Sampling Methods for the Grapevine Regulations Working Group

Kari Arnold

Neil McRoberts

Quantitative Biology and Epidemiology Lab

UCDavis Plant Pathology

University of **California** Agriculture and Natural Resources

General comments on sampling

- It **does not** give definitive answers
 - Statistically designed sampling plans have known long-run performance but can under- or over- estimate disease in any specific case
- It **does not** always (ever?) reduce uncertainty
- It will almost always be constrained by money and/or time
- It should be done often and as early as possible in the propagation chain
- Do not overlook the value of visual inspection

University of **California** Agriculture and Natural Resources

Objectives

- Discuss diseases of interest
- Discuss current increase blocks
- Discuss sampling methods and theory
- Discuss the definition of certification

University of **California** Agriculture and Natural Resources

Leafroll and Red Blotch

Aggregation appears to be similar for both viruses

University of **California** Agriculture and Natural Resources

Kari Arnold, PhD candidate

Current Increase Blocks

University of **California** Agriculture and Natural Resources

Kari Arnold, PhD candidate

Sampling Strategies

p = estimated disease incidence N = number of groupings n = number of plants in a grouping θ = aggregation parameter (adjustment for patchiness)

University of **California** Agriculture and Natural Resources

Example

vines = 320 # infected = 4 DI = 0.0125p = 0.01 (assumed) N = 5n = 10 θ = patchiness

University of **California** Agriculture and Natural Resources

Why group sampling?

*Allows for an assessment of variance

*Future adjustments and assumptions can be made from previous data

University of **California** Agriculture and Natural Resources

General comments on sampling

- As disease incidence increases, sampling size decreases
- As patchiness increases, sampling size increases

University of **California** Agriculture and Natural Resources

Kari Arnold, PhD candidate

Estimating Mean Incidence as 1%

$$N = (1-p)/npCV^2$$

Random/binomial model

 $N = ((1-p) * deff)/npCV^2$

Aggregated/beta-binomial model

$$deff = (1 + \rho) * (n - 1)$$
$$\rho = \theta / (\theta + 1)$$
$$\theta = aggregation/patchiness$$

University of **California** Agriculture and Natural Resources

How this model works

University of **California** Agriculture and Natural Resources

Estimating Mean Incidence

$$N = (1-p)/npCV^2$$

$$p = 0.01$$

 $n = 10$

	CV	N	n	ELISA (\$6)	PCR (\$20)
90%	0.2	247.5	10	\$14,850.00	\$49 <i>,</i> 500.00
95%	0.1	990	10	\$59,400.00	\$198,000.00

*Finite population correction: N(1-f)When N is greater than 10% of the population

University of **California** Agriculture and Natural Resources

Estimating Disease Incidence

Assume: 1 acre = 1000 vines

Average size is about 25 to 35 acres, or 25,000 to 35,000 vines

2500-3500 vines N=247.5 is appropriate

If half the blocks fit this size, cost = \$1.75 million on testing alone, on a 3 to 5 year rotation

University of California

Agriculture and Natural Resources

Kari Arnold, PhD candidate

If you don't find it, is it really not there?

$$\Pr(X=0) = (1+n\theta)^{-N\frac{p}{\theta}}$$

Probability of not detecting disease if true vine incidence is p, group size is n and N groups of tests are made

 $p = -\theta \cdot \log(P)/N \cdot \log(1 + n\theta) \begin{array}{l} \text{Maximum true vine disease incidence} \\ \text{that could result in zero positives,} \\ \text{given group size n, N groups, with} \\ \text{probability P.} \end{array}$

Sample size required to generate zero $N = -\theta \cdot log(P)/p \cdot log(1 + n\theta) \text{ positives, given group size n and true}$ disease incidence p, with
probability P. Larger samples will give
one or more positives

University of **California** Agriculture and Natural Resources

Kari Arnold, PhD candidate

Detecting Disease Incidence >1%

 $N = -\theta \cdot \log(P)/p \cdot \log(1+n\theta)$

$$p = 0.01$$

 $n = 10$
 $\theta = 0.0343$

	Р	N	n	ELISA (\$6)	PCR (\$20)
80%	0.2	18.7	10	\$1,122.00	\$3,740.00
90%	0.1	26.7	10	\$1,602.00	\$5,340.00
95%	0.05	34.8	10	\$2 <i>,</i> 088.00	\$6,960.00
99%	0.01	53.6	10	\$3,216.00	\$10,720.00

University of **California** Agriculture and Natural Resources

Kari Arnold, PhD candidate

Sampling Flow Chart

University of **California** Agriculture and Natural Resources

The certification discussion and the future: realistic expectations are the key to

 $c = d \times tpp$

 $d = \text{probability of detection (sampling)} = f(n,N,p,\theta)$ tpp = diagnostic true positive proportion

r: *background contamination rate*

University of **California** Agriculture and Natural Resources

Does Virus Tested = Virus Free? Does Certified = Clean?

- Science isn't perfect, neither are we
- There is no unicorn certification program, error is everywhere

University of **California** Agriculture and Natural Resources

Defining "Certification"

4 things to consider:

- 1. Sampling methods (discussing today)
- 2. Background risks
- 3. Time period between sampling rotations
- Designing the sampling plan is only the beginning, this is a work in progress
 Producers/growers need to
 understand this

University of **California** Agriculture and Natural Resources

Thank you: AVF, CGRIC, IAB, CDFA

Questions?

University of **California** Agriculture and Natural Resources