to 160 avoirdupois ounces, and 1 gallon is equivalent to 4 quarts, or 160 fluid ounces. This convenient relation does not exist in the U.S. system because a U.S. gallon of water at 62 °F weighs about 8⅓ pounds, or 133⅓ avoirdupois ounces, and the U.S. gallon is equivalent to 4 x 32, or 128 fluid ounces.

\[
\begin{align*}
1 \text{ U.S. fluid ounce} &= 1.041 \text{ British fluid ounces} \\
1 \text{ British fluid ounce} &= 0.961 \text{ U.S. fluid ounce} \\
1 \text{ U.S. gallon} &= 0.833 \text{ British Imperial gallon} \\
1 \text{ British Imperial gallon} &= 1.201 \text{ U.S. gallons}
\end{align*}
\]

Among other differences between the customary British and the United States measurement systems, we should note that they abolished the use of the troy pound in England January 6, 1879; they retained only the troy ounce and its subdivisions, whereas the troy pound is still legal in the United States, although it is not now greatly used. We can mention again the common use, for body weight, in England of the stone of 14 pounds, this being a unit now unused in the United States, although its influence was shown in the practice until World War II of selling flour by the barrel of 196 pounds (14 stone). In the apothecary system of liquid measure the British add a unit, the fluid scruple, equal to one third of a fluid drachm (spelled dram in the United States) between their minim and their fluid drachm. In the United States, the general practice now is to sell dry commodities, such as fruits and vegetables, by their mass.
2.4. **Subdivision of Units.** – In general, units are subdivided by one of three methods: (a) decimal, into tenths; (b) duodecimal, into twelfths; or (c) binary, into halves (twos). Usually the subdivision is continued by using the same method. Each method has its advantages for certain purposes, and it cannot properly be said that any one method is “best” unless the use to which the unit and its subdivisions are to be put is known.

For example, if we are concerned only with measurements of length to moderate precision, it is convenient to measure and to express these lengths in feet, inches, and binary fractions of an inch, thus 9 feet, 4\(\frac{3}{8}\) inches. However, if these lengths are to be subsequently used to calculate area or volume, that method of subdivision at once becomes extremely inconvenient. For that reason, civil engineers, who are concerned with areas of land, volumes of cuts, fills, excavations, etc., instead of dividing the foot into inches and binary subdivisions of the inch, divide it decimally; that is, into tenths, hundredths, and thousandths of a foot.

The method of subdivision of a unit is thus largely made based on convenience to the user. The fact that units have commonly been subdivided into certain subunits for centuries does not preclude their also having another mode of subdivision in some frequently used cases where convenience indicates the value of such other method. Thus, while we usually divide the gallon into quarts and pints, most gasoline-measuring pumps, of the price-computing type, are graduated to show tenths, hundredths, or thousandths of a gallon.

Although the mile has for centuries been divided into rods, yards, feet, and inches, the odometer part of an automobile speedometer shows tenths of a mile. Although we divide our dollar into 100 parts, we habitually use and speak of halves and quarters. An illustration of rather complex subdividing is found on the scales used by draftsmen. These scales are of two types: (a) architects, which are commonly graduated with scales in which \(\frac{3}{32}, \frac{1}{16}, \frac{1}{8}, \frac{3}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{3}{4}, 1, 1\frac{1}{2}, \) and 3 inches, respectively, represent 1 foot full scale, and also having a scale graduated in the usual manner to \(\frac{1}{16}\) inch; and (b) engineers, which are commonly subdivided to 10, 20, 30, 40, 50, and 60 parts to the inch.

The dictum of convenience applies not only to subdivisions of a unit but also to multiples of a unit. Land elevations above sea level are given in feet although the height may be several miles; the height of aircraft above sea level as given by an altimeter is likewise given in feet, no matter how high it may be.

On the other hand, machinists, toolmakers, gauge makers, scientists, and others who are engaged in precision measurements of relatively small distances, even though concerned with measurements of length only, find it convenient to use the inch, instead of the tenth of a foot, but to divide the inch decimally to tenths, hundredths, thousandths, etc., even down to millionths of an inch. Verniers, micrometers, and other precision measuring instruments are usually graduated in this manner. Machinist scales are commonly graduated decimally along one edge and are also graduated along another edge to binary fractions as small as \(\frac{1}{64}\) inch. The scales with binary fractions are used only for relatively rough measurements.

It is seldom convenient or advisable to use binary subdivisions of the inch that are smaller than \(\frac{1}{64}\). In fact, \(\frac{1}{32}, \frac{1}{16}, \frac{1}{8}\), or \(\frac{1}{64}\)-inch subdivisions are usually preferable for use on a scale to be read with the unaided eye.

2.5. **Arithmetical Systems of Numbers.** – The subdivision of units of measurement is closely associated with arithmetical systems of numbers. The systems of units used in this country for commercial and scientific work, having many origins as has already been shown, naturally show traces of the various number systems associated with their origins and developments. Thus, (a) the binary subdivision has come down to us from the Hindus, (b) the duodecimal system of fractions from the Romans, (c) the decimal system from the Chinese and Egyptians, some developments having been made by the Hindus, and (d) the sexagesimal system (division by 60) now illustrated in the subdivision of units of angle and of time, from the ancient Babylonians. The use of decimal numbers in measurements is becoming the standard practice.

3. **Standards of Length, Mass, and Capacity or Volume**

3.1. **Standards of Length.** – The meter, which is defined in terms of the speed of light in a vacuum, is the unit on which all length measurements are based.
The yard is defined\(^{1}\) as follows:

\[
\begin{align*}
1 \text{ yard} & = 0.9144 \text{ meter}, \text{ and} \\
1 \text{ inch} & = 25.4 \text{ millimeters exactly.}
\end{align*}
\]

3.1.1. **Calibration of Length Standards.** – NIST calibrates standards of length including meter bars, yard bars, miscellaneous precision line standards, steel tapes, invar geodetic tapes, precision gauge blocks, micrometers, and limit gauges. It also measures the linear dimensions of miscellaneous apparatus such as penetration needles, cement sieves, and hemacytometer chambers. In general, NIST accepts for calibration only apparatus of such material, design, and construction as to ensure accuracy and permanence sufficient to justify calibration by the Institute. NIST performs calibrations in accordance with fee schedules, copies of which may be obtained from NIST.

NIST does not calibrate carpenters’ rules, machinist scales, draftsman scales, and the like. Such apparatus, if they require calibration, should be submitted to state or local weights and measures officials.

3.2. **Standards of Mass.** – The primary standard of mass for this country is United States Prototype Kilogram 20, which is a platinum-iridium cylinder kept at NIST. We know the value of this mass standard in terms of the International Prototype Kilogram, a platinum-iridium standard which is kept at the International Bureau of Weights and Measures.

In Colonial Times the British standards were considered the primary standards of the United States. Later, the U.S. avoirdupois pound was defined in terms of the Troy Pound of the Mint, which is a brass standard kept at the United States Mint in Philadelphia. In 1911, the Troy Pound of the Mint was superseded, for coinage purposes, by the Troy Pound of the Institute.

The avoirdupois pound is defined in terms of the kilogram by the relation:

\[
1 \text{ avoirdupois pound} = 0.45359237 \text{ kilogram.}\]

These changes in definition have not made any appreciable change in the value of the pound.

The grain is \(\frac{1}{7000}\) of the avoirdupois pound and is identical in the avoirdupois, troy, and apothecary systems. The troy ounce and the apothecary ounce differ from the avoirdupois ounce but are equal to each other, and equal to 480 grains. The avoirdupois ounce is equal to 437.5 grains.

3.2.1. **Mass and Weight.** – The mass of a body is a measure of its inertial property or how much matter it contains. The weight of a body is a measure of the force exerted on it by gravity or the force needed to support it. Gravity on earth gives a body a downward acceleration of about 9.8 m/s\(^2\). (In common parlance, weight is often used as a synonym for mass in weights and measures.) The incorrect use of weight in place of mass should be phased out, and the term mass used when mass is meant.

Standards of mass are ordinarily calibrated by comparison to a reference standard of mass. If two objects are compared on a balance and give the same balance indication, they have the same “mass” (excluding the effect of air buoyancy). The forces of gravity on the two objects are balanced. Even though the value of the acceleration of gravity, g, is different from location to location, because the two objects of equal mass in the same location (where both masses are acted upon by the same g) will be affected in the same manner and by the same amount by any change in the value of g, the two objects will balance each other under any value of g.

However, on a spring balance the mass of a body is not balanced against the mass of another body. Instead, the gravitational force on the body is balanced by the restoring force of a spring. Therefore, if a very sensitive spring balance is used, the indicated mass of the body would be found to change if the spring balance and the

1 See Federal Register for July 1, 1959. Also see next-to-last paragraph of 2.2.5.
2 See Federal Register for July 1, 1959.
body were moved from one locality to another locality with a different acceleration of gravity. But a spring balance is usually used in one locality and is adjusted or calibrated to indicate mass at that locality.

3.2.2. Effect of Air Buoyancy. – Another point that must be taken into account in the calibration and use of standards of mass is the buoyancy or lifting effect of the air. A body immersed in any fluid is buoyed up by a force equal to the force of gravity on the displaced fluid. Two bodies of equal mass, if placed one on each pan of an equal-arm balance, will balance each other in a vacuum. A comparison in a vacuum against a known mass standard gives “true mass.” If compared in air, however, they will not balance each other unless they are of equal volume. If of unequal volume, the larger body will displace the greater volume of air and will be buoyed up by a greater force than will the smaller body, and the larger body will appear to be of less mass than the smaller body.

The greater the difference in volume, and the greater the density of the air in which we make the comparison weighing, the greater will be the apparent difference in mass. For that reason, in assigning a precise numerical value of mass to a standard, it is necessary to base this value on definite values for the air density and the density of the mass standard of reference.

The apparent mass of an object is equal to the mass of just enough reference material of a specified density (at 20 °C) that will produce a balance reading equal to that produced by the object if the measurements are done in air with a density of 1.2 mg/cm³ at 20 °C. The original basis for reporting apparent mass is apparent mass versus brass. The apparent mass versus a density of 8.0 g/cm³ is the more recent definition, and is used extensively throughout the world. The use of apparent mass versus 8.0 g/cm³ is encouraged over apparent mass versus brass. The difference in these apparent mass systems is insignificant in most commercial weighing applications.

A full discussion of this topic is given in NIST Monograph 133, Mass and Mass Values, by Paul E. Pontius [for sale by the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161 (COM 7450309)].

3.2.3. Calibrations of Standards of Mass. – Standards of mass regularly used in ordinary trade should be tested by state or local weights and measures officials. NIST calibrates mass standards submitted, but it does not manufacture or sell them. Information regarding the mass calibration service of NIST and the regulations governing the submission of standards of mass to NIST for calibration are contained in NIST Special Publication 250, Calibration and Related Measurement Services of NIST, latest edition.

3.3. Standards of Capacity. – Units of capacity or volume, being derived units, are in this country defined in terms of linear units. Laboratory standards have been constructed and are maintained at NIST. These have validity only by calibration with reference either directly or indirectly to the linear standards. Similarly, NIST has made and distributed standards of capacity to the several states. Other standards of capacity have been verified by calibration for a variety of uses in science, technology, and commerce.

3.3.1. Calibrations of Standards of Capacity. – NIST makes calibrations on capacity or volume standards that are in the customary units of trade; that is, the gallon, its multiples, and submultiples, or in metric units. Further, NIST calibrates precision-grade volumetric glassware which is normally in metric units. NIST makes calibrations in accordance with fee schedules, copies of which may be obtained from NIST.

3.4. Maintenance and Preservation of Fundamental Standard of Mass. – It is a statutory responsibility of NIST to maintain and preserve the national standard of mass at NIST and to realize all the other base units. The U.S. Prototype Kilogram maintained at NIST is fully protected by an alarm system. All measurements made with this standard are conducted in special air-conditioned laboratories to which the standard is taken a sufficiently long time before the observations to ensure that the standard will be in a state of equilibrium under standard conditions when the measurements or comparisons are made. Hence, it is not necessary to maintain the standard at standard conditions, but care is taken to prevent large changes of temperature. More important is the care to prevent any damage to the standard because of careless handling.
4. Specialized Use of the Terms “Ton” and “Tonnage”

As weighing and measuring are important factors in our everyday lives, it is quite natural that questions arise about the use of various units and terms and about the magnitude of quantities involved. For example, the words “ton” and “tonnage” are used in widely different senses, and a great deal of confusion has arisen regarding the application of these terms.

The ton is used as a unit of measure in two distinct senses: (1) as a unit of mass, and (2) as a unit of capacity or volume.

In the first sense, the term has the following meanings:

(a) The short, or net ton of 2000 pounds.

(b) The long, gross, or shipper’s ton of 2240 pounds.

(c) The metric ton of 1000 kilograms, or 2204.6 pounds.

In the second sense (capacity), it is usually restricted to uses relating to ships and has the following meaning:

(a) The register ton of 100 cubic feet.

(b) The measurement ton of 40 cubic feet.

(c) The English water ton of 224 British Imperial gallons.

In the United States and Canada the ton (mass) most commonly used is the short ton. In Great Britain, it is the long ton, and in countries using the metric system, it is the metric ton. The register ton and the measurement ton are capacity or volume units used in expressing the tonnage of ships. The English water ton is used, chiefly in Great Britain, in statistics dealing with petroleum products.

There have been many other uses of the term ton such as the timber ton of 40 cubic feet and the wheat ton of 20 bushels, but their uses have been local and the meanings have not been consistent from one place to another.

Properly, the word “tonnage” is used as a noun only in respect to the capacity or volume and dimensions of ships, and to the amount of the ship’s cargo. There are two distinct kinds of tonnage; namely, vessel tonnage and cargo tonnage and each of these is used in various meanings. The several kinds of vessel tonnage are as follows:

Gross tonnage, or gross register tonnage, is the total cubical capacity or volume of a ship expressed in register tons of 100 cubic feet, or 2.83 cubic meters, less such space as hatchways, bakeries, galleys, etc., as are exempted from measurement by different governments. There is some lack of uniformity in the gross tonnages as given by different nations due to lack of agreement on the spaces that are to be exempted. Official merchant marine statistics of most countries are published in terms of the gross register tonnage. Press references to ship tonnage are usually to the gross tonnage.

The net tonnage, or net register tonnage, is the gross tonnage less the different spaces specified by maritime nations in their measurement rules and laws. The spaces deducted are those totally unavailable for carrying cargo, such as the engine room, coal bunkers, crew quarters, chart and instrument room, etc. The net tonnage is used in computing how much cargo that can be loaded on a ship. It is used as the basis for wharfage and other similar charges.

The register under-deck tonnage is the cubical capacity of a ship under her tonnage deck expressed in register tons. In a vessel having more than one deck, the tonnage deck is the second from the keel.

There are several variations of displacement tonnage.
The dead weight tonnage is the difference between the “loaded” and “light” displacement tonnages of a vessel. It is expressed in terms of the long ton of 2240 pounds, or the metric ton of 2204.6 pounds, and is the weight of fuel, passengers, and cargo that a vessel can carry when loaded to its maximum draft.

The second variety of tonnage, cargo tonnage, refers to the weight of the particular items making up the cargo. In overseas traffic it is usually expressed in long tons of 2240 pounds or metric tons of 2204.6 pounds. The short ton is only occasionally used. Therefore, the cargo tonnage is very distinct from vessel tonnage.
Appendix C. General Tables of Units of Measurement

1. Tables of Metric Units of Measurement
- Units of Length: 3
- Units of Area: 3
- Units of Liquid Volume: 4
- Units of Volume: 4
- Units of Mass: 4

2. Tables of U.S. Customary Units of Measurement
- Units of Length: 4
- Units of Area: 5
- Units of Volume: 5
- Gunter's or Surveyors Chain Units of Measurement: 5
- Units of Liquid Volume: 5
- Apothecaries Units of Liquid Volume: 5
- Units of Dry Volume: 6
- Avoirdupois Units of Mass: 6
- Troy Units of Mass: 6
- Apothecaries Units of Mass: 7

3. Notes on British Units of Measurement

4. Tables of Units of Measurement
- Units of Length - International Measure: 8
- Units of Length - Thickness Measurement: 9
- Units of Length - Survey Measure: 9
- Units of Area - International Measure: 10
- Units of Area - Survey Measure: 11
- Units of Capacity or Volume - Dry Volume Measure: 13
- Units of Capacity or Volume - Liquid Volume Measure: 14
- Units of Mass Not Less Than Avoirdupois Ounces: 15
- Units of Mass Not Greater Than Pounds and Kilograms: 16
- Units of Pressure: 18
- Conversion Equations for Units of Temperature: 19

5. Tables of Equivalents
- Units of Length: 19
- Units of Area: 21
- Units of Capacity or Volume: 21
- Units of Mass: 23
Appendix C. General Tables of Units of Measurement

These tables have been prepared for the benefit of those requiring tables of units for occasional ready reference. In Section 4 of this Appendix, the tables are carried out to a large number of decimal places and exact values are indicated by underlining. In most of the other tables, only a limited number of decimal places are given, therefore making the tables better adapted to the average user.

1. Tables of Metric Units of Measurement

In the metric system of measurement, designations of multiples and subdivisions of any unit may be arrived at by combining with the name of the unit the prefixes deka, hecto, and kilo meaning, respectively, 10, 100, and 1000, and deci, centi, and milli, meaning, respectively, one-tenth, one-hundredth, and one-thousandth. In some of the following metric tables, some such multiples and subdivisions have not been included for the reason that these have little, if any currency in actual usage.

In certain cases, particularly in scientific usage, it becomes convenient to provide for multiples larger than 1000 and for subdivisions smaller than one-thousandth. Accordingly, the following prefixes have been introduced and these are now generally recognized:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>yotta</td>
<td>Y</td>
<td>10^24</td>
</tr>
<tr>
<td>zetta</td>
<td>Z</td>
<td>10^21</td>
</tr>
<tr>
<td>exa</td>
<td>E</td>
<td>10^18</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>10^15</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^12</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^9</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^6</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^3</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10^2</td>
</tr>
<tr>
<td>deka</td>
<td>da</td>
<td>10^1</td>
</tr>
<tr>
<td>deci</td>
<td>d</td>
<td>10^-1</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>10^-2</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10^-3</td>
</tr>
<tr>
<td>micro</td>
<td>µ</td>
<td>10^-6</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^-9</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10^-12</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>10^-15</td>
</tr>
<tr>
<td>atto</td>
<td>a</td>
<td>10^-18</td>
</tr>
<tr>
<td>zepto</td>
<td>z</td>
<td>10^-21</td>
</tr>
<tr>
<td>yocto</td>
<td>y</td>
<td>10^-24</td>
</tr>
</tbody>
</table>

Thus a kilometer is 1000 meters and a millimeter is 0.001 meter.

Units of Length

<table>
<thead>
<tr>
<th>Metric Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 millimeters (mm)</td>
<td>= 1 centimeter (cm)</td>
</tr>
<tr>
<td>10 centimeters</td>
<td>= 1 decimeter (dm) = 100 millimeters</td>
</tr>
<tr>
<td>10 decimeters</td>
<td>= 1 meter (m) = 1000 millimeters</td>
</tr>
<tr>
<td>10 meters</td>
<td>= 1 dekameter (dam)</td>
</tr>
<tr>
<td>10 dekameters</td>
<td>= 1 hectometer (hm) = 100 meters</td>
</tr>
<tr>
<td>10 hectometers</td>
<td>= 1 kilometer (km) = 1000 meters</td>
</tr>
</tbody>
</table>

Units of Area

<table>
<thead>
<tr>
<th>Metric Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 square millimeters (mm²)</td>
<td>= 1 square centimeter (cm²)</td>
</tr>
<tr>
<td>100 square centimeters</td>
<td>= 1 square decimeter (dm²)</td>
</tr>
<tr>
<td>100 square decimeters</td>
<td>= 1 square meter (m²)</td>
</tr>
<tr>
<td>100 square meters</td>
<td>= 1 square dekameter (dam²) = 1 are</td>
</tr>
<tr>
<td>100 square dekameters</td>
<td>= 1 square hectometer (hm²) = 1 hectare (ha)</td>
</tr>
<tr>
<td>100 square hectometers</td>
<td>= 1 square kilometer (km²)</td>
</tr>
</tbody>
</table>
Units of Liquid Volume

10 milliliters (mL) = 1 centiliter (cL)
10 centiliters = 1 deciliter (dL) = 100 milliliters
10 deciliters = 1 liter \(^4\) = 1000 milliliters
10 liters = 1 dekaliter (daL)
10 dekaliters = 1 hectoliter (hL) = 100 liters
10 hectoliters = 1 kiloliter (kL) = 1000 liters

Units of Volume

1000 cubic millimeters (mm\(^3\)) = 1 cubic centimeter (cm\(^3\))
1000 cubic centimeters = 1 cubic decimeter (dm\(^3\)) = 1000 cubic millimeters
1000 cubic decimeters = 1 cubic meter (m\(^3\)) = 1000 cubic centimeters = 1000000 cubic millimeters

Units of Mass

10 milligrams (mg) = 1 centigram (cg)
10 centigrams = 1 decigram (dg) = 100 milligrams
10 decigrams = 1 gram (g) = 1000 milligrams
10 grams = 1 dekagram (dag)
10 dekagrams = 1 hectogram (hg) = 100 grams
10 hectograms = 1 kilogram (kg) = 1000 grams
1000 kilograms = 1 megagram (Mg) or 1 metric ton (t)

2. Tables of U.S. Customary Units of Measurement

In these tables where **foot or mile** is underlined, it is survey foot or U.S. statute mile rather than international foot or mile that is meant.

Units of Length

12 inches (in) = 1 foot (ft)
3 feet = 1 yard (yd)
16½ feet = 1 rod (rd), pole, or perch
40 rods = 1 furlong (fur) = 660 feet
8 furlongs = 1 U.S. statute mile (mi) = 5280 feet
1852 meters (m) = 6076.115 49 feet (approximately) = 1 international nautical mile

\(^1\) By action of the 12th General Conference on Weights and Measures (1964), the liter is a special name for the cubic decimeter.

\(^2\) This section lists units of measurement that have traditionally been used in the United States. In keeping with the Omnibus Trade and Competitiveness Act of 1988, the ultimate objective is to make the International System of Units the primary measurement system used in the United States.
Units of Area

<table>
<thead>
<tr>
<th>Units</th>
<th>Equivalent Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 square inches (in²)</td>
<td>= 1 square foot (ft²)</td>
</tr>
<tr>
<td>9 square feet</td>
<td>= 1 square yard (yd²)</td>
</tr>
<tr>
<td></td>
<td>= 1296 square inches</td>
</tr>
<tr>
<td>272¼ square feet</td>
<td>= 1 square rod (rd²)</td>
</tr>
<tr>
<td>160 square rods</td>
<td>= 1 acre = 43 560 square feet</td>
</tr>
<tr>
<td>640 acres</td>
<td>= 1 square mile (mi²)</td>
</tr>
<tr>
<td>1 mile square</td>
<td>= 1 section of land</td>
</tr>
<tr>
<td>6 miles square</td>
<td>= 1 township</td>
</tr>
<tr>
<td></td>
<td>= 36 sections = 36 square miles</td>
</tr>
</tbody>
</table>

Units of Volume

<table>
<thead>
<tr>
<th>Units</th>
<th>Equivalent Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1728 cubic inches (in³)</td>
<td>= 1 cubic foot (ft³)</td>
</tr>
<tr>
<td>27 cubic feet</td>
<td>= 1 cubic yard (yd³)</td>
</tr>
</tbody>
</table>

Gunter’s or Surveyors Chain Units of Measurement

<table>
<thead>
<tr>
<th>Units</th>
<th>Equivalent Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.66 foot (ft)</td>
<td>= 1 link (li)</td>
</tr>
<tr>
<td>100 links</td>
<td>= 1 chain (ch)</td>
</tr>
<tr>
<td></td>
<td>= 4 rods = 66 feet</td>
</tr>
<tr>
<td>80 chains</td>
<td>= 1 U.S. statute mile (mi)</td>
</tr>
<tr>
<td></td>
<td>= 320 rods = 5280 feet</td>
</tr>
</tbody>
</table>

Units of Liquid Volume

<table>
<thead>
<tr>
<th>Units</th>
<th>Equivalent Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 gills (gi)</td>
<td>= 1 pint (pt) = 28.875 cubic inches (in³)</td>
</tr>
<tr>
<td>2 pints</td>
<td>= 1 quart (qt) = 57.75 cubic inches</td>
</tr>
<tr>
<td>4 quarts</td>
<td>= 1 gallon (gal) = 231 cubic inches</td>
</tr>
<tr>
<td></td>
<td>= 8 pints = 32 gills</td>
</tr>
</tbody>
</table>

Apothecaries Units of Liquid Volume

<table>
<thead>
<tr>
<th>Units</th>
<th>Equivalent Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 minims</td>
<td>= 1 fluid dram (fl dr or f 3)</td>
</tr>
<tr>
<td></td>
<td>= 0.225 6 cubic inch (in³)</td>
</tr>
<tr>
<td>8 fluid drams</td>
<td>= 1 fluid ounce (fl oz or f 8)</td>
</tr>
<tr>
<td></td>
<td>= 1.804 7 cubic inches</td>
</tr>
<tr>
<td>16 fluid ounces</td>
<td>= 1 pint (pt)</td>
</tr>
<tr>
<td></td>
<td>= 28.875 cubic inches</td>
</tr>
<tr>
<td></td>
<td>= 128 fluid drams</td>
</tr>
<tr>
<td>2 pints</td>
<td>= 1 quart (qt) = 57.75 cubic inches</td>
</tr>
<tr>
<td></td>
<td>= 32 fluid ounces = 256 fluid drams</td>
</tr>
<tr>
<td>4 quarts</td>
<td>= 1 gallon (gal) = 231 cubic inches</td>
</tr>
<tr>
<td></td>
<td>= 128 fluid ounces = 1024 fluid drams</td>
</tr>
</tbody>
</table>

3 Squares and cubes of customary but not of metric units are sometimes expressed by the use of abbreviations rather than symbols. For example, sq ft means square foot, and cu ft means cubic foot.

4 When necessary to distinguish the liquid pint or quart from the dry pint or quart, the word “liquid” or the abbreviation “liq” should be used in combination with the name or abbreviation of the liquid unit.

Units of Dry Volume

<table>
<thead>
<tr>
<th>2 pints (pt)</th>
<th>= 1 quart (qt) = 67.200 6 cubic inches (in³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 quarts</td>
<td>= 1 peck (pk) = 537.605 cubic inches</td>
</tr>
<tr>
<td></td>
<td>= 16 pints</td>
</tr>
<tr>
<td>4 pecks</td>
<td>= 1 bushel (bu) = 2150.42 cubic inches</td>
</tr>
<tr>
<td></td>
<td>= 32 quarts</td>
</tr>
</tbody>
</table>

Avoirdupois Units of Mass

[The “grain” is the same in avoirdupois, troy, and apothecaries units of mass.]

1 µlb	= 0.000 001 pound (lb)
27 1/2 grains (gr)	= 1 dram (dr)
16 drams	= 1 ounce (oz)
	= 437½ grains
16 ounces	= 1 pound (lb)
	= 256 drams
	= 7000 grains
100 pounds	= 1 hundredweight (cwt)
20 hundredweights	= 1 ton (tn)
	= 2000 pounds

In “gross” or “long” measure, the following values are recognized:

112 pounds (lb)	= 1 gross or long hundredweight (cwt)
20 gross or long hundredweights	= 1 gross or long ton
	= 2240 pounds

Troy Units of Mass

[The “grain” is the same in avoirdupois, troy, and apothecaries units of mass.]

24 grains (gr)	= 1 pennyweight (dwt)
20 pennyweights	= 1 ounce troy (oz t) = 480 grains
12 ounces troy	= 1 pound troy (lb t)
	= 240 pennyweights = 5760 grains

5 When necessary to distinguish dry pint or quart from the liquid pint or quart, the word “dry” should be used in combination with the name or abbreviation of the dry unit.

6 When necessary to distinguish the avoirdupois dram from the apothecaries dram, or to distinguish the avoirdupois dram or ounce from the fluid dram or ounce, or to distinguish the avoirdupois ounce or pound from the troy or apothecaries ounce or pound, the word “avoirdupois” or the abbreviation “avdp” should be used in combination with the name or abbreviation of the avoirdupois unit.

7 When the terms “hundredweight” and “ton” are used unmodified, they are commonly understood to mean the 100-pound hundredweight and the 2000-pound ton, respectively; these units may be designated “net” or “short” when necessary to distinguish them from the corresponding units in gross or long measure.

8 As of January 1, 2014, “tn” is the required abbreviation for “short ton.” Devices manufactured between January 1, 2008, and December 31, 2013, may use an abbreviation other than “tn” to specify “short ton.”
Apothecaries Units of Mass

[The “grain” is the same in avoirdupois, troy, and apothecaries units of mass.]

- 20 grains (gr) = 1 scruple (s ap or ℧)
- 3 scruples = 1 dram apothecaries (dr ap or ™)
- = 60 grains
- 8 drams apothecaries = 1 ounce apothecaries (oz ap or ℥)
- = 24 scruples = 480 grains
- 12 ounces apothecaries = 1 pound apothecaries (lb ap)
- = 96 drams apothecaries
- = 288 scruples = 5760 grains

3. Notes on British Units of Measurement

In Great Britain, the yard, the avoirdupois pound, the troy pound, and the apothecaries pound are identical with the units of the same names used in the United States. The tables of British linear measure, troy mass, and apothecaries mass are the same as the corresponding United States tables, except for the British spelling “drachm” in the table of apothecaries mass. The table of British avoirdupois mass is the same as the United States table up to 1 pound; above that point the table reads:

- 14 pounds = 1 stone
- 2 stones = 1 quarter = 28 pounds
- 4 quarters = 1 hundredweight = 112 pounds
- 20 hundredweights = 1 ton = 2240 pounds

The present British gallon and bushel – known as the “Imperial gallon” and “Imperial bushel” – are, respectively, about 20% and 3% larger than the United States gallon and bushel. The Imperial gallon is defined as the volume of 10 avoirdupois pounds of water under specified conditions, and the Imperial bushel is defined as 8 Imperial gallons. Also, the subdivision of the Imperial gallon as presented in the table of British apothecaries fluid measure differs in two important respects from the corresponding United States subdivision, in that the Imperial gallon is divided into 160 fluid ounces (whereas the United States gallon is divided into 128 fluid ounces), and a “fluid scruple” is included. The full table of British measures of capacity (which are used alike for liquid and for dry commodities) is as follows:

- 4 gills = 1 pint
- 2 pints = 1 quart
- 4 quarts = 1 gallon
- 2 gallons = 1 peck
- 8 gallons (4 pecks) = 1 bushel
- 8 bushels = 1 quarter

The full table of British apothecaries measure is as follows:

- 20 minims = 1 fluid scruple
- 3 fluid scruples = 1 fluid drachm
- = 60 minims
- 8 fluid drachms = 1 fluid ounce
- 20 fluid ounces = 1 pint
- 8 pints = 1 gallon (160 fluid ounces)
4. Tables of Units of Measurement

Unit conversion is a multi-step process that involves multiplication or division by a numerical factor; selection of the correct number of significant digits; and rounding. Accurate unit conversions are obtained by selecting an appropriate conversion factor (a ratio which converts one unit of measure into another without changing the quantity), which are supplied in these tables.

Some unit conversions may be exact, without increasing or decreasing the precision of the original quantity. Exact unit conversion factors are underlined in these tables. It is good practice to keep all the digits, especially if other mathematical operations or conversions will follow. Rounding should be the last step of the conversion process and should be performed only once.

To convert a value from one unit of measurement to different unit of measurement follow the steps below.

- Find the table corresponding to the general category of measurement; for example, the table titled “Units of Volume” includes conversion factors for volume measurements.
- Locate the “starting unit” of measurement in the far, left column.
- Proceed horizontally to the right on the same row until you reach the column with the heading of the “ending unit” of measurement.
- The unit conversion factor is located at the intersection of the row and column.
- Multiply the quantity value of the starting unit of measurement by the conversion factor.
- The result is the equivalent quantity value in the ending unit of measurement.

Units of Length - International Measure

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
</tr>
<tr>
<td>1 inch</td>
<td>=</td>
</tr>
<tr>
<td>1 foot</td>
<td>=</td>
</tr>
<tr>
<td>1 yard</td>
<td>=</td>
</tr>
<tr>
<td>1 mile</td>
<td>=</td>
</tr>
<tr>
<td>1 centimeter</td>
<td>=</td>
</tr>
<tr>
<td>1 meter</td>
<td>=</td>
</tr>
</tbody>
</table>

9 One international foot = 0.999 998 survey foot (exactly)
One international mile = 0.999 998 survey mile (exactly)
Units of Length - Thickness Measurement
(all underlined figures are exact)

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Inches</td>
</tr>
<tr>
<td>1 mil</td>
<td>0.001</td>
</tr>
</tbody>
</table>

NOTE: The unit “mil” is a unit traditionally used by industry for the measurement of thickness.

Units of Length - Survey Measure
(all underlined figures are exact)

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Links</td>
</tr>
<tr>
<td>1 link</td>
<td>1</td>
</tr>
<tr>
<td>1 foot</td>
<td>1.515 152</td>
</tr>
<tr>
<td>1 rod</td>
<td>25</td>
</tr>
<tr>
<td>1 chain</td>
<td>100</td>
</tr>
<tr>
<td>1 mile</td>
<td>8 000</td>
</tr>
<tr>
<td>1 meter</td>
<td>4 970 960</td>
</tr>
</tbody>
</table>
Units of Area - International Measure

(all underlined figures are exact)

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ending Unit → Square Inches</td>
</tr>
<tr>
<td>1 square inch</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square foot</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square yard</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square mile</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square centimeter</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square meter</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
</tbody>
</table>

| Note: 1 survey foot = \frac{1200}{3937} \text{ meter (exactly)} |
| 1 international foot = 12 \times 0.0254 \text{ meter (exactly)} |
| 1 international foot = 0.0254 \times 39.37 \text{ survey foot (exactly)} |

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ending Unit → Square Miles</td>
</tr>
<tr>
<td>1 square inch</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square foot</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square yard</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square mile</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square centimeter</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>1 square meter</td>
<td>= □ □ □ □ □ □ □ □ □ □ □ □</td>
</tr>
</tbody>
</table>

10 One square survey foot = 1.000 004 square international feet
One square survey mile = 1.000 004 square international miles
Units of Area - Survey Measure

(all underlined figures are exact)

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ending Unit → Square Feet</td>
</tr>
<tr>
<td>1 square foot =</td>
<td>1</td>
</tr>
<tr>
<td>1 square rod =</td>
<td>272.25</td>
</tr>
<tr>
<td>1 square chain =</td>
<td>4 356</td>
</tr>
<tr>
<td>1 acre =</td>
<td>43 560</td>
</tr>
<tr>
<td>1 square mile =</td>
<td>27 878 400</td>
</tr>
<tr>
<td>1 square meter =</td>
<td>10.763 87</td>
</tr>
<tr>
<td>1 hectare =</td>
<td>107 638.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ending Unit → Square Miles</td>
</tr>
<tr>
<td>1 square foot =</td>
<td>0.000 000 035 870 06</td>
</tr>
<tr>
<td>1 square rod =</td>
<td>0.000 009 765 625</td>
</tr>
<tr>
<td>1 square chain =</td>
<td>0.000 156 25</td>
</tr>
<tr>
<td>1 acre =</td>
<td>0.001 562 5</td>
</tr>
<tr>
<td>1 square mile =</td>
<td>1</td>
</tr>
<tr>
<td>1 square meter =</td>
<td>0.000 000 386 100 6</td>
</tr>
<tr>
<td>1 hectare =</td>
<td>0.003 861 006</td>
</tr>
</tbody>
</table>

10 One square survey foot = 1.000 004 square international feet
One square survey mile = 1.000 004 square international miles

11 One international foot = 0.999 998 survey foot (exactly)
One international mile = 0.999 998 survey mile (exactly)
Units of Volume
(all underlined figures are exact)

Cubic Inches to Other Units

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Cubic Inches</th>
<th>Cubic Feet</th>
<th>Cubic Yards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cubic inch</td>
<td>1</td>
<td>0.000 578 703 7</td>
<td>0.000 021 433 47</td>
</tr>
<tr>
<td>1 cubic foot</td>
<td>1 728</td>
<td>1</td>
<td>0.037 037 04</td>
</tr>
<tr>
<td>1 cubic yard</td>
<td>46 656</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>1 cubic centimeter</td>
<td>0.061 023 74</td>
<td>0.000 035 314 67</td>
<td>0.000 001 307 951</td>
</tr>
<tr>
<td>1 cubic decimeter</td>
<td>61.023 74</td>
<td>0.035 314 67</td>
<td>0.001 307 951</td>
</tr>
<tr>
<td>1 cubic meter</td>
<td>61 023.74</td>
<td>35.314 67</td>
<td>1.307 951</td>
</tr>
</tbody>
</table>

Milliliters (Cubic Centimeters) to Other Units

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Milliliters (Cubic Centimeters)</th>
<th>Liters (Cubic Decimeters)</th>
<th>Cubic Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cubic inch</td>
<td>16.387 064</td>
<td>0.016 387 064</td>
<td>0.000 016 387 064</td>
</tr>
<tr>
<td>1 cubic foot</td>
<td>28 316.846 592</td>
<td>28 316.846 592</td>
<td>0.028 316 846 592</td>
</tr>
<tr>
<td>1 cubic yard</td>
<td>764 554.857 984</td>
<td>764.554 857 984</td>
<td>0.764 554 857 984</td>
</tr>
<tr>
<td>1 cubic centimeter</td>
<td>1</td>
<td>0.001</td>
<td>0.000 001</td>
</tr>
<tr>
<td>1 cubic decimeter</td>
<td>1 000</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>1 cubic meter</td>
<td>1 000 000</td>
<td>1000</td>
<td>1</td>
</tr>
</tbody>
</table>
Units of Capacity or Volume - Dry Volume Measure
(all underlined figures are exact)

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
<th>Ending Unit →</th>
<th>Dry Pints</th>
<th>Dry Quarts</th>
<th>Pecks</th>
<th>Bushels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dry pint</td>
<td></td>
<td>Dry Pints</td>
<td>1</td>
<td>0.5</td>
<td>0.062 5</td>
<td>0.015 625</td>
</tr>
<tr>
<td>1 dry quart</td>
<td></td>
<td>Dry Quarts</td>
<td></td>
<td>1</td>
<td>0.125</td>
<td>0.031 25</td>
</tr>
<tr>
<td>1 peck</td>
<td></td>
<td></td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>1 bushel</td>
<td></td>
<td></td>
<td>64</td>
<td>32</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1 cubic inch</td>
<td></td>
<td></td>
<td>0.029 761 6</td>
<td>0.014 880 8</td>
<td>0.001 860 10</td>
<td>0.000 465 025</td>
</tr>
<tr>
<td>1 cubic foot</td>
<td></td>
<td></td>
<td>51.428 09</td>
<td>25.714 05</td>
<td>3.214 256</td>
<td>0.803 563 95</td>
</tr>
<tr>
<td>1 liter</td>
<td></td>
<td></td>
<td>1.816 166</td>
<td>0.908 083 0</td>
<td>0.113 510 4</td>
<td>0.028 377 59</td>
</tr>
<tr>
<td>1 cubic meter</td>
<td></td>
<td></td>
<td>1 816.166</td>
<td>908.083 0</td>
<td>113.510 4</td>
<td>28.377 59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
<th>Ending Unit →</th>
<th>Cubic Inches</th>
<th>Cubic Feet</th>
<th>Liters</th>
<th>Cubic Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dry pint</td>
<td></td>
<td>Cubic Inches</td>
<td>1.12</td>
<td>0.019 444 63</td>
<td>0.550 610 5</td>
<td>0.000 550 610 5</td>
</tr>
<tr>
<td>1 dry quart</td>
<td></td>
<td>Cubic Feet</td>
<td>67.200 625</td>
<td>0.038 889 25</td>
<td>1.101 221</td>
<td>0.001 101 221</td>
</tr>
<tr>
<td>1 peck</td>
<td></td>
<td></td>
<td>537.605</td>
<td>0.311 114</td>
<td>8.809 768</td>
<td>0.008 809 768</td>
</tr>
<tr>
<td>1 bushel</td>
<td></td>
<td></td>
<td>2 150.42</td>
<td>1.244 456</td>
<td>35 239 070 166 88</td>
<td>0.035 239 070 166 88</td>
</tr>
<tr>
<td>1 cubic inch</td>
<td></td>
<td></td>
<td>1</td>
<td>0.000 578 703 7</td>
<td>0.016 387 064</td>
<td>0.000 016 387 064</td>
</tr>
<tr>
<td>1 cubic foot</td>
<td></td>
<td></td>
<td>1728</td>
<td>1</td>
<td>28.316 846 592</td>
<td>0.028 16 846 592</td>
</tr>
<tr>
<td>1 liter</td>
<td></td>
<td></td>
<td>61.023 74</td>
<td>0.035 314 67</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>1 cubic meter</td>
<td></td>
<td></td>
<td>61 023.74</td>
<td>35.314 67</td>
<td>1000</td>
<td>1</td>
</tr>
</tbody>
</table>
Units of Capacity or Volume - Liquid Volume Measure

(All underlined figures are exact)

Multiply by the Conversion Factor Below the Ending Unit:

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Minims</th>
<th>Fluid Drams</th>
<th>Fluid Ounces</th>
<th>Galls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minim</td>
<td>1</td>
<td>0.016 666 67</td>
<td>0.002 083 333</td>
<td>0.000 520 833 3</td>
</tr>
<tr>
<td>1 fluid dram</td>
<td>60</td>
<td>1</td>
<td>0.125</td>
<td>0.031 25</td>
</tr>
<tr>
<td>1 fluid ounce</td>
<td>480</td>
<td>8</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>1 gill</td>
<td>1 920</td>
<td>32</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1 liquid pint</td>
<td>7 680</td>
<td>128</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>1 liquid quart</td>
<td>15 360</td>
<td>256</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>1 gallon</td>
<td>61 440</td>
<td>1 024</td>
<td>1 28</td>
<td>32</td>
</tr>
<tr>
<td>1 cubic inch</td>
<td>265 974 0</td>
<td>4.432 900</td>
<td>0.554 112 6</td>
<td>0.138 528 1</td>
</tr>
<tr>
<td>1 cubic foot</td>
<td>459 603.1</td>
<td>7 660.052</td>
<td>957.506 5</td>
<td>239.376 6</td>
</tr>
<tr>
<td>1 milliliter</td>
<td>16 230.73</td>
<td>0.270 512 2</td>
<td>0.033 814 02</td>
<td>0.008 453 506</td>
</tr>
<tr>
<td>1 liter</td>
<td>16 230.73</td>
<td>270.512 2</td>
<td>33.814 02</td>
<td>8.453 506</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Liquid Pints</th>
<th>Liquid Quarts</th>
<th>Gallons</th>
<th>Cubic Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minim</td>
<td>0.000 130 208 3</td>
<td>0.000 065 104 17</td>
<td>0.000 016 276 04</td>
<td>0.003 759 766</td>
</tr>
<tr>
<td>1 fluid dram</td>
<td>0.007 812 5</td>
<td>0.003 906 25</td>
<td>0.000 976 562 5</td>
<td>0.225 585 94</td>
</tr>
<tr>
<td>1 fluid ounce</td>
<td>0.062 5</td>
<td>0.031 25</td>
<td>0.007 812 5</td>
<td>1.804 687 5</td>
</tr>
<tr>
<td>1 gill</td>
<td>0.25</td>
<td>0.125</td>
<td>0.031 25</td>
<td>7.218 75</td>
</tr>
<tr>
<td>1 liquid pint</td>
<td>1</td>
<td>0.5</td>
<td>0.125</td>
<td>28.875</td>
</tr>
<tr>
<td>1 liquid quart</td>
<td>2</td>
<td>1</td>
<td>0.25</td>
<td>57.75</td>
</tr>
<tr>
<td>1 gallon</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>231</td>
</tr>
<tr>
<td>1 cubic inch</td>
<td>0.034 632 03</td>
<td>0.017 316 02</td>
<td>0.004 329 004</td>
<td>1</td>
</tr>
<tr>
<td>1 cubic foot</td>
<td>59.844 16</td>
<td>29.922 08</td>
<td>7.480 519</td>
<td>1 728</td>
</tr>
<tr>
<td>1 milliliter</td>
<td>0.002 113 376</td>
<td>0.001 056 688</td>
<td>0.000 264 172 1</td>
<td>0.061 023 74</td>
</tr>
<tr>
<td>1 liter</td>
<td>2.113 376</td>
<td>1.056 688</td>
<td>0.264 172 1</td>
<td>61.023 74</td>
</tr>
</tbody>
</table>
Units of Volume

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Cubic Feet</th>
<th>Milliliters</th>
<th>Liters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minim</td>
<td>0.000 002 175 790</td>
<td>0.061 611 52</td>
<td>0.000 061 611 52</td>
</tr>
<tr>
<td>1 fluid dram</td>
<td>0.000 130 547 4</td>
<td>3.696 691</td>
<td>0.003 696 691</td>
</tr>
<tr>
<td>1 fluid ounce</td>
<td>0.001 044 379</td>
<td>29.573 53</td>
<td>0.029 573 53</td>
</tr>
<tr>
<td>1 gill</td>
<td>0.004 177 517</td>
<td>118.294 1</td>
<td>0.118 294 1</td>
</tr>
<tr>
<td>1 liquid pint</td>
<td>0.016 710 07</td>
<td>473.176 5</td>
<td>0.473 176 5</td>
</tr>
<tr>
<td>1 liquid quart</td>
<td>0.033 420 14</td>
<td>946.352 9</td>
<td>0.946 352 9</td>
</tr>
<tr>
<td>1 gallon</td>
<td>0.133 680 6</td>
<td>3785.41 1</td>
<td>3.785 411 784</td>
</tr>
<tr>
<td>1 cubic inch</td>
<td>0.000 578 703 7</td>
<td>16.387 06</td>
<td>0.016 387 06</td>
</tr>
<tr>
<td>1 cubic foot</td>
<td>1</td>
<td>28.316 85</td>
<td>28.316 85</td>
</tr>
<tr>
<td>1 milliliter</td>
<td>0.000 035 314 67</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>1 liter</td>
<td>0.035 314 67</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Units of Mass

Avoirdupois Ounces

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Avoirdupois Ounces</th>
<th>Avoirdupois Pounds</th>
<th>Short Hundred-weights</th>
<th>Short Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 avoirdupois ounce</td>
<td>1</td>
<td>0.0625</td>
<td>0.000 625</td>
<td>0.000 031 25</td>
</tr>
<tr>
<td>1 avoirdupois pound</td>
<td>16</td>
<td>1</td>
<td>0.01</td>
<td>0.000 5</td>
</tr>
<tr>
<td>1 short hundredweight</td>
<td>1 600</td>
<td>100</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>1 short ton</td>
<td>32 000</td>
<td>2 000</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>1 long ton</td>
<td>35 840</td>
<td>2 240</td>
<td>22.4</td>
<td>1.12</td>
</tr>
<tr>
<td>1 kilogram</td>
<td>35.273 96</td>
<td>2.204 623</td>
<td>0.022 046 23</td>
<td>0.001 102 311</td>
</tr>
<tr>
<td>1 metric ton</td>
<td>35 273.96</td>
<td>2204.623</td>
<td>22.046 23</td>
<td>1.102 311</td>
</tr>
</tbody>
</table>

(all underlined figures are exact)
Units of Mass Not Greater Than Pounds and Kilograms

(all underlined figures are exact)

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
<th>End. Unit →</th>
<th>Grains</th>
<th>Apothecaries Scruples</th>
<th>Pennyweights</th>
<th>Avoirdupois Drams</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 grain =</td>
<td>1</td>
<td>1</td>
<td>0.05</td>
<td>0.04166667</td>
<td>0.03657143</td>
<td></td>
</tr>
<tr>
<td>1 apoth. scruple =</td>
<td>20</td>
<td>1</td>
<td></td>
<td>0.8333333</td>
<td>0.7314286</td>
<td></td>
</tr>
<tr>
<td>1 pennyweight =</td>
<td>24</td>
<td>1.2</td>
<td>1</td>
<td></td>
<td>0.8777143</td>
<td></td>
</tr>
<tr>
<td>1 avdp. dram =</td>
<td>27.34375</td>
<td>1.3671875</td>
<td>1.139323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 apoth. dram =</td>
<td>60</td>
<td>3</td>
<td>2.5</td>
<td>2.194286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 avdp. ounce =</td>
<td>437.5</td>
<td>21.875</td>
<td>18.22917</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1 apoth. or troy oz. =</td>
<td>480</td>
<td>24</td>
<td>20</td>
<td>17.55429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 apoth. or troy pound =</td>
<td>5760</td>
<td>288</td>
<td>240</td>
<td>210.6514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 avdp. pound =</td>
<td>7000</td>
<td>350</td>
<td>291.6667</td>
<td></td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>1 milligram =</td>
<td>0.01543236</td>
<td>0.0007716179</td>
<td>0.0006430149</td>
<td></td>
<td>0.0005643834</td>
<td></td>
</tr>
<tr>
<td>1 gram =</td>
<td>15.43236</td>
<td>0.7716179</td>
<td>0.6430149</td>
<td>0.5643834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 kilogram =</td>
<td>15432.36</td>
<td>771.6179</td>
<td>643.0149</td>
<td>564.3834</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiply by the Conversion Factor Below the Ending Unit:

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Ending Unit →</th>
<th>Apothecaries Drams</th>
<th>Avoirdupois Ounces</th>
<th>Apothecaries or Troy Ounces</th>
<th>Apothecaries or Troy Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 grain</td>
<td>=</td>
<td>0.016 666 67</td>
<td>0.002 285 714</td>
<td>0.002 083 333</td>
<td>0.000 173 611 1</td>
</tr>
<tr>
<td>1 apoth. scruple</td>
<td>=</td>
<td>0.333 333 3</td>
<td>0.045 714 29</td>
<td>0.041 666 67</td>
<td>0.003 472 222</td>
</tr>
<tr>
<td>1 pennyweight</td>
<td>=</td>
<td>0.4</td>
<td>0.054 857 14</td>
<td>0.05</td>
<td>0.004 166 667</td>
</tr>
<tr>
<td>1 avdp. dram</td>
<td>=</td>
<td>0.455 729 2</td>
<td>0.062 5</td>
<td>0.56 966 15</td>
<td>0.004 747 179</td>
</tr>
<tr>
<td>1 apoth. dram</td>
<td>=</td>
<td>1</td>
<td>0.137 142 9</td>
<td>0.125</td>
<td>0.010 416 67</td>
</tr>
<tr>
<td>1 avdp. ounce</td>
<td>=</td>
<td>7.291 667</td>
<td>1</td>
<td>0.911 458 3</td>
<td>0.075 954 86</td>
</tr>
<tr>
<td>1 apoth. or troy ounce</td>
<td>=</td>
<td>8</td>
<td>1.097 143</td>
<td>1</td>
<td>0.083 333 333</td>
</tr>
<tr>
<td>1 apoth. or troy pound</td>
<td>=</td>
<td>96</td>
<td>13.165 71</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1 avdp. pound</td>
<td>=</td>
<td>116.666 7</td>
<td>16</td>
<td>14.583 33</td>
<td>1.215 278</td>
</tr>
<tr>
<td>1 milligram</td>
<td>=</td>
<td>0.000 257 206 0</td>
<td>0.000 035 273 96</td>
<td>0.000 032 150 75</td>
<td>0.000 002 679 229</td>
</tr>
<tr>
<td>1 gram</td>
<td>=</td>
<td>0.257 206 0</td>
<td>0.035 273 96</td>
<td>0.032 150 75</td>
<td>0.002 679 229</td>
</tr>
<tr>
<td>1 kilogram</td>
<td>=</td>
<td>257.206 0</td>
<td>35.273 96</td>
<td>32.150 75</td>
<td>2.679 229</td>
</tr>
</tbody>
</table>
Units of Measurement

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ending Unit →</td>
</tr>
<tr>
<td>1 grain</td>
<td>=</td>
</tr>
<tr>
<td>1 apoth. scruple</td>
<td>=</td>
</tr>
<tr>
<td>1 pennyweight</td>
<td>=</td>
</tr>
<tr>
<td>1 avdp. dram</td>
<td>=</td>
</tr>
<tr>
<td>1 apoth. dram</td>
<td>=</td>
</tr>
<tr>
<td>1 avdp. ounce</td>
<td>=</td>
</tr>
<tr>
<td>1 apoth. or troy ounce</td>
<td>=</td>
</tr>
<tr>
<td>1 apoth. or troy pound</td>
<td>=</td>
</tr>
<tr>
<td>1 avdp. pound</td>
<td>=</td>
</tr>
<tr>
<td>1 milligram</td>
<td>=</td>
</tr>
<tr>
<td>1 gram</td>
<td>=</td>
</tr>
<tr>
<td>1 kilogram</td>
<td>=</td>
</tr>
</tbody>
</table>

Units of Pressure

(all underlined figures are exact)

<table>
<thead>
<tr>
<th>Starting Unit</th>
<th>Multiply by the Conversion Factor Below the Ending Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ending Unit →</td>
</tr>
<tr>
<td>1 Pa</td>
<td>=</td>
</tr>
<tr>
<td>1 kPa</td>
<td>=</td>
</tr>
<tr>
<td>1 MPa</td>
<td>=</td>
</tr>
<tr>
<td>1 psi (lbf/in²)</td>
<td>=</td>
</tr>
<tr>
<td>1 mmHg (0 °C)</td>
<td>=</td>
</tr>
<tr>
<td>1 inH2O (4 °C)</td>
<td>=</td>
</tr>
</tbody>
</table>
Conversion Equations for Units of Temperature
(exact)

<table>
<thead>
<tr>
<th>Units</th>
<th>To Fahrenheit (°F)</th>
<th>To Celsius (°C)</th>
<th>To Kelvin (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrenheit (°F)</td>
<td>°F</td>
<td>(°F − 32)</td>
<td>(°F − 32) / 1.8 + 273.15</td>
</tr>
<tr>
<td>Celsius (°C)</td>
<td>(°C × 1.8) + 32</td>
<td>°C</td>
<td>(°C) + 273.15</td>
</tr>
<tr>
<td>Kelvin (K)</td>
<td>(K − 273.15) × 1.8 + 32</td>
<td>K − 273.15</td>
<td>K</td>
</tr>
</tbody>
</table>

Instructions for the Conversion Equations for Temperature:

Start at the left column of the table until you reach the row labeled with the starting unit. Then proceed horizontally to the right along that row until you reach the column of the desired unit. The unit conversion factor is located at the intersection of the row and column.

5. Tables of Equivalents

In these tables it is necessary to differentiate between the “international foot” and the “survey foot.” Therefore, the survey foot is underlined.

When the name of a unit is enclosed in brackets (thus, [1 hand] . . .), this indicates (1) that the unit is not in general current use in the United States, or (2) that the unit is believed to be based on “custom and usage” rather than on formal authoritative definition.

Equivalents involving decimals are, in most instances, rounded off to the third decimal place except where they are exact, in which cases these exact equivalents are so designated. The equivalents of the imprecise units “tablespoon” and “teaspoon” are rounded to the nearest milliliter.

<table>
<thead>
<tr>
<th>Units of Length</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>angstrom (Å)</td>
<td>0.1 nanometer (exactly)</td>
</tr>
<tr>
<td></td>
<td>0.000 1 micrometer (exactly)</td>
</tr>
<tr>
<td></td>
<td>0.000 000 1 millimeter (exactly)</td>
</tr>
<tr>
<td></td>
<td>0.000 000 004 inch</td>
</tr>
<tr>
<td>1 cable’s length</td>
<td>120 fathoms (exactly)</td>
</tr>
<tr>
<td></td>
<td>720 feet (exactly)</td>
</tr>
<tr>
<td></td>
<td>219 meters</td>
</tr>
<tr>
<td>1 centimeter (cm)</td>
<td>0.393 7 inch</td>
</tr>
<tr>
<td>1 chain (ch) (Gunter’s or surveyors)</td>
<td>66 feet (exactly)</td>
</tr>
<tr>
<td></td>
<td>20.116 8 meters</td>
</tr>
<tr>
<td>1 decimeter (dm)</td>
<td>3.937 inches</td>
</tr>
<tr>
<td>1 dekameter (dam)</td>
<td>32.808 feet</td>
</tr>
</tbody>
</table>

12 The angstrom is basically defined as 10⁻¹⁰ meter.
{Table: Units of Length}

<table>
<thead>
<tr>
<th>Unit Description</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fathom</td>
<td>6 feet (exactly) 1.828 8 meters</td>
</tr>
<tr>
<td>1 foot (ft)</td>
<td>0.304 8 meter (exactly)</td>
</tr>
<tr>
<td>1 furlong (fur)</td>
<td>10 chains (surveyors) (exactly) 660 feet (exactly) 1/8 U.S. statute mile (exactly) 201.168 meters</td>
</tr>
<tr>
<td>[1 hand]</td>
<td>4 inches</td>
</tr>
<tr>
<td>1 inch (in)</td>
<td>2.54 centimeters (exactly)</td>
</tr>
<tr>
<td>1 kilometer (km)</td>
<td>0.621 mile</td>
</tr>
<tr>
<td>1 league (land)</td>
<td>3 U.S. statute miles (exactly) 4.828 kilometers</td>
</tr>
<tr>
<td>1 link (li) (Gunter’s or surveyors)</td>
<td>0.66 foot (exactly) 0.201 168 meter</td>
</tr>
<tr>
<td>1 meter (m)</td>
<td>0.3937 inches 1.094 yards</td>
</tr>
<tr>
<td>1 micrometer</td>
<td>0.001 millimeter (exactly) 0.000 039 37 inch</td>
</tr>
<tr>
<td>1 mil</td>
<td>0.01 inch (exactly) 0.025 4 millimeter (exactly) 25.4 micrometer (exactly)</td>
</tr>
<tr>
<td>1 mile (mi) (U.S. statute)</td>
<td>5280 feet survey (exactly) 1.609 kilometers</td>
</tr>
<tr>
<td>1 mile (mi) (international)</td>
<td>5280 feet international (exactly)</td>
</tr>
<tr>
<td>1 mile (mi) (international nautical)</td>
<td>1.852 kilometers (exactly) 1.151 survey miles</td>
</tr>
<tr>
<td>1 millimeter (mm)</td>
<td>0.039 37 inch 0.001 meter (exactly)</td>
</tr>
<tr>
<td>1 nanometer (nm)</td>
<td>0.000 000 039 37 inch</td>
</tr>
<tr>
<td>1 Point (typography)</td>
<td>0.013 837 inch 1/72 inch (approximately) 0.351 millimeter</td>
</tr>
<tr>
<td>1 rod (rd), pole, or perch</td>
<td>16½ feet (exactly) 5.029 2 meters</td>
</tr>
<tr>
<td>1 yard (yd)</td>
<td>0.914 4 meter (exactly)</td>
</tr>
</tbody>
</table>

13 The term “statute mile” originated with Queen Elizabeth I who changed the definition of the mile from the Roman mile of 5000 feet to the statute mile of 5280 feet. The international mile and the U.S. statute mile differ by about 3 millimeters although both are defined as being equal to 5280 feet. The international mile is based on the international foot (0.3048 meter) whereas the U.S. statute mile is based on the survey foot (1200/3937 meter).

14 The international nautical mile of 1852 meters (6076.115 49 feet) was adopted effective July 1, 1954, for use in the United States. The value formerly used in the United States was 6080.20 feet = 1 nautical (geographical or sea) mile.
Units of Area

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 acre</td>
<td>43,560 square feet (exactly) 0.405 hectare</td>
</tr>
<tr>
<td>1 are</td>
<td>119.599 square yards 0.025 acre</td>
</tr>
<tr>
<td>1 hectare</td>
<td>2.471 acres</td>
</tr>
<tr>
<td>[1 square (building)]</td>
<td>100 square feet</td>
</tr>
<tr>
<td>1 square centimeter (cm²)</td>
<td>0.155 square inch</td>
</tr>
<tr>
<td>1 square decimeter (dm²)</td>
<td>15.500 square inches</td>
</tr>
<tr>
<td>1 square foot (ft²)</td>
<td>929,030 square centimeters</td>
</tr>
<tr>
<td>1 square inch (in²)</td>
<td>6.4516 square centimeters (exactly)</td>
</tr>
<tr>
<td>1 square kilometer (km²)</td>
<td>247.104 acres</td>
</tr>
<tr>
<td>1 square meter (m²)</td>
<td>1.196 square yards 10.764 square feet</td>
</tr>
<tr>
<td>1 square mile (mi²)</td>
<td>258.999 hectares</td>
</tr>
<tr>
<td>1 square millimeter (mm²)</td>
<td>0.002 square inch</td>
</tr>
<tr>
<td>1 square rod (rd²), sq pole, or sq perch</td>
<td>25.293 square meters</td>
</tr>
<tr>
<td>1 square yard (yd²)</td>
<td>0.836 square meter</td>
</tr>
</tbody>
</table>

Units of Capacity or Volume

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 barrel (bbl), liquid</td>
<td>31 to 42 gallons 16</td>
</tr>
<tr>
<td>1 barrel (bbl), standard for fruits,</td>
<td>7056 cubic inches 105 dry quarts 3.281 bushels,</td>
</tr>
<tr>
<td>vegetables, and other dry commodities,</td>
<td>struck measure</td>
</tr>
<tr>
<td>except cranberries</td>
<td></td>
</tr>
<tr>
<td>1 barrel (bbl), standard, cranberry</td>
<td>5826 cubic inches 86 2/3 dry quarts 2.709</td>
</tr>
<tr>
<td></td>
<td>bushels, struck measure</td>
</tr>
<tr>
<td>1 bushel (bu) (U.S.) struck measure</td>
<td>2150.42 cubic inches (exactly) 35.238 liters</td>
</tr>
<tr>
<td>[1 bushel, heaped (U.S.)]</td>
<td>2747.715 cubic inches 1.278 bushels, struck</td>
</tr>
<tr>
<td></td>
<td>measure17</td>
</tr>
<tr>
<td>[1 bushel (bu) (British Imperial)]</td>
<td>1.032 U.S. bushels, struck measure</td>
</tr>
</tbody>
</table>

15 The question is often asked as to the length of a side of an acre of ground. An acre is a unit of area containing 43,560 square feet. It is not necessarily square, or even rectangular. But, if it is square, then the length of a side is equal to \(\sqrt{43560 \text{ ft}^2} = 208.710 \text{ ft} \) (not exact).

16 There are a variety of “barrels” established by law or usage. For example, federal taxes on fermented liquors are based on a barrel of 31 gallons; many state laws fix the “barrel for liquids” as 31 1/2 gallons; one state fixes a 36-gallon barrel for cistern measurement; federal law recognizes a 40-gallon barrel for “proof spirits;” by custom, 42 gallons comprise a barrel of crude oil or petroleum products for statistical purposes, and this equivalent is recognized “for liquids” by four states.

17 Frequently recognized as 1 1/4 bushels, struck measure.
<table>
<thead>
<tr>
<th>Units of Capacity or Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>(struck measure)</td>
</tr>
<tr>
<td>1 cord (cd) (firewood)</td>
</tr>
<tr>
<td>1 cubic centimeter (cm³)</td>
</tr>
<tr>
<td>1 cubic decimeter (dm³)</td>
</tr>
<tr>
<td>1 cubic foot (ft³)</td>
</tr>
<tr>
<td>1 cubic inch (in³)</td>
</tr>
<tr>
<td>1 cubic meter (m³)</td>
</tr>
<tr>
<td>1 cubic yard (yd³)</td>
</tr>
<tr>
<td>1 cup, measuring</td>
</tr>
<tr>
<td>1 dekaliter (daL)</td>
</tr>
<tr>
<td>1 dram, fluid (or liquid) (fl dr) or f 3) (U.S.)</td>
</tr>
<tr>
<td>[1 drachm, fluid (fl dr) (British)]</td>
</tr>
<tr>
<td>1 gallon (gal) (U.S.)</td>
</tr>
<tr>
<td>[1 gallon (gal) (British Imperial)]</td>
</tr>
<tr>
<td>1 gill (gi)</td>
</tr>
<tr>
<td>1 hectoliter (hL)</td>
</tr>
<tr>
<td>1 liter (1 cubic decimeter exactly)</td>
</tr>
<tr>
<td>1 milliliter (mL)</td>
</tr>
<tr>
<td>1 ounce, fluid (or liquid) (fl oz) or f 5) (U.S.)</td>
</tr>
<tr>
<td>[1 ounce, fluid (fl oz) (British)]</td>
</tr>
</tbody>
</table>
Units of Capacity or Volume

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Equivalent in Cubic Inches</th>
<th>Equivalent in Milliliters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 peck (pk)</td>
<td>1.734</td>
<td>28.412</td>
</tr>
<tr>
<td>1 pint (pt), dry</td>
<td>33.600</td>
<td>0.551</td>
</tr>
<tr>
<td>1 pint (pt), liquid</td>
<td>28.875 (exactly)</td>
<td>0.473</td>
</tr>
<tr>
<td>1 quart (qt), dry (U.S.)</td>
<td>67.201</td>
<td>1.101 British quart</td>
</tr>
<tr>
<td>1 quart (qt), liquid (U.S.)</td>
<td>57.75 (exactly)</td>
<td>0.946 British quart</td>
</tr>
<tr>
<td>[1 quart (qt) (British)]</td>
<td>69.354</td>
<td>1.032 British dry quarts</td>
</tr>
<tr>
<td>1 tablespoon, measuring</td>
<td>3 teaspoons (exactly)</td>
<td>15 milliliters</td>
</tr>
<tr>
<td>1 teaspoon, measuring</td>
<td>½ tablespoon (exactly)</td>
<td>5 milliliters</td>
</tr>
<tr>
<td>1 water ton (English)</td>
<td>270.91 U.S. gallons</td>
<td>224 British Imperial gallons (exactly)</td>
</tr>
</tbody>
</table>

Units of Mass

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Equivalent in Preceding</th>
<th>Equivalent in Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 assay ton (AT)</td>
<td>29.167 grams</td>
<td></td>
</tr>
<tr>
<td>1 carat (c)</td>
<td>200 milligrams (exactly)</td>
<td>3.086 grains</td>
</tr>
<tr>
<td>1 dram apothecaries (dr ap or 3)</td>
<td>60 grains (exactly)</td>
<td>3.888 grams</td>
</tr>
<tr>
<td>1 dram avoirdupois (dr avdp)</td>
<td>27⅛/32 (= 27.344) grains</td>
<td>1.772 grams</td>
</tr>
<tr>
<td>1 gamma (γ)</td>
<td>1 microgram (exactly)</td>
<td></td>
</tr>
<tr>
<td>1 grain</td>
<td>64.798 91 milligrams (exactly)</td>
<td>15.432 grains</td>
</tr>
</tbody>
</table>

18 The equivalent “1 teaspoon = ½ fluid drams” has been found by the Bureau to correspond more closely with the actual capacities of “measuring” and silver teaspoons than the equivalent “1 teaspoon = 1 fluid dram,” which is given by a number of dictionaries.

19 Used in assaying. The assay ton bears the same relation to the milligram that a ton of 2000 pounds avoirdupois bears to the ounce troy; hence the mass in milligrams of precious metal obtained from one assay ton of ore gives directly the number of troy ounces to the net ton.
Units of Mass

<table>
<thead>
<tr>
<th>Unit Description</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ounce, avoirdupois (oz avdp)</td>
<td>0.035 ounce, avoirdupois</td>
</tr>
<tr>
<td>1 hundredweight, gross or long<sup>20</sup> (gross cwt)</td>
<td>112 pounds (exactly)</td>
</tr>
<tr>
<td>1 hundredweight, gross or short (cwt or net cwt)</td>
<td>100 pounds (exactly)</td>
</tr>
<tr>
<td>1 kilogram (kg)</td>
<td>2.205 pounds</td>
</tr>
<tr>
<td>1 milligram (mg)</td>
<td>0.015 grain</td>
</tr>
<tr>
<td>1 ounce, avoirdupois (oz avdp)</td>
<td>437.5 grains (exactly)</td>
</tr>
<tr>
<td>1 pound, avoirdupois (lb avdp)</td>
<td>7000 grains (exactly)</td>
</tr>
<tr>
<td>1 micropound (µlb) [the Greek letter mu in combination with the letters lb]</td>
<td>0.000 001 pound (exactly)</td>
</tr>
<tr>
<td>1 pound, Troy or Apothecaries (lb t or lb ap)</td>
<td>5760 grains (exactly)</td>
</tr>
<tr>
<td>1 scruple (s ap or ℥)</td>
<td>20 grains (exactly)</td>
</tr>
<tr>
<td>1 ton, gross or long<sup>21</sup></td>
<td>2240 pounds (exactly)</td>
</tr>
<tr>
<td>1 ton, metric (t)</td>
<td>2204.623 pounds</td>
</tr>
<tr>
<td>1 ton, net or short (tn)<sup>21</sup></td>
<td>2000 pounds (exactly)</td>
</tr>
</tbody>
</table>

²⁰ The gross or long ton and hundredweight are used commercially in the United States to only a very limited extent, usually in restricted industrial fields. The units are the same as the British “ton” and the “hundredweights.”

²¹ As of January 1, 2014, “tn” is the required abbreviation for “short ton.” Devices manufactured between January 1, 2008, and December 31, 2013, may use an abbreviation other than “tn” to specify “short ton.”
Table of Contents

**Appendix D. Definitions **

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>absolute value</td>
<td>5</td>
</tr>
<tr>
<td>acceptance test</td>
<td>5</td>
</tr>
<tr>
<td>accurate</td>
<td>5</td>
</tr>
<tr>
<td>all-class</td>
<td>5</td>
</tr>
<tr>
<td>analog or digital recorder</td>
<td>5</td>
</tr>
<tr>
<td>analog type</td>
<td>5</td>
</tr>
<tr>
<td>animal scale</td>
<td>5</td>
</tr>
<tr>
<td>apparent mass versus 8.0 g/cm³</td>
<td>5</td>
</tr>
<tr>
<td>approval seal</td>
<td>5</td>
</tr>
<tr>
<td>assumed atmospheric pressure</td>
<td>5</td>
</tr>
<tr>
<td>audit trail</td>
<td>5</td>
</tr>
<tr>
<td>automatic bulk weighing system</td>
<td>5</td>
</tr>
<tr>
<td>automatic checkweigher</td>
<td>5</td>
</tr>
<tr>
<td>automatic gravimetric filling machine</td>
<td>5</td>
</tr>
<tr>
<td>automatic temperature or density compensation</td>
<td>6</td>
</tr>
<tr>
<td>automatic weighing system (AWS)</td>
<td>6</td>
</tr>
<tr>
<td>automatic zero-setting mechanism (AZSM)</td>
<td>6</td>
</tr>
<tr>
<td>automatic zero-setting mechanism (belt-conveyor scale)</td>
<td>6</td>
</tr>
<tr>
<td>automatic zero-tracking (AZT) mechanism</td>
<td>6</td>
</tr>
<tr>
<td>automatic-indicating scale</td>
<td>6</td>
</tr>
<tr>
<td>auxiliary indicator</td>
<td>6</td>
</tr>
<tr>
<td>axle-load scale</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>badge</td>
<td>6</td>
</tr>
<tr>
<td>balance, zero-load</td>
<td>7</td>
</tr>
<tr>
<td>balance indicator</td>
<td>7</td>
</tr>
<tr>
<td>balancing mechanism</td>
<td>7</td>
</tr>
<tr>
<td>base pressure</td>
<td>7</td>
</tr>
<tr>
<td>basic distance rate</td>
<td>7</td>
</tr>
<tr>
<td>basic time rate</td>
<td>7</td>
</tr>
<tr>
<td>basic tolerances</td>
<td>7</td>
</tr>
<tr>
<td>batching meter</td>
<td>7</td>
</tr>
<tr>
<td>batching system</td>
<td>7</td>
</tr>
<tr>
<td>beam</td>
<td>7</td>
</tr>
<tr>
<td>beam scale</td>
<td>7</td>
</tr>
<tr>
<td>bell prover</td>
<td>7</td>
</tr>
<tr>
<td>belt-conveyor</td>
<td>7</td>
</tr>
<tr>
<td>belt-conveyor scale</td>
<td>7</td>
</tr>
<tr>
<td>belt-conveyor scale systems area</td>
<td>7</td>
</tr>
<tr>
<td>belt load</td>
<td>7</td>
</tr>
<tr>
<td>belt revolution</td>
<td>7</td>
</tr>
<tr>
<td>billed weight</td>
<td>8</td>
</tr>
<tr>
<td>binary submultiples</td>
<td>8</td>
</tr>
<tr>
<td>built-for-purpose device</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
</tr>
<tr>
<td>calibration parameter</td>
<td>8</td>
</tr>
<tr>
<td>carbon dioxide liquid-measuring device</td>
<td>8</td>
</tr>
<tr>
<td>car-wash timer</td>
<td>8</td>
</tr>
<tr>
<td>center-reading tank</td>
<td>8</td>
</tr>
<tr>
<td>cereal grain and oil seeds</td>
<td>8</td>
</tr>
<tr>
<td>chart recorder</td>
<td>8</td>
</tr>
<tr>
<td>check rate</td>
<td>8</td>
</tr>
<tr>
<td>checkweighing scale</td>
<td>8</td>
</tr>
<tr>
<td>class of grain</td>
<td>8</td>
</tr>
<tr>
<td>clear interval between graduations</td>
<td>8</td>
</tr>
<tr>
<td>cleared</td>
<td>8</td>
</tr>
<tr>
<td>cold-tire pressure</td>
<td>8</td>
</tr>
<tr>
<td>commercial equipment</td>
<td>8</td>
</tr>
<tr>
<td>computing scale</td>
<td>9</td>
</tr>
<tr>
<td>computing type or computing type device</td>
<td>9</td>
</tr>
<tr>
<td>concave curve</td>
<td>9</td>
</tr>
<tr>
<td>concentrated load capacity (CLC)</td>
<td>9</td>
</tr>
<tr>
<td>configuration parameter</td>
<td>9</td>
</tr>
<tr>
<td>consecutive-car test train</td>
<td>9</td>
</tr>
<tr>
<td>construction materials hopper scale</td>
<td>9</td>
</tr>
<tr>
<td>contract sale</td>
<td>9</td>
</tr>
<tr>
<td>conventional scale</td>
<td>9</td>
</tr>
<tr>
<td>conversion table</td>
<td>9</td>
</tr>
<tr>
<td>convex curve</td>
<td>9</td>
</tr>
<tr>
<td>conveyor stringers</td>
<td>9</td>
</tr>
<tr>
<td>correct</td>
<td>9</td>
</tr>
<tr>
<td>correction table</td>
<td>9</td>
</tr>
<tr>
<td>counterbalance weight(s)</td>
<td>10</td>
</tr>
<tr>
<td>counterpoise weight(s)</td>
<td>10</td>
</tr>
<tr>
<td>coupled-in-motion railroad weighing system</td>
<td>10</td>
</tr>
<tr>
<td>crane scale</td>
<td>10</td>
</tr>
<tr>
<td>cryogenic liquid-measuring device</td>
<td>10</td>
</tr>
<tr>
<td>cryogenic liquids</td>
<td>10</td>
</tr>
<tr>
<td>cubic foot, gas</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
</tr>
<tr>
<td>“d,” dimension division value</td>
<td>10</td>
</tr>
<tr>
<td>d, value scale division</td>
<td>10</td>
</tr>
<tr>
<td>D_{max} (maximum load of the measuring range)</td>
<td>10</td>
</tr>
<tr>
<td>D_{min} (minimum load of the measuring range)</td>
<td>10</td>
</tr>
<tr>
<td>dairy-product-test scale</td>
<td>10</td>
</tr>
<tr>
<td>decimal submultiples</td>
<td>10</td>
</tr>
<tr>
<td>decreasing-load test</td>
<td>10</td>
</tr>
<tr>
<td>deficiency</td>
<td>10</td>
</tr>
<tr>
<td>diesel gallon equivalent (DGE)</td>
<td>10</td>
</tr>
<tr>
<td>digital type</td>
<td>11</td>
</tr>
<tr>
<td>dimensional weight (or dim, weight)</td>
<td>11</td>
</tr>
<tr>
<td>direct sale</td>
<td>11</td>
</tr>
<tr>
<td>discharge hose</td>
<td>11</td>
</tr>
<tr>
<td>discharge line</td>
<td>11</td>
</tr>
<tr>
<td>discrimination (of an automatic-indicating scale)</td>
<td>11</td>
</tr>
<tr>
<td>dispenser</td>
<td>11</td>
</tr>
<tr>
<td>distributed-car test train</td>
<td>11</td>
</tr>
<tr>
<td>dry hose</td>
<td>11</td>
</tr>
</tbody>
</table>
Appendix D – Definitions

E .. 11
 e, value of verification scale division 11
 \(E_{\text{max}} \) (maximum capacity) 11
 \(E_{\text{min}} \) (minimum dead load) 11
 \(e_{\text{min}} \) (minimum verification scale division) 12
 electronic link .. 12
 element ... 12
 equal-arm scale .. 12
 equipment, commercial 12
 event counter .. 12
 event logger ... 12
 excess and deficiency 12
 extras .. 12

F .. 12
 face .. 12
 fare ... 13
 farm milk tank 13
 feeding mechanism 13
 fifth wheel .. 13
 fifth-wheel test 13
 flat rate .. 13
 fractional bar 13
 \(\text{ft}^3/\text{h} \) .. 13

G .. 13
 gasoline gallon equivalent (GGE) 13
 gauge pressure 13
 gauge rod ... 13
 gauging ... 13
 graduated interval 13
 graduation .. 13
 grain class .. 13
 grain hopper scale 14
 grain moisture meter 14
 grain sample 14
 grain-test scale 14
 grain type .. 14
 gravity discharge 14

H .. 14
 head pulley .. 14
 hexahedron .. 14
 hired .. 14
 hopper scale 14

I .. 14
 idler space .. 14
 idlers or idler rollers 14
 in-service light indicator 14
 increasing-load test 14
 increment .. 14
 index of an indicator 14
 indicating element 14
 indicator, balance 15
 initial distance or time interval 15

J .. 15
 jewelers’ scale 15

K .. 15
 kind of grain 15

L .. 15
 label ... 15
 large-delivery device 15
 laundry-drier timer 15
 liquefied petroleum gas 15
 liquefied petroleum gas liquid-measuring device 15
 liquefied petroleum gas vapor-measuring device 15
 liquid fuel ... 15
 liquid volume correction factor 16
 liquid-fuel device 16
 liquid-measuring device 16
 livestock scale 16
 load cell .. 16
 load cell verification interval (\(v \)) 16
 loading point 16
 load-receiving element 16
 location services 16
 low-flame test 16
 lubricant device 16

M .. 16
 \(\text{m}^3/\text{h} \) .. 16
 main bar ... 16
 main graduation 16
 main-weighbeam elements 16
 manual zero-setting mechanism 16
 manufactured device 17
 mass flow meter 17
 master meter test method 17
 master weight totalizer 17
 material test 17
 maximum capacity 17
 maximum cargo load 17
 measurement field 17
 measuring element 17
 meter register 17
 metrological integrity (of a device) 17
 minimum capacity 17
 minimum clear interval 17
 minimum delivery 17
 minimum tolerance 17
 minimum totalized load 18
 moisture content (wet basis) 18
 money drop .. 18

(DMS 01-01-19) APNDX-D-2
money-operated type ... 18
motor-fuel .. 18
motor-fuel device or motor-fuel dispenser or
retail motor-fuel device .. 18
multi-class .. 18
multi-jet water meter ... 18
multi-revolution scale .. 18
multiple ... 18
multiple cell application load cell 18
multiple of a scale ... 18
multiple range scale .. 18
multiple-tariff taximeter .. 19

N .. 19
natural gas .. 19
NBP ... 19
negotiated rate ... 19
nmax (maximum number of scale divisions) 19
no-load reference value .. 19
nominal ... 19
nominal capacity .. 19
nominal capacity, batching scale 19
nominal capacity, hopper scale 19
non-automatic checkweigher 20
nonautomatic weighing instrument 20
nose-iron .. 20
notes ... 20
NTP ... 20
NTP density and volume correction factor 20

O ... 20
odometer .. 20
official grain samples .. 20
official with statutory authority 20
operating tire pressure ... 21
over-and-under indicator 21
overregistration and underregistration 21

P .. 21
parallax ... 21
parking meter ... 21
passenger vehicles ... 21
performance requirements 21
point-of-sale system .. 21
poise ... 21
postal scale .. 22
prepackaging scale .. 22
prescription scale .. 22
pressure type (device) ... 22
primary indicating or recording elements 22
prover method ... 22
prover oil ... 22
proving indicator .. 22

R ... 22
“r” factor .. 22
radio frequency interference (RFI) 22
random error(s) .. 22
ranges, weight ... 22
rated capacity ... 23
rated scale capacity ... 23
ratio test .. 23
reading face .. 23
reading-face capacity ... 23
recorded representation 23
recording element ... 23
recording scale .. 23
reference weight car .. 23
remanufactured device 23
remanufactured element 23
remote configuration capability 23
repaired device ... 23
repaired element .. 24
retail device .. 24
retroactive .. 24
road test ... 24
rolling circumference ... 24

S ... 24
scale ... 24
scale area, belt-conveyor 24
scale division, number of (n) 24
scale division, value of (d) 24
scale section .. 24
section .. 24
section capacity ... 24
section test .. 24
security means ... 24
security seal ... 24
selector-type ... 25
semi-automatic zero-setting mechanism 25
sensitivity (of a nonautomatic-indicating scale) 25
sensitivity requirement (SR) 25
shift test .. 25
side ... 25
simulated-road test .. 25
simulated test ... 25
single cell application load cell 25
single-tariff taximeter ... 25
skirting ... 25
slow-flow meter .. 25
small-delivery device ... 25
span (structural) .. 25
specification .. 25
static monorail weighing system 25
strain-load test ... 25
subordinate graduation 26
subsequent distance or time intervals 26
substitution test ... 26
substitution test load .. 26
surface gauge .. 26
systematic (average) error

T

tail pulley

take-up

tare mechanism

tare-weighbeam elements

taximeter

test chain

test liquid

test object

test puck

test train

test weight car

testing

time recorder

timing device

tolerance

training idlers

transfer standard

tripper

U

uncoupled-in-motion railroad weighing system

underregistration

unit price

unit train

unit weight

user requirement

usual and customary

utility-type water meter

V

value of minimum graduated interval

vapor equalization credit

vapor equalization line

vehicle on-board weighing system

vehicle scale

verification scale division, value of \(e \)

visible type

\(V_{\text{min}} \) (minimum load cell verification interval)

W

weighbeam

weigh-belt system

weighing element

weigh-labeler

weigh module

weighment

weight, unit

weight classifier

weight ranges

wet basis

wet hose

wet-hose type

wheel-load weighers

wholesale device

wing pulley

Z

zero-load balance

zero-load balance, automatic-indicating scale

zero-load balance, nonautomatic-indicating scale

zero-load balance for a recording scale

zero-load reference (belt-conveyor scales)

zero-setting mechanism

automatic zero-setting mechanism (AZSM)

automatic zero-tracking (AZT) mechanism

initial zero-setting mechanism

manual zero-setting mechanism

semiautomatic zero-setting mechanism

zero-setting mechanism (belt-conveyor scale)

zero-tracking mechanism (belt-conveyor scale)

zone of uncertainty
Appendix D. Definitions

The specific code to which the definition applies is shown in [brackets] at the end of the definition. Definitions for the General Code [1.10] apply to all codes in Handbook 44.

A

absolute value. – The absolute value of a number is the magnitude of that number without considering the positive or negative sign. [2.20]

acceptance test. – The first official test of a farm milk tank, at a particular location, in which the tank is accepted as correct. This test applies to newly constructed tanks, relocated used tanks, and recalibrated tanks. [4.42]

accurate. – A piece of equipment is “accurate” when its performance or value – that is, its indications, its deliveries, its recorded representations, or its capacity or actual value, etc., as determined by tests made with suitable standards - conforms to the standard within the applicable tolerances and other performance requirements. Equipment that fails so to conform is “inaccurate.” (Also see “correct.”) [Appendix A]

all-class. – A description of a multi-class calibration that includes all the classes of a grain type. [5.56(a), 5.57] (Added 2007)

analog or digital recorder. – An element used with a belt-conveyor scale that continuously records the rate-of-flow of bulk material over the scale (formerly referred to as a chart recorder). [2.21] (Amended 1989)

analog type. – A system of indication or recording in which values are presented as a series of graduations in combination with an indicator, or in which the most sensitive element of an indicating system moves continuously during the operation of the device. [1.10]

animal scale. – A scale designed for weighing single heads of livestock. [2.20] (Amended 1987)

apparent mass versus 8.0 g/cm³. – The apparent mass of an object versus 8.0 g/cm³ is the mass of material of density 8.0 g/cm³ that produces exactly the same balance reading as the object when the comparison is made in air with a density of 1.2 mg/cm³ at 20 °C. [3.37]

approval seal. – A label, tag, stamped or etched impression, or the like, indicating official approval of a device. (Also see “security seal.”) [1.10]

assumed atmospheric pressure. – The average atmospheric pressure agreed to exist at the meter at various ranges of elevation, irrespective of variations in atmospheric pressure from time to time. [3.33]

audit trail. – An electronic count and/or information record of the changes to the values of the calibration or configuration parameters of a device. [1.10, 2.20, 2.21, 2.24, 3.30, 3.37, 5.56(a)] (Added 1993)

automatic bulk weighing system. – A weighing system adapted to the automatic weighing of bulk commodities in successive drafts of predetermined amounts, automatically recording the no-load and loaded weight values and accumulating the net weight of each draft. [2.22]

automatic checkweigher. – An automatic weighing system that does not require the intervention of an operator during the weighing process and used to subdivide items of different weights into one or more subgroups, such as identifying packages that have acceptable or unacceptable fill levels according to the value of the difference between their weight
and a pre-determined set point. These systems may be used to fill standard packages for compliance with net weight requirements. [2.24]
(Amended 2004)

automatic gravimetric filling machine (instrument). – A filling machine or instrument that fills containers or packages with predetermined and virtually constant mass of product from bulk by automatic weighing, and which comprises essentially an automatic feeding device or devices associated with one or more weighing unit and the appropriate discharge devices. [2.24]
(Added 2004)

automatic temperature or density compensation. – The use of integrated or ancillary equipment to obtain from the output of a volumetric meter an equivalent mass, or an equivalent liquid volume at the assigned reference temperature below and a pressure of 14.696 lb/in\(^2\) absolute.

- Cryogenic liquids: 21 °C (70 °F) [3.34]
- Hydrocarbon gas vapor: 15 °C (60 °F) [3.33]
- Liquid carbon dioxide: 21 °C (70 °F) [3.38]
- Liquefied petroleum gas (LPG) and Anhydrous ammonia: 15 °C (60 °F) [3.32]
- Petroleum liquid fuels and lubricants: 15 °C (60 °F) [3.30]

automatic weighing system (AWS). – An automatic weighing system is a weighing device that, in combination with other hardware and/or software components, automatically weighs discrete items and that does not require the intervention of an operator during the weighing process. Examples include, but are not limited to, weigh-labelers and checkweighers. [2.24]
(Amended 2004)

automatic zero-setting mechanism (AZSM). – See “automatic zero-setting mechanism” under “zero-setting mechanism.” [2.22]
(Amended 2010)

automatic zero-setting mechanism (belt-conveyor scale). – A zero setting device that operates automatically without intervention of the operator after the belt has been running empty. [2.21]
(Added 2002)

automatic zero-tracking (AZT) mechanism. – Automatic means provided to maintain the zero balance indication, within specified limits, without the intervention of an operator. [2.20, 2.22, 2.24]
(Amended 2010)

automatic-indicating scale. – One on which the weights of applied loads of various magnitudes are automatically indicated throughout all or a portion of the weighing range of the scale. (A scale that automatically weighs out commodity in predetermined drafts, such as an automatic hopper scale, a packaging scale, and the like, is not an “automatic-indicating” scale.) [2.20, 2.22]

auxiliary indicator. – Any indicator other than the master weight totalizer that indicates the weight of material determined by the scale. [2.21]

axle-load scale. – A scale permanently installed in a fixed location, having a load-receiving element specially adapted to determine the combined load of all wheels (1) on a single axle or (2) on a tandem axle of a highway vehicle. [2.20]

B

badge. – A metal plate affixed to the meter by the manufacturer showing the manufacturer’s name, serial number and model number of the meter, and its rated capacity. [3.33]
balance, zero-load. – See “zero-load balance.” [2.20]

balance indicator. – A combination of elements, one or both of which will oscillate with respect to the other, for indicating the balance condition of a nonautomatic indicating scale. The combination may consist of two indicating edges, lines, or points, or a single edge, line, or point and a graduated scale. [2.20]

balancing mechanism. – A mechanism (including a balance ball) that is designed for adjusting a scale to an accurate zero-load balance condition. [2.20]

base pressure. – The absolute pressure used in defining the gas measurement unit to be used, and is the gauge pressure at the meter plus an agreed atmospheric pressure. [3.33]

basic distance rate. – The charge for distance for all intervals except the initial interval. [5.54]

basic time rate. – The charge for time for all intervals except the initial interval. [5.54]

basic tolerances. – Tolerances on underregistration and on overregistration, or in excess and in deficiency, that are established by a particular code for a particular device under all normal tests, whether maintenance or acceptance. Basic tolerances include minimum tolerance values when these are specified. Special tolerances, identified as such and pertaining to special tests, are not basic tolerances. [2.20, 2.22, 3.34, 3.38, 4.42, 5.54]

batching meter. – A device used for the purpose of measuring quantities of water to be used in a batching operation. [3.36]

batching system. – One in which raw materials are proportioned in pre-determined quantities by weight and/or liquid measure for inclusion in a finished product. [2.22, 3.36]

(Added 2018)

beam. – See “weighbeam.” [2.20]

beam scale. – One on which the weights of loads of various magnitudes are indicated solely by means of one or more weighbeam bars either alone or in combination with counterpoise weights. [2.20]

bell prover. – A calibrated cylindrical metal tank of the annular type with a scale thereon that, in the downward travel in a surrounding tank containing a sealing medium, displaces air through the meter being proved or calibrated. [3.33]

belt-conveyor. – An endless moving belt for transporting material from place to place. [2.21]

belt-conveyor scale. – A device that employs a weighing element in contact with a belt to sense the weight of the material being conveyed and the speed (travel) of the material, and integrates these values to produce total delivered weight. [2.21]

belt-conveyor scale systems area. – The scale system area refers to the scale suspension, weigh idlers attached to the scale suspension, 5 approach (−) idlers, and 5 retreat (+) idlers. [2.21]

(Added 2001)

belt load. – The weight of the material carried by the conveyor belt, expressed in terms of weight units per unit of length (e.g., pounds per foot, kilograms per meter). Also called “belt loading.” [2.21]

(Added 2013)

belt revolution. – The amount of conveyor belt movement or travel that is equivalent to the total length of the conveyor belt. Also referred to as “belt circuit.” [2.21]

(Added 2013)
billed weight. – The weight used in the computation of the freight, postal, or storage charge, whether actual weight or dimensional weight. [5.58]

binary submultiples. – Fractional parts obtained by successively dividing by the number two. Thus, one-half, one-fourth, one-eighth, one-sixteenth, and so on, are binary submultiples. [1.10]

built-for-purpose device. – Any main device or element which was manufactured with the intent that it be used as, or part of, a weighing or measuring device or system. [1.10]
(Added 2003)

C

calibration parameter. – Any adjustable parameter that can affect measurement or performance accuracy and, due to its nature, needs to be updated on an ongoing basis to maintain device accuracy (e.g., span adjustments, linearization factors, and coarse zero adjustments). [2.20, 2.21, 2.24, 3.30, 3.31, 3.32, 3.34, 3.35, 3.36, 3.37, 3.38, 5.54, 5.56(a), 5.58]
(Added 1993) (Amended 2016)

carbon dioxide liquid-measuring device. – A system including a mechanism or machine of (a) the meter or (b) a weighing type of device mounted on a vehicle designed to measure and deliver liquid carbon dioxide. Means may be provided to indicate automatically, for one of a series of unit prices, the total money value of the quantity measured. [3.38]

car-wash timer. – A timer used in conjunction with a coin-operated device to measure the time during which car-wash water, cleaning solutions, or waxing solutions are dispensed. [5.55]

center-reading tank. – One so designed that the gauge rod or surface gauge, when properly positioned for use, will be approximately in the vertical axis of the tank, centrally positioned with respect to the tank walls. [4.43]

cereal grain and oil seeds. – Agricultural commodities including, but not limited to, corn, wheat, oats, barley, flax, rice, sorghum, soybeans, peanuts, dry beans, safflower, sunflower, fescue seed, etc. [5.56(a), 5.56(b)]

chart recorder. – See analog or digital recorder.
(Amended 1989)

check rate. – A rate of flow usually 20% of the capacity rate. [3.33]

checkweighing scale. – One used to verify predetermined weight within prescribed limits. [2.24]

class of grain. – Hard Red Winter Wheat as distinguished from Hard Red Spring Wheat as distinguished from Soft Red Winter Wheat, etc. [5.56(a), 5.56(b), 5.57]

clear interval between graduations. – The distance between adjacent edges of successive graduations in a series of graduations. If the graduations are “staggered,” the interval shall be measured, if necessary, between a graduation and an extension of the adjacent graduation. (Also see “minimum clear interval.”) [1.10]

cleared. – A taximeter is “cleared” when it is inoperative with respect to all fare indication, when no indication of fare or extras is shown and when all parts are in those positions in which they are designed to be when the vehicle on which the taximeter is installed is not engaged by a passenger. [5.54]

cold-tire pressure. – The pressure in a tire at ambient temperature. [5.53, 5.54]

commercial equipment. – See “equipment.”
(Added 2008)
computing scale. – One that indicates the money values of amounts of commodity weighed, at predetermined unit prices, throughout all or part of the weighing range of the scale. [2.20]

computing type or computing type device. – A device designed to indicate, in addition to weight or measure, the total money value of product weighed or measured, for one of a series of unit prices. [1.10]

concave curve. – A change in the angle of inclination of a belt conveyor where the center of the curve is above the conveyor. [2.21]

concentrated load capacity (CLC) (also referred to as Dual Tandem Axle Capacity [DTAC]). – A capacity rating of a vehicle or axle-load scale, specified by the manufacturer, defining the maximum load applied by a group of two axles with a centerline spaced four feet apart and an axle width of eight feet for which the weighbridge is designed. The concentrated load capacity rating is for both test and use. [2.20]

configuration parameter. – Any adjustable or selectable parameter for a device feature that can affect the accuracy of a transaction or can significantly increase the potential for fraudulent use of the device and, due to its nature, needs to be updated only during device installation or upon replacement of a component, e.g., division value (increment), sensor range, and units of measurement. [2.20, 2.21, 2.24, 3.30, 3.31, 3.32, 3.34, 3.35, 3.36, 3.37, 3.38, 5.54, 5.56(a), 5.58]
(Added 1993)

consecutive-car test train. – A train consisting of cars weighed on a reference scale, then coupled consecutively and run over the coupled-in-motion railway track scale under test. [2.20]
(Added 1990)

construction materials hopper scale. – A scale adapted to weighing construction materials such as sand, gravel, cement, and hot oil. [2.20]

contract sale. – A sale where a written agreement exists, prior to the point of sale, in which both buyer and seller have accepted pricing conditions of the sale. Examples include, but are not limited to: e-commerce, club sales, or pre-purchase agreements. Any devices used in the determination of quantity must comply with NIST Handbook 44. [3.30, 3.32, 3.37]
(Added 1993) (Amended 2002)

conventional scale. – If the use of conversion tables is necessary to obtain a moisture content value, the moisture meter indicating scale is called “conventional scale.” The values indicated by the scale are dimensionless. [5.56(b)]

conversion table. – Any table, graph, slide rule, or other external device used to determine the moisture content from the value indicated by the moisture meter. [5.56(b)]

convex curve. – A change in the angle of inclination of a belt conveyor where the center of the curve is below the conveyor. [2.21]

conveyor stringers. – Support members for the conveyor on which the scale and idlers are mounted. [2.21]

correct. – A piece of equipment is “correct” when, in addition to being accurate, it meets all applicable specification requirements. Equipment that fails to meet any of the requirements for correct equipment is “incorrect.” (Also see “accurate.”) [Appendix A]

correction table. – Any table, graph, slide rule, or other external device used to determine the moisture content from the value indicated by the moisture meter when the indicated value is altered by a parameter not automatically corrected for in the moisture meter (for example, temperature or test weight). [5.56(b)]
counterbalance weight(s). – One intended for application near the butt of a weighbeam for zero-load balancing purposes. [2.20]

counterpoise weight(s). – A slotted or “hanger” weight intended for application near the tip of the weighbeam of a scale having a multiple greater than one. [2.20]

coupled-in-motion railroad weighing system. – A device and related installation characteristics consisting of (1) the associated approach trackage, (2) the scale (i.e., the weighing element, the load-receiving element, and the indicating element with its software), and (3) the exit trackage, which permit the weighing of railroad cars coupled in motion. [2.20, 2.23]

(Added 1992)

crane scale. – One with a nominal capacity of 5000 pounds or more designed to weigh loads while they are suspended freely from an overhead, track-mounted crane. [2.20]

cryogenic liquid-measuring device. – A system including a liquid-measuring element designed to measure and deliver cryogenic liquids in the liquid state. [3.34]

(Amended 1986 and 2003)

cryogenic liquids. – Fluids whose normal boiling point is below 120 kelvin (−243 °F). [3.34]

cubic foot, gas. – The amount of a cryogenic liquid in the gaseous state at a temperature of 70 °F and under a pressure of 14.696 lb/in² absolute that occupies one cubic foot (1 ft³). (See NTP.) [3.34]

D

“d,” dimension division value. – The smallest increment that the device displays for any axis and length of object in that axis. [5.58]

d, value scale division. – See “scale division, value of (d).” [2.20, 2.22]

D_{max} (maximum load of the measuring range). – Largest value of a quantity (mass) which is applied to a load cell during test or use. This value shall not be greater than E_{max}. [2.20]

(Added 2005)

D_{min} (minimum load of the measuring range). – Smallest value of a quantity (mass) which is applied to a load cell during test or use. This value shall not be less than E_{min}. [2.20]

(Added 2006)

dairy-product-test scale. – A scale used in determining the moisture content of butter and/or cheese or in determining the butterfat content of milk, cream, or butter. [2.20]

decimal submultiples. – Parts obtained by successively dividing by the number 10. Thus 0.1, 0.01, 0.001, and so on are decimal submultiples. [1.10]

decreasing-load test. – A test for automatic-indicating scales only, wherein the performance of the scale is tested as the load is reduced. [2.20, 2.22]

(Amended 1987)

deficiency. – See “excess and deficiency.” [1.10]

(Added 2016)
digital type. – A system of indication or recording of the selector type or one that advances intermittently in which all values are presented digitally, or in numbers. In a digital indicating or recording element, or in digital representation, there are no graduations. [1.10]

dimensional weight (or dim, weight). – A value computed by dividing the object’s volume by a conversion factor; it may be used for the calculation of charges when the value is greater than the actual weight. [5.58]
(Added 2004)
direct sale. – A sale in which both parties in the transaction are present when the quantity is being determined. An unattended automated or customer-operated weighing or measuring system is considered to represent the device/business owner in transactions involving an unattended device. [1.10]
(Amended 1993)
discharge hose. – A flexible hose connected to the discharge outlet of a measuring device or its discharge line. [3.30, 3.31, 3.32, 3.34, 3.37, 3.38]
(Added 1987)
discharge line. – A rigid pipe connected to the outlet of a measuring device. [3.30, 3.31, 3.32, 3.34, 3.37]
(Added 1987)

discrimination (of an automatic-indicating scale). – The value of the test load on the load-receiving element of the scale that will produce a specified minimum change of the indicated or recorded value on the scale. [2.20, 2.22]
dispenser. – See motor-fuel device. [3.30, 3.37]
distributed-car test train. – A train consisting of cars weighed first on a reference scale, cars coupled consecutively in groups at different locations within the train, then run over the coupled-in-motion railway track scale under test. The groups are typically placed at the front, middle, and rear of the train. [2.20]
(Added 1990)
dry hose. – A discharge hose intended to be completely drained at the end of each delivery of product. (Also see “dry-hose type.”) [3.30, 3.31]
(Amended 2002)
dry-hose type. – A type of device in which it is intended that the discharge hose be completely drained following the mechanical operations involved in each delivery. (Also see “dry hose.”) [3.30, 3.31, 3.34, 3.35]
dynamic monorail weighing system. – A weighing system which employs hardware or software to compensate for dynamic effects from the load or the system that do not exist in static weighing, in order to provide a stable indication. Dynamic factors may include shock or impact loading, system vibrations, oscillations, etc., and can occur even when the load is not moving across the load-receiving element. [2.20]
(Amended 1999)

E

e, value of verification scale division. – See “verification scale division, value of (e).” [2.20]

E_{max} (maximum capacity). – Largest value of a quantity (mass) which may be applied to a load cell without exceeding the mpe. [2.20]
(Added 2005)

E_{min} (minimum dead load). – Smallest value of a quantity (mass) which may be applied to a load cell during test or use without exceeding the mpe. [2.20]
(Added 2006)
emin (minimum verification scale division). – The smallest scale division for which a weighing element complies with the applicable requirements. [2.20, 2.21, 2.24]
(Added 1997)

electronic link. – An electronic connection between the weighing/load-receiving or other sensing element and indicating element where one recognizes the other and neither can be replaced without calibration. [2.20]
(Added 2001)

element. – A portion of a weighing or measuring device or system which performs a specific function and can be separated, evaluated separately, and is subject to specified full or partial error limits.
(Added 2002)

equal-arm scale. – A scale having only a single lever with equal arms (that is, with a multiple of one), equipped with two similar or dissimilar load-receiving elements (pan, plate, platter, scoop, or the like), one intended to receive material being weighed and the other intended to receive weights. There may or may not be a weighbeam. [2.20]

equipment, commercial. – Weights, measures, and weighing and measuring devices, instruments, elements, and systems or portion thereof, used or employed in establishing the measurement or in computing any basic charge or payment for services rendered on the basis of weight or measure. As used in this definition, measurement includes the determination of size, quantity, value, extent, area, composition (limited to meat and poultry), constituent value (for grain), or measurement of quantities, things, produce, or articles for distribution or consumption, purchased, offered, or submitted for sale, hire, or award. [1.10, 2.20, 2.21, 2.22, 2.24, 3.30, 3.31, 3.32, 3.33, 3.34, 3.35, 3.36, 3.37, 3.38, 4.40, 5.51, 5.56(a), 5.56(b), 5.57, 5.58, 5.59]
(Added 2008)

event counter. – A non-resettable counter that increments once each time the mode that permits changes to sealable parameters is entered and one or more changes are made to sealable calibration or configuration parameters of a device. [2.20, 2.21, 2.22, 2.24, 3.30, 3.31, 3.32, 3.34, 3.35, 3.36, 3.37, 3.38, 5.54, 5.56(a), 5.56(b), 5.57, 5.58]
(Added 1993)

event logger. – A form of audit trail containing a series of records where each record contains the number from the event counter corresponding to the change to a sealable parameter, the identification of the parameter that was changed, the time and date when the parameter was changed, and the new value of the parameter. [2.20, 2.21, 2.24, 3.30, 3.31, 3.32, 3.34, 3.35, 3.36, 3.37, 3.38, 5.54, 5.56(a), 5.56(b), 5.57, 5.58]
(Added 1993)

excess and deficiency. – When an instrument or device is of such a character that it has a value of its own that can be determined, its error is said to be “in excess” or “in deficiency,” depending upon whether its actual value is, respectively, greater or less than its nominal value. (Also see “nominal.”) Examples of instruments having errors “in excess” are: a linear measure that is too long; a liquid measure that is too large; and a weight that is “heavy.” Examples of instruments having errors “in deficiency” are: a lubricating-oil bottle that is too small; a vehicle tank compartment that is too small; and a weight that is “light.” [1.10]

extras. – Charges to be paid by a passenger in addition to the fare, including any charge at a flat rate for the transportation of passengers in excess of a stated number and any charge for the transportation of baggage. [5.54]

face. – That side of a taximeter on which passenger charges are indicated. [5.54]

face. – That portion of a computing-type pump or dispenser which displays the actual computation of price per unit, delivered quantity, and total sale price. In the case of some electronic displays, this may not be an integral part of the pump or dispenser. [3.30]
(Added 1987)
fare. – That portion of the charge for the hire of a vehicle that is automatically calculated by a taximeter through the operation of the distance and/or time mechanism. [5.54]

farm milk tank. – A unit for measuring milk or other fluid dairy product, comprising a combination of (1) a stationary or portable tank, whether or not equipped with means for cooling its contents, (2) means for reading the level of liquid in the tank, such as a removable gauge rod or a surface gauge, and (3) a chart for converting level-of-liquid readings to volume; or such a unit in which readings are made on a gauge rod or surface gauge directly in terms of volume. Each compartment of a subdivided tank shall, for purposes of this code, be construed to be a “farm milk tank.” [4.43]

feeding mechanism. – The means for depositing material to be weighed on the belt conveyor. [2.21]

fifth wheel. – A commercially-available distance-measuring device which, after calibration, is recommended for use as a field transfer standard for testing the accuracy of taximeters and odometers on rented vehicles. [5.53, 5.54]

fifth-wheel test. – A distance test similar to a road test, except that the distance traveled by the vehicle under test is determined by a mechanism known as a “fifth wheel” that is attached to the vehicle and that independently measures and indicates the distance. [5.53, 5.54]

flat rate. – A rate selection that when applied results in the indication of a fixed (non-incrementing) amount for passenger charges. This rate shall be included on the statement of established rates that is required to be posted in the vehicle. [5.54.]

fractional bar. – A weighbeam bar of relatively small capacity for obtaining indications intermediate between notches or graduations on a main or tare bar. [2.20]

ft³/h. – Cubic feet per hour. [3.33]

G

gasoline gallon equivalent (GGE). – Gasoline gallon equivalent (GGE) means 5.660 pounds of compressed natural gas. [3.37]

Gauge pressure. – The difference between the pressure at the meter and the atmospheric pressure (psi). [3.33]

gauge rod. – A graduated, “dip-stick” type of measuring rod designed to be partially immersed in the liquid and to be read at the point where the liquid surface crosses the rod. [4.42]

gauging. – The process of determining and assigning volumetric values to specific graduations on the gauge or gauge rod that serve as the basis for the tank volume chart. [4.42]

graduated interval. – The distance from the center of one graduation to the center of the next graduation in a series of graduations. – (Also see “value of minimum graduated interval.”) [1.10]

graduation. – A defining line or one of the lines defining the subdivisions of a graduated series. The term includes such special forms as raised or indented or scored reference “lines” and special characters such as dots. (Also see “main graduation” and “subordinate graduation.”) [1.10]

grain class. – Different grains within the same grain type. For example, there are six classes for the grain type “wheat:” Durum Wheat, Hard Red Spring Wheat, Hard Red Winter Wheat, Soft Red Winter Wheat, Hard White Wheat, and Soft White Wheat. [5.56(a), 5.57]

(Added 2007)
grain hopper scale. – One adapted to the weighing of individual loads of varying amounts of grain. [2.20]

grain moisture meter. – Any device indicating either directly or through conversion tables and/or correction tables the moisture content of cereal grains and oil seeds. Also termed “moisture meter.” [5.56(a), 5.56(b)]

grain sample. – That portion of grain or seed taken from a bulk quantity of grain or seed to be bought or sold and used to determine the moisture content of the bulk. [5.56(a), 5.56(b)]

grain-test scale. – A scale adapted to weighing grain samples used in determining moisture content, dockage, weight per unit volume, etc. [2.20]

grain type. – See “kind of grain.” [5.56(a), 5.57]
(Added 2007)

gravity discharge. – A type of device designed for discharge by gravity. [3.30, 3.31]

H

head pulley. – The pulley at the discharge end of the belt conveyor. The power drive to drive the belt is generally applied to the head pulley. [2.21]

hexahedron. – A geometric solid (i.e., box) with six rectangular or square plane surfaces. [5.58]
(Added 2008)

hired. – A taximeter is “hired” when it is operative with respect to all applicable indications of fare or extras. The indications of fare include time and distance where applicable unless qualified by another indication of “Time Not Recording” or an equivalent expression. [5.54]

hopper scale. – A scale designed for weighing bulk commodities whose load-receiving element is a tank, box, or hopper mounted on a weighing element. (Also see “automatic hopper scale,” “grain hopper scale,” and “construction materials hopper scale.”) [2.20]

I

idler space. – The center-to-center distance between idler rollers measured parallel to the belt. [2.21]

idlers or idler rollers. – Freely turning cylinders mounted on a frame to support the conveyor belt. For a flat belt, the idlers consist of one or more horizontal cylinders transverse to the direction of belt travel. For a troughed belt, the idlers consist of one or more horizontal cylinders and one or more cylinders at an angle to the horizontal to lift the sides of the belt to form a trough. [2.21]

in-service light indicator. – A light used to indicate that a timing device is in operation. [5.55]

increasing-load test. – The normal basic performance test for a scale in which observations are made as increments of test load are successively added to the load-receiving element of the scale. [2.20, 2.22]

increment. – The value of the smallest change in value that can be indicated or recorded by a digital device in normal operation. [1.10]

index of an indicator. – The particular portion of an indicator that is directly utilized in making a reading. [1.10]

indicating element. – An element incorporated in a weighing or measuring device by means of which its performance relative to quantity or money value is “read” from the device itself as, for example, an index-and-graduated-scale combination, a weighbeam-and-poise combination, a digital indicator, and the like. (Also see “primary indicating or recording element.”) [1.10]
indicator, balance. – See “balance indicator.” [2.20]

initial distance or time interval. – The interval corresponding to the initial money drop. [5.54]

initial zero-setting mechanism. – See “initial zero-setting mechanism” under “zero-setting mechanism.” [2.20]
(Added 1990)

integrator. – A device used with a belt-conveyor scale that combines conveyor belt load (e.g., lb/ft) and belt travel (e.g., feet) to produce a total weight of material passing over the belt-conveyor scale. An integrator may be a separate, detached mechanism or may be a component within a totalizing device. (Also see “master weight totalizer.”) [2.21]
(Added 2013)

interval, clear, between graduations. – See “clear interval between graduations.” [1.10]

interval, graduated. – See “graduated interval.” [1.10]

irregularly-shaped object. – Any object that is not a hexahedron shape. [5.58]
(Added 2008)

J

jewelers’ scale. – One adapted to weighing gems and precious metals. [2.20]

K

kind of grain. – Corn as distinguished from soybeans as distinguished from wheat, etc. [5.56(a), 5.56(b)]

L

label. – A printed ticket, to be attached to a package, produced by a printer that is a part of a prepackaging scale or that is an auxiliary device. [2.20]

large-delivery device. – Devices used primarily for single deliveries greater than 200 gallons, 2000 pounds, 20 000 cubic feet, 2000 liters, or 2000 kilograms. [3.34, 3.38]

laundry-drier timer. – A timer used in conjunction with a coin-operated device to measure the period of time that a laundry drier is in operation. [5.55]

liquefied petroleum gas. – A petroleum product composed predominantly of any of the following hydrocarbons or mixtures thereof: propane, propylene, butanes (normal butane or isobutane), and butylenes. [3.31, 3.32, 3.33, 3.34, 3.37]

liquefied petroleum gas liquid-measuring device. – A system including a mechanism or machine of the meter type designed to measure and deliver liquefied petroleum gas in the liquid state by a definite quantity, whether installed in a permanent location or mounted on a vehicle. Means may or may not be provided to indicate automatically, for one of a series of unit prices, the total money value of the liquid measured. [3.33]
(Amended 1987)

liquefied petroleum gas vapor-measuring device. – A system including a mechanism or device of the meter type, equipped with a totalizing index, designed to measure and deliver liquefied petroleum gas in the vapor state by definite volumes, and generally installed in a permanent location. The meters are similar in construction and operation to the conventional natural- and manufactured-gas meters. [3.33]

liquid fuel. – Any liquid used for fuel purposes, that is, as a fuel, including motor-fuel. [3.30, 3.31]
liquid volume correction factor. – A correction factor used to adjust the liquid volume of a cryogenic product at the time of measurement to the liquid volume at NBP. [3.34]

liquid-fuel device. – A device designed for the measurement and delivery of liquid fuels. [3.30]

liquid-measuring device. – A mechanism or machine designed to measure and deliver liquid by definite volume. Means may or may not be provided to indicate automatically, for one of a series of unit prices, the total money value of the liquid measured, or to make deliveries corresponding to specific money values at a definite unit price. [3.30]

livestock scale. – A scale equipped with stock racks and gates and adapted to weighing livestock standing on the scale platform. [2.20]
(Amended 1989)

load cell. – A device, whether electric, hydraulic, or pneumatic, that produces a signal (change in output) proportional to the load applied. [2.20, 2.21, 2.23]

load cell verification interval (v). – The load cell interval, expressed in units of mass, used in the test of the load cell for accuracy classification. [2.20, 2.21]
(Added 1996)

loading point. – A location on a conveyor where the material is received by the belt. The location of the discharge from a hopper, chute, or pre-feed device used to supply material to a conveyor. [2.21]
(Amended 2013)

load-receiving element. – That element of a scale that is designed to receive the load to be weighed; for example, platform, deck, rail, hopper, platter, plate, scoop. [2.20, 2.21, 2.23]

location services. – Any of the various technologies used to determine the geographical location of a receiving unit in or physically attached to a vehicle. These technologies may include but are not limited to: global positioning services; cellular networks; or wi-fi networks. [5.54, 5.60]
(Added 2017)

low-flame test. – A test simulating extremely low-flow rates such as caused by pilot lights. [3.33]

lubricant device. – A device designed for the measurement and delivery of liquid lubricants, including, but not limited to, heavy gear lubricants and automatic transmission fluids (automotive). [3.30]

M

m³/h. – Cubic meters per hour. [3.33]

main bar. – A principal weighbeam bar, usually of relatively large capacity as compared with other bars of the same weighbeam. (On an automatic-indicating scale equipped with a weighbeam, the main weighbeam bar is frequently called the “capacity bar.”) [2.20]

main graduation. – A graduation defining the primary or principal subdivisions of a graduated series. (Also see “graduation.”) [1.10]

main-weighbeam elements. – The combination of a main bar and its fractional bar, or a main bar alone if no fractional bar is associated with it. [2.20]

manual zero-setting mechanism. – See “manual zero-setting mechanism” under “zero-setting mechanism.” [2.20]
manufactured device. – Any commercial weighing or measuring device shipped as new from the original equipment manufacturer. [1.10]
(Amended 2001)

mass flow meter. – A device that measures the mass of a product flowing through the system. The mass measurement may be determined directly from the effects of mass on the sensing unit or may be inferred by measuring the properties of the product, such as the volume, density, temperature, or pressure, and displaying the quantity in mass units. [3.37]

master meter test method. – A method of testing milk tanks that utilizes an approved master meter system for measuring test liquid removed from or introduced into the tank. [4.42]
(Amended 2013)

master weight totalizer. – A primary indicating element used with a belt-conveyor scale that incorporates the function of an integrator to indicate the totalized weight of material passed over the scale. (Also see “integrator.”) [2.21]
(Amended 2013)

material test. – The test of a belt-conveyor scale using material (preferably that for which the device is normally used) that has been weighed to an accuracy of 0.1 %. [2.21]
(Amended 1989)

maximum capacity. – The largest load that may be accurately weighed. [2.20, 2.24]
(Added 1999)

maximum cargo load. – The maximum cargo load for trucks is the difference between the manufacturer’s rated gross vehicle weight and the actual weight of the vehicle having no cargo load. [5.53]

measurement field. – A region of space or the measurement pattern produced by the measuring instrument in which objects are placed or passed through, either singly or in groups, when being measured by a single device. [5.58]

measuring element. – That portion of a complete multiple dimension measuring device that does not include the indicating element. [5.58]

meter register. – An observation index for the cumulative reading of the gas flow through the meter. In addition there are one or two proving circles in which one revolution of the test hand represents ½, 1, 2, 5, or 10 cubic feet, or 0.025, 0.05, 0.1, 0.2, or 0.25 cubic meter, depending on meter size. If two proving circles are present, the circle representing the smallest volume per revolution is referred to as the “leak-test circle.” [3.33]

metrological integrity (of a device). – The design, features, operation, installation, or use of a device that facilitates (1) the accuracy and validity of a measurement or transaction, (2) compliance of the device with weights and measures requirements, or (3) the suitability of the device for a given application. [1.10, 2.20]
(Added 1993)

minimum capacity. – The smallest load that may be accurately weighed. The weighing results may be subject to excessive error if used below this value. [2.20, 2.24]
(Added 1999)

minimum clear interval. – The shortest distance between adjacent graduations when the graduations are not parallel. (Also see “clear interval.”) [3.30, 3.31, 3.32, 3.33, 3.34, 3.35, 3.36, 3.38, 5.50, 5.51, 5.56(b)]

minimum delivery. – The least amount of weight that is to be delivered as a single weighment by a belt-conveyor scale system in normal use. [2.21]

minimum tolerance. – Minimum tolerances are the smallest tolerance values that can be applied to a scale. Minimum tolerances are determined on the basis of the value of the minimum graduated interval or the nominal or reading face capacity of the scale. (Also see definition for basic tolerances.) [2.20, 2.22, 2.24]
minimum totalized load. – The least amount of weight for which the scale is considered to be performing accurately. [2.21]

moisture content (wet basis). – The mass of water in a grain or seed sample (determined by the reference method) divided by the mass of the grain or seed sample expressed as a percentage (%). [5.56(a), 5.56(b)]

money drop. – An increment of fare indication. The “initial money drop” is the first increment of fare indication following activation of the taximeter. [5.54]

money-operated type. – A device designed to be released for service by the insertion of money, or to be actuated by the insertion of money to make deliveries of product. [1.10]

motor-fuel. – Liquid used as fuel for internal-combustion engines. [3.30]

motor-fuel device or motor-fuel dispenser or retail motor-fuel device. – A device designed for the measurement and delivery of liquids used as fuel for internal-combustion engines. The term “motor-fuel dispenser” means the same as “motor-fuel device”; the term “retail motor-fuel device” applies to a unique category of device. (Also see definition of “retail device.”) [3.30, 3.32, 3.37]

multi-class. – A description of a grouping of grain classes, from the same grain type, in one calibration. A multi-class grain calibration may include (1) all the classes of a grain type (all-class calibration), or (2) some of the classes of a grain type within the calibration. [5.56(a), 5.57.] (Added 2007)

multi-interval scale. – A scale having one weighing range which is divided into partial weighing ranges (segments), each with different scale intervals, with each partial weighing range (segment) determined automatically according to the load applied, both on increasing and decreasing loads. [2.20] (Added 1995)

multi-jet water meter. – A water meter in which the moving element takes the form of a multiblade rotor mounted on a vertical spindle within a cylindrical measuring chamber. The liquid enters the measuring chamber through several tangential orifices around the circumference and leaves the measuring chamber through another set of tangential orifices placed at a different level in the measuring chamber. These meters register by recording the revolutions of a rotor set in motion by the force of flowing water striking the blades. [3.36] (Added 2003)

multi-revolution scale. – An automatic-indicating scale having a nominal capacity that is a multiple of the reading-face capacity and that is achieved by more than one complete revolution of the indicator. [2.20]

multiple. – An integral multiple; that is, a result obtained by multiplying by a whole number. (Also see “multiple of a scale.”) [1.10]

multiple cell application load cell. – A load cell intended for use in a weighing system which incorporates more than one load cell. A multiple cell application load cell is designated with the letter “M” or the term “Multiple.” (Also see “single cell application load cell.”) [2.20] (Added 1999)

multiple of a scale. – In general, the multiplying power of the entire system of levers or other basic weighing elements. (On a beam scale, the multiple of the scale is the number of pounds on the load-receiving element that will be counterpoised by one pound applied to the tip pivot of the weighbeam.) [2.20]

multiple range scale. – A scale having two or more weighing ranges with different maximum capacities and different scale intervals for the same load receptor, each range extending from zero to its maximum capacity. [2.20] (Added 1995)
multiple-tariff taximeter. – One that may be set to calculate fares at any one of two or more rates. [5.54]

natural gas. – A gaseous fuel, composed primarily of methane, that is suitable for compression and dispensing into a fuel storage container(s) for use as an engine fuel. [3.37]

(Added 1994)

NBP. – Normal Boiling Point of a cryogenic liquid at 14.696 lb/in² absolute. [3.34]

negotiated rate. – A rate selection that, when applied, results in a fixed (non-incrementing) amount for passenger charges and is based on a value that has been agreed upon by the operator and passenger. [5.54]

(Added 2016)

n_max (maximum number of scale divisions). – The maximum number of scale divisions for which a main element or load cell complies with the applicable requirements. The maximum number of scale divisions permitted for an installation is limited to the lowest n_max marked on the scale indicating element, weighing element, or load cell. [2.20, 2.21, 2.24]

(Added 1997)

no-load reference value. – A positive weight value indication with no load in the load-receiving element (hopper) of the scale. (Used with automatic bulk-weighing systems and certain single-draft, manually-operated receiving hopper scales installed below grade and used to receive grain.) [2.20]

nominal. – Refers to “intended” or “named” or “stated,” as opposed to “actual.” For example, the “nominal” value of something is the value that it is supposed or intended to have, the value that it is claimed or stated to have, or the value by which it is commonly known. Thus, “1-pound weight,” “1-gallon measure,” “1-yard indication,” and “500-pound scale” are statements of nominal values; corresponding actual values may be greater or lesser. (Also see nominal capacity of a scale.) [1.10]

nominal capacity. – The nominal capacity of a scale is (a) the largest weight indication that can be obtained by the use of all of the reading or recording elements in combination, including the amount represented by any removable weights furnished or ordinarily furnished with the scale, but excluding the amount represented by any extra removable weights not ordinarily furnished with the scale, and excluding also the capacity of any auxiliary weighing attachment not contemplated by the original design of the scale, and excluding any fractional bar with a capacity less than 2½ % of the sum of the capacities of the remaining reading elements, or (b) the capacity marked on the scale by the manufacturer, whichever is less. (Also see “nominal capacity, batching scale”; “nominal capacity, hopper scale.”) [2.20]

nominal capacity, batching scale. – The nominal capacity of a batching scale is the capacity as marked on the scale by the scale manufacturer, or the sum of the products of the volume of each of the individual hoppers, in terms of cubic feet, times the weight per cubic foot of the heaviest material weighed in each hopper, whichever is less. [2.20]

nominal capacity, hopper scale. – The nominal capacity of a hopper scale is the capacity as marked on the scale by the scale manufacturer, or the product of the volume of the hopper in bushels or cubic feet times the maximum weight per bushel or cubic foot, as the case may be, of the commodity normally weighed, whichever is less. [2.20]

non-automatic checkweigher. – A weighing instrument that requires the intervention of an operator during the weighing process, used to subdivide items of different weights into one or more subgroups, such as identifying packages that have acceptable or unacceptable fill levels according to the value of the difference between their weight and a pre-determined set point. [2.24]

Notes: Determining the weighing result includes any intelligent action of the operator that affects the result, such as deciding and taking an action when an indication is stable or adjusting the weight of the weighed load.
Deciding the weighing result is acceptable means making a decision regarding the acceptance of each weighing result on observing the indication or releasing a print-out. The weighing process allows the operator to take an action which influences the weighing result in the case where the weighing result is not acceptable. (Added 2004)

non-automatic weighing instrument. – A weighing instrument or system that requires the intervention of an operator during the weighing process to determine the weighing result or to decide that it is acceptable. [2.20, 2.24]

Notes: Determining the weighing result includes any intelligent action of the operator that affects the result, such as deciding and taking an action when an indication is stable or adjusting the weight of the weighed load.

Deciding the weighing result is acceptable means making a decision regarding the acceptance of each weighing result on observing the indication or releasing a print-out. The weighing process allows the operator to take an action which influences the weighing result in the case where the weighing result is not acceptable. (Added 2004) (Amended 2005)

nonretroactive. – “Nonretroactive” requirements are enforceable after the effective date for:

1. devices manufactured within a state after the effective date;
2. both new and used devices brought into a state after the effective date; and
3. devices used in noncommercial applications which are placed into commercial use after the effective date.

Nonretroactive requirements are not enforceable with respect to devices that are in commercial service in the state as of the effective date or to new equipment in the stock of a manufacturer or a dealer in the state as of the effective date. (Nonretroactive requirements are printed in italic type.) [1.10]

(Amended 1989)

nose-iron. – A slide-mounted, manually-adjustable pivot assembly for changing the multiple of a lever. [2.20]

notes. – A section included in each of a number of codes, containing instructions, pertinent directives, and other specific information pertaining to the testing of devices. Notes are primarily directed to weights and measures officials.

NTP. – Normal Temperature and Pressure of a cryogen at a temperature of 21 °C (70 °F) and a pressure of 101.325 kPa (14.696 lb/in² absolute). [3.34]

NTP density and volume correction factor. – A correction factor used to adjust the liquid volume of a cryogenic product at the time of measurement to the gas equivalent at NTP. [3.34]

O

odometer. – A device that automatically indicates the total distance traveled by a vehicle. For the purpose of this code, this definition includes hub odometers, cable-driven odometers, and the distance-indicating or odometer portions of “speedometer” assemblies for automotive vehicles. [5.53]

official grain samples. – Grain or seed used by the official as the official transfer standard from the reference standard method to test the accuracy and precision of grain moisture meters. [5.56(a), 5.56(b)]

official with statutory authority. – The representative of the jurisdiction(s) responsible for certifying the accuracy of the device. [2.20, 2.21, 2.22]

(Added 1991)
operating tire pressure. – The pressure in a tire immediately after a vehicle has been driven for at least 5 miles or 8 kilometers. [5.53, 5.54]

over-and-under indicator. – An automatic-indicating element incorporated in or attached to a scale and comprising an indicator and a graduated scale with a central or intermediate “zero” graduation and a limited range of weight graduations on either side of the zero graduation, for indicating weights greater than and less than the predetermined values for which other elements of the scale may be set. (A scale having an over-and-under indicator is classed as an automatic-indicating scale.) [2.20]

overregistration and underregistration. – When an instrument or device is of such a character that it indicates or records values as a result of its operation, its error is said to be in the direction of overregistration or underregistration, depending upon whether the indications are, respectively, greater or less than they should be. Examples of devices having errors of “overregistration” are: a fabric-measuring device that indicates more than the true length of material passed through it; and a liquid-measuring device that indicates more than the true amount of the liquid delivered by the device. Examples of devices having errors of “underregistration” are: a meter that indicates less than the true amount of product that it delivers; and a weighing scale that indicates or records less than the true weight of the applied load. [1.10]

P

parallax. – The apparent displacement, or apparent difference in height or width, of a graduation or other object with respect to a fixed reference, as viewed from different points. [1.10]

parking meter. – A coin-operated device for measuring parking time for vehicles. [5.55]

passenger vehicles. – Vehicles such as automobiles, recreational vehicles, limousines, ambulances, and hearses. [5.53]

performance requirements. – Performance requirements include all tolerance requirements and, in the case of nonautomatic-indicating scales, sensitivity requirements (SR). (Also see definitions for “tolerance” and “sensitivity requirement.”) [1.10]

point-of-sale system. – An assembly of elements including a weighing or measuring element, an indicating element, and a recording element (and may also be equipped with a “scanner”) used to complete a direct sales transaction. The system components, when operated together, must be capable of the following:

1. determining the weight or measure of a product or service offered;
2. calculating a charge for the product or service based on the weight or measure and an established price/rate structure;
3. determining a total cost that includes all associated charges involved with the transaction; and
4. providing a sales receipt.
[2.20, 3.30, 3.32, 3.37]
(Added 1986) (Amended 1997 and 2015)

poise. – A movable weight mounted upon or suspended from a weighbeam bar and used in combination with graduations, and frequently with notches, on the bar to indicate weight values. (A suspended poise is commonly called a “hanging poise.”) [2.20]
postal scale. – A scale (usually a computing scale) designed for use to determine shipping weight or delivery charges for letters or parcels delivered by the U.S. Postal Service or private shipping companies. A weight classifier may be used as a postal scale. [2.20]

(Added 1987)

prepackaging scale. – A computing scale specially designed for putting up packages of random weights in advance of sale. [2.20]

prescription scale. – A scale or balance adapted to weighing the ingredients of medicinal and other formulas prescribed by physicians and others and used or intended to be used in the ordinary trade of pharmacists. [2.20]

pressure type (device). – A type of device designed for operation with the liquid under artificially produced pressure. [3.30, 3.31]

primary indicating or recording elements. – The term “primary” is applied to those principal indicating (visual) elements and recording elements that are designed to, or may, be used by the operator in the normal commercial use of a device. The term “primary” is applied to any element or elements that may be the determining factor in arriving at the sale representation when the device is used commercially. (Examples of primary elements are the visual indicators for meters or scales not equipped with ticket printers or other recording elements and both the visual indicators and the ticket printers or other recording elements for meters or scales so equipped.) The term “primary” is not applied to such auxiliary elements as, for example, the totalizing register or predetermined-stop mechanism on a meter or the means for producing a running record of successive weighing operations, these elements being supplementary to those that are the determining factors in sales representations of individual deliveries or weights. (Also see “indicating element” and “recording element.”) [1.10]

prover method. – A method of testing milk tanks that utilizes approved volumetric prover(s) for measuring the test liquid removed from or introduced into the tank. [4.42]

prover oil. – A light oil of low vapor pressure used as a sealing medium in bell provers, cubic-foot bottles, and portable cubic-foot standards. [3.33]

proving indicator. – The test hand or pointer of the proving or leak-test circle on the meter register or index. [3.33, 3.36.]

R

“r” factor. – A computation for determining the suitability of a vehicle scale for weighing vehicles with varying axle configurations. The factor was derived by dividing the weights in FHWA Federal Highway Bridge Gross Weight Table B by 34,000 lbs. (The resultant factors are contained in Table UR.3.2.1.) [2.20]

radio frequency interference (RFI). – Radio frequency interference is a type of electrical disturbance that, when introduced into electronic and electrical circuits, may cause deviations from the normally expected performance. [1.10]

random error(s). – The sample standard deviation of the error (indicated values) for a number of consecutive automatic weighings of a load, or loads, passed over the load receptor, shall be expressed mathematically as:

\[
s = \sqrt{\frac{1}{n-1} \left(\sum x_i - \bar{x} \right)^2} \quad \text{or} \quad s = \sqrt{\frac{1}{n-1} \left(\sum x_i^2 - \frac{(\sum x_i)^2}{n} \right)}
\]

where: \(x\) = error of a load indication

\(n\) = the number of loads

[2.24]

ranges, weight. – See “weight ranges.” [2.20]
rated capacity. – The rate of flow in cubic meters per hour of a hydrocarbon gas vapor-measuring device as recommended by the manufacturer. This rate of flow should cause a pressure drop across the meter not exceeding ½-inch water column. [3.33]

rated scale capacity. – That value representing the weight that can be delivered by the device in one hour. [2.21]

total test. – A test to determine the accuracy with which the actual multiple of a scale agrees with its designed multiple. This test is used for scales employing counterpoise weights and is made with standard test weights substituted in all cases for the weights commercially used on the scale. (It is appropriate to use this test for some scales not employing counterpoise weights.) [2.20]

reading face. – That portion of an automatic-indicating weighing or measuring device that gives a visible indication of the quantity weighed or measured. A reading face may include an indicator and a series of graduations or may present values digitally, and may also provide money-value indications. [1.10, 2.20]

(Amended 2005)

reading-face capacity. – The largest value that may be indicated on the reading face, exclusive of the application or addition of any supplemental or accessory elements. [1.10]

recorded representation. – The printed, embossed, or other representation that is recorded as a quantity by a weighing or measuring device. [1.10]

recording element. – An element incorporated in a weighing or measuring device by means of which its performance relative to quantity or money value is permanently recorded on a tape, ticket, card, or the like, in the form of a printed, stamped, punched, or perforated representation. [1.10, 2.21]

recording scale. – One on which the weights of applied loads may be permanently recorded on a tape, ticket, card, or the like in the form of a printed, stamped, punched, or perforated representation. [2.20]

reference weight car. – A railcar that has been statically weighed for temporary use as a mass standard over a short period of time, typically the time required to test one scale.

Note: A test weight car that is representative of the types of cars typically weighed on the scale under test may be used wherever reference weight cars are specified. [2.20]

(Amended 1991) (Amended 2012)

remanufactured device. – A device that is disassembled, checked for wear, parts replaced or fixed, reassembled and made to operate like a new device of the same type. [1.10]

(Added 2001)

remanufactured element. – An element that is disassembled, checked for wear, parts replaced or fixed, reassembled and made to operate like a new element of the same type. [1.10]

(Added 2001)

remote configuration capability. – The ability to adjust a weighing or measuring device or change its sealable parameters from or through some other device that is not itself necessary to the operation of the weighing or measuring device or is not a permanent part of that device. [2.20, 2.21, 2.24, 3.30, 3.37, 5.56(a)]

(Added 1993)

repaired device. – A device to which work is performed that brings the device back into proper operating condition. [1.10]

(Added 2001)
repaired element. – An element to which work is performed that brings the element back into proper operating condition. [1.10]
(Added 2001)

retail device. – A measuring device primarily used to measure product for the purpose of sale to the end user. [3.30, 3.32, 3.37]
(Amended 1987 and 2004)

retroactive. – “Retroactive” requirements are enforceable with respect to all equipment. Retroactive requirements are printed herein in upright roman type. (Also see “nonretroactive.”) [1.10]

road test. – A distance test, over a measured course, of a complete taximeter assembly when installed on a vehicle, the mechanism being actuated as a result of vehicle travel. [5.53, 5.54]

rolling circumference. – The rolling circumference is the straight line distance traveled per revolution of the wheel (or wheels) that actuates the taximeter or odometer. If more than one wheel actuates the taximeter or odometer, the rolling circumference is the average distance traveled per revolution of the actuating wheels. [5.53, 5.54]

scale. – See specific type of scale. [2.20]

scale area, belt-conveyor. – See belt-conveyor scale systems area. [2.21]
(Added 2001)

scale division, number of (n). – Quotient of the capacity divided by the value of the verification scale division. [2.20]

\[n = \frac{\text{Capacity}}{e} \]

scale division, value of (d). – The value of the scale division, expressed in units of mass, is the smallest subdivision of the scale for analog indication or the difference between two consecutively indicated or printed values for digital indication or printing. (Also see “verification scale division.”) [2.20, 2.22]

scale section. – A part of a vehicle, axle-load, livestock, or railway track scale consisting of two main load supports, usually transverse to the direction in which the load is applied. [2.20]

seal. – See “approval seal,” “security seal.” [1.10]

section capacity. – The section capacity of a scale is the maximum live load that may be divided equally on the load pivots or load cells of a section. [2.20]
(Added 2001)

section test. – A shift test in which the test load is applied over individual sections of the scale. This test is conducted to disclose the weighing performance of individual sections, since scale capacity test loads are not always available and loads weighed are not always distributed evenly over all main load supports. [2.20]

security means. – A method used to prevent access by other than qualified personnel, or to indicate that access has been made to certain parts of a scale that affect the performance of the device. [2.21]

security seal. – A uniquely identifiable physical seal, such as a lead-and-wire seal or other type of locking seal, a pressure-sensitive seal sufficiently permanent to reveal its removal, or similar apparatus attached to a weighing or measuring device for protection against or indication of access to adjustment. (Also see “approval seal.”) [1.10]
(Amended 1994)
selector-type. – A system of indication or recording in which the mechanism selects, by means of a ratchet-and-pawl combination or by other means, one or the other of any two successive values that can be indicated or recorded. [1.10]

semi-automatic zero-setting mechanism. – See “semi-automatic zero-setting mechanism” under “zero-setting mechanism.” [2.20]

sensitivity (of a nonautomatic-indicating scale). – The value of the test load on the load-receiving element of the scale that will produce a specified minimum change in the position of rest of the indicating element or elements of the scale. [2.20]

sensitivity requirement (SR). – A performance requirement for a non automatic-indicating scale; specifically, the minimum change in the position of rest of the indicating element or elements of the scale in response to the increase or decrease, by a specified amount, of the test load on the load-receiving element of the scale. [2.20]

shift test. – A test intended to disclose the weighing performance of a scale under off-center loading. [2.20]

side. – That portion of a pump or dispenser which faces the consumer during the normal delivery of product. [3.30] (Added 1987)

simulated-road test. – A distance test during which the taximeter or odometer may be actuated by some means other than road travel. The distance traveled is either measured by a properly calibrated roller device or computed from rolling circumference and wheel-turn data. [5.53, 5.54]

simulated test. – A test using artificial means of loading the scale to determine the performance of a belt-conveyor scale. [2.21]

single cell application load cell. – A load cell intended for use in a weighing system which incorporates one or more load cells. A single cell application load cell is designated with the letter “S” or the term “Single.” (Also see “multiple cell application load cell.”) [2.20] (Added 1999)

single-tariff taximeter. – One that calculates fares at a single rate only. [5.54]

skirting. – Stationary side boards or sections of belt conveyor attached to the conveyor support frame or other stationary support to prevent the bulk material from falling off the side of the belt. [2.21]

slow-flow meter. – A retail device designed for the measurement, at very slow rates (less than 40 L (10 gal) per hour), of liquid fuels at individual domestic installations. [3.30]

small-delivery device. – Any device other than a large-delivery device. [3.34, 3.38]

span (structural). The distance between adjoining sections of a scale. [2.20] (Added 1988)

specification. – A requirement usually dealing with the design, construction, or marking of a weighing or measuring device. Specifications are directed primarily to the manufacturers of devices. [1.10]

static monorail weighing system. – A weighing system in which the load being applied is stationary during the weighing operation. [2.20] (Added 1999)

strain-load test. – The test of a scale beginning with the scale under load and applying known test weights to determine accuracy over a portion of the weighing range. The scale errors for a strain-load test are the errors observed for the known test loads only. The tolerances to be applied are based on the known test load used for each error that is determined. [2.20, 2.22]
subordinate graduation. – Any graduation other than a main graduation. (Also see “graduation.”) [1.10]

subsequent distance or time intervals. – The intervals corresponding to money drops following the initial money drop. [5.54]

substitution test. – A scale testing process used to quantify the weight of material or objects for use as a known test load. [2.20]
(Added 2003)

substitution test load. – The sum of the combination of field standard test weights and any other applied load used in the conduct of a test using substitution test methods. [2.20]
(Added 2003)

surface gauge. – A combination of (1) a stationary indicator, and (2) a movable, graduated element designed to be brought into contact with the surface of the liquid from above. [4.42]

systematic (average) error (\bar{x}). – The mean value of the error (of indication) for a number of consecutive automatic weighings of a load, or loads, passed over the load-receiving element (e.g., weigh-table), shall be expressed mathematically as:

$$\bar{x} = \frac{\sum x}{n}$$

where:

- x = error of a load indication
- n = the number of loads

[2.24]

tail pulley. – The pulley at the opposite end of the conveyor from the head pulley. [2.21]

take-up. – A device to provide sufficient tension in a conveyor belt so that the belt will be positively driven by the drive pulley. – A counter-weighted take-up consists of a pulley free to move in either the vertical or horizontal direction with dead weights applied to the pulley shaft to provide the tension required. [2.21]

tare mechanism. – A mechanism (including a tare bar) designed for determining or balancing out the weight of packaging material, containers, vehicles, or other materials that are not intended to be included in net weight determinations. [2.20]

tare-weighbeam elements. – The combination of a tare bar and its fractional bar, or a tare bar alone if no fractional bar is associated with it. [2.20]

taximeter. – A device that automatically calculates, at a predetermined rate or rates, and indicates the charge for hire of a vehicle. [5.54]

test chain. – A device used for simulated tests consisting of a series of rollers or wheels linked together in such a manner as to assure uniformity of weight and freedom of motion to reduce wear, with consequent loss of weight, to a minimum. [2.21]

test liquid. – The liquid used during the test of a device. [3.30, 3.31, 3.34, 3.35, 3.36, 3.37, 3.38]

test object. – An object whose dimensions are verified by appropriate reference standards and intended to verify compliance of the device under test with certain metrological requirements. [5.58]
test puck. – A metal, plastic, or other suitable object that remains stable for the duration of the test, used as a test load to simulate a package. Pucks can be made in a variety of dimensions and have different weights to represent a wide range of package sizes. Metal versions may be covered with rubber cushions to eliminate the possibility of damage to weighing and handling equipment. The puck mass is adjusted to an accuracy specified in N.1.2. Accuracy of Test Pucks or Packages. [2.24] (Amended 2004)

test train. – A train consisting of or including reference weight cars and used to test coupled-in-motion railway track scales. The reference weight cars may be placed consecutively or distributed in different places within a train. [2.20] (Added 1990) (Amended 1991)

test weight car. – A railroad car designed to be a stable mass standard to test railway track scales. The test weight car may be one of the following types: a self-contained composite car, a self-propelled car, or a standard rail car. [2.20] (Added 1991)

testing. – An operation consisting of a series of volumetric determinations made to verify the accuracy of the volume chart that was developed by gauging. [4.42]

time recorder. – A clock-operated mechanism designed to record the time of day. Examples of time recorders are those used in parking garages to record the “in” and “out” time of day for parked vehicles. [5.55]

timing device. – A device used to measure the time during which a particular paid-for service is dispensed. Examples of timing devices are laundry driers, car-wash timers, parking meters, and parking-garage clocks and recorders. [5.55]

tolerance. – A value fixing the limit of allowable error or departure from true performance or value. (Also see “basic tolerances.”) [1.10]

training idlers. – Idlers of special design or mounting intended to shift the belt sideways on the conveyor to assure the belt is centered on the conveying idlers. [2.21]

transfer standard. – A measurement system designed for use in proving and testing cryogenic liquid-measuring devices. [3.38]

tripper. – A device for unloading a belt conveyor at a point between the loading point and the head pulley. [2.21]

uncoupled-in-motion railroad weighing system. – A device and related installation characteristics consisting of (1) the associated approach trackage, (2) the scale (i.e., the weighing element, the load-receiving element, and the indicating element with its software), and (3) the exit trackage, which permit the weighing of railroad cars uncoupled in motion. [2.20] (Added 1993)

underregistration. – See “overregistration” and “underregistration.” [1.10]

unit price. – The price at which the product is being sold and expressed in whole units of measurement. [1.10, 2.20, 3.30, 3.31, 3.32, 3.37] (Added 1992)

unit train. – A unit train is defined as a number of contiguous cars carrying a single commodity from one consignor to one consignee. The number of cars is determined by agreement among the consignor, consignee, and the operating railroad. [2.20]
unit weight. – One contained within the housing of an automatic-indicating scale and mechanically applied to and removed from the mechanism. The application of a unit weight will increase the range of automatic indication, normally in increments equal to the reading-face capacity. [2.20]

user requirement. – A requirement dealing with the selection, installation, use, or maintenance of a weighing or measuring device. User requirements are directed primarily to the users of devices. (Also see Introduction, Section D.) [1.10]

usual and customary. – Commonly or ordinarily found in practice or in the normal course of events and in accordance with established practices. [1.10]

utility-type water meter. – 1) A device used for the measurement of water, generally applicable to meters installed in residences or business establishments, excluding batching meters. [3.36] (Added 2011)

value of minimum graduated interval. – (1) The value represented by the interval from the center of one graduation to the center of the succeeding graduation. (2) The increment between successive recorded values. (Also see “graduated interval.”) [1.10]

vapor equalization credit. – The quantity deducted from the metered quantity of liquid carbon dioxide when a vapor equalizing line is used to facilitate the transfer of liquid during a metered delivery. [3.38]

vapor equalization line. – A hose or pipe connected from the vapor space of the seller’s tank to the vapor space of the buyer’s tank that is used to equalize the pressure during a delivery. [3.38]

vehicle on-board weighing system. – A weighing system designed as an integral part of or attached to the frame, chassis, lifting mechanism, or bed of a vehicle, trailer, industrial truck, industrial tractor, or forklift truck. [2.20] (Amended 1993)

vehicle scale. – A scale adapted to weighing highway, farm, or other large industrial vehicles (except railroad freight cars), loaded or unloaded. [2.20]

verification scale division, value of (e). – A value, expressed in units of weight (mass) and specified by the manufacturer of a device, by which the tolerance values and the accuracy class applicable to the device are determined. The verification scale division is applied to all scales, in particular to ungraduated devices since they have no graduations. The verification scale division (e) may be different from the displayed scale division (d) for certain other devices used for weight classifying or weighing in pre-determined amounts, and certain other Class I and II scales. [2.20]

visible type. – A type of device in which the measurement takes place in a see-through glass measuring chamber. [3.30]

vmin (minimum load cell verification interval). – The smallest load cell verification interval, expressed in units of mass*, into which the load cell measuring range can be divided. [2.20, 2.24] [*Nonretroactive as of January 1, 2001] (Added 1996) (Amended 1999)

weighbeam. – An element comprising one or more bars, equipped with movable poises or means for applying counterpoise weights or both. [2.20]
weigh-belt system. – A type of belt-conveyor scale system designed by the manufacturer as a self-contained conveyor system and that is installed as a unit. A unit is comprised of integral components and, at minimum, includes a: conveyor belt; belt drive; conveyor frame; and weighing system. A weigh-belt system may operate at single or multiple flow rates and may use variable-speed belt drives. [2.21] (Added 2015)

weighing element. – That portion of a scale that supports the load-receiving element and transmits to the indicating element a signal or force resulting from the load applied to the load-receiving element. [2.20, 2.21, 2.22] (Added 1988)

weigh-labeler. – An automatic weighing system that determines the weight of a package and prints a label or other document bearing a weight declaration for each discrete item (usually a label also includes unit and total price declarations). Weigh-labelers are sometimes used to weigh and label standard and random packages (also called “Prepackaging Scales”). [2.24] (Amended 2004)

weigh module – The portion of a load-receiving element supported by two sections. The length of a module is the distance to which load can be applied. [2.20] (Added 2013)

weighment. – A single complete weighing operation. [2.20, 2.21] (Added 1986)

weight, unit. – See “unit weight.” [2.20]

weight classifier. – A digital scale that rounds weight values up to the next scale division. These scales usually have a verification scale division (e) that is smaller than the displayed scale division. [2.20] (Added 1987)

weight ranges. – Electrical or electro-mechanical elements incorporated in an automatic indicating scale through the application of which the range of automatic indication of the scale is increased, normally in increments equal to the reading-face capacity. [2.20]

wet basis. – See “moisture content (wet basis).” [5.56(a), 5.56(b)]

wet hose. – A discharge hose intended to be full of product at all times. (Also see “wet-hose type.”) [3.30, 3.31, 3.38] (Amended 2002)

wet-hose type. – A type of device designed to be operated with the discharge hose full of product at all times. (Also see “wet hose.”) [3.30, 3.32, 3.34, 3.37, 3.38] (Amended 2002)

wheel-load weighers. – Compact, self-contained, portable weighing elements specially adapted to determining the wheel loads or axle loads of vehicles on highways for the enforcement of highway weight laws only. [2.20]

wholesale device. – Any device other than a retail device. (Also see “retail device.”) [3.30, 3.32]

wing pulley. – A pulley made of widely spaced metal bars in order to set up a vibration to shake loose material off the underside (return side) of the belt. [2.21]

zero-load balance. – A correct weight indication or representation of zero when there is no load on the load-receiving element. (Also see “zero-load balance for an automatic-indicating scale,” “zero-load balance for a
nonautomatic-indicating scale,” “zero-load balance for a recording scale.”) [2.20]

zero-load balance, automatic-indicating scale. – A condition in which the indicator is at rest at, or oscillates through approximately equal arcs on either side of, the zero graduation. [2.20]

zero-load balance, nonautomatic-indicating scale. – A condition in which (a) the weighbeam is at rest at, or oscillates through approximately equal arcs above and below, the center of a trig loop; (b) the weighbeam or lever system is at rest at, or oscillates through approximately equal arcs above and below, a horizontal position or a position midway between limiting stops; or (c) the indicator of a balance indicator is at rest at, or oscillates through approximately equal arcs on either side of, the zero graduation. [2.20]

zero-load balance for a recording scale. – A condition in which the scale will record a representation of zero load. [2.20]

zero-load reference (belt-conveyor scales). – A zero-load reference value represents no load on a moving conveyor belt. This value can be either; a number representing the electronic load cell output, a percentage of full scale capacity, or other reference value that accurately represents the no load condition of a moving conveyor belt. The no load reference value can only be updated after the completion of a zero load test. [2.21] (Added 2002)

zero-setting mechanism. – Means provided to attain a zero balance indication with no load on the load-receiving element. The types of zero-setting mechanisms are: [2.20, 2.22, 2.24]

 automatic zero-setting mechanism (AZSM). – Automatic means provided to set the zero-balance indication without the intervention of an operator. [2.22] (Added 2010)

 initial zero-setting mechanism. – Automatic means provided to set the indication to zero at the time the instrument is switched on and before it is ready for use. [2.20] (Added 1990)

 manual zero-setting mechanism. – Nonautomatic means provided to attain a zero balance indication by the direct operation of a control. [2.20]

 semiautomatic zero-setting mechanism. – Automatic means provided to attain a direct zero balance indication requiring a single initiation by an operator. [2.20] (Amended 2010)

zero-setting mechanism (belt-conveyor scale). – A mechanism enabling zero totalization to be obtained over a whole number of belt revolutions. [2.21, 2.23] (Added 2002)

zero-tracking mechanism. – See “automatic zero-tracking mechanism” under “zero-setting mechanism.” [2.20, 2.22, 2.24]

zone of uncertainty. – The zone between adjacent increments on a digital device in which the value of either of the adjacent increments may be displayed. [2.20]