Sampling for vine health certification in grape vine nursery stock

Neil McRoberts Kari Arnold

General comments on sampling

- It **does not** give definitive answers
 - Statistically designed sampling plans have known long-run performance but can under- or overestimate disease in any specific case
- It **does not** always (ever?) reduce uncertainty
- It will almost always be constrained by money and/or time
- It should be done often and as early as possible in the propagation chain
- Do not overlook the value of visual inspection

Sampling propagated vines

Sampling the source material will be more efficient

Illustrating the scale of the problem Suppose N = 5 mother vines n = 10 budsticks from each = 50 propagated vines

Suppose we want to take Simple Random Sample (SRS) of m = 5 sticks

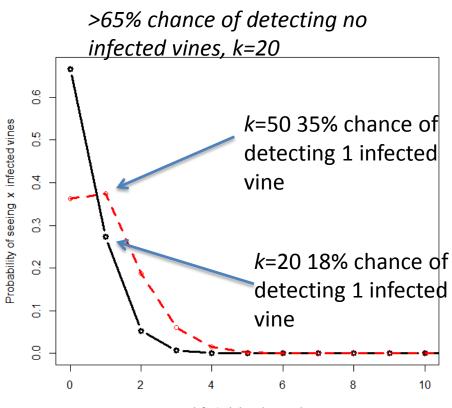
There are

$$\binom{50}{5} = 2,118,760$$

ways to draw the sample. n^{N} =100,000 combinations have wood from all 5 mother vines so only 100,000/2,118,760 = 0.047 (5%) of SRS capture all 5 mother vines.

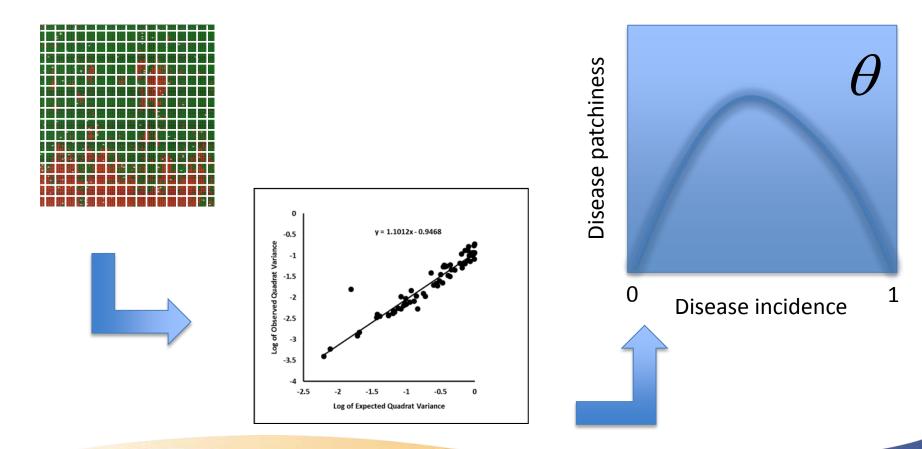
Sampling propagated vines cont'd.

Sampling the source material will be more efficient


More realistic (but still tiny-size) problem Suppose N = 50 mother vines n = 100 budsticks from each vine

Suppose d = 1 infected mother vine = n*d = 100 infected daughter vines in n*N = 5000

We sample k = 20 vines off the truck using a SRS and send for testing. What is the probability we find x = 0,1, ... k infected vines in the sample?


Hypergeometric distribution

$$\Pr(X = x) = \frac{\binom{n \cdot d}{x} \binom{n \cdot N - n \cdot d}{k - x}}{\binom{n \cdot N}{k}}$$

x infected vines in sample

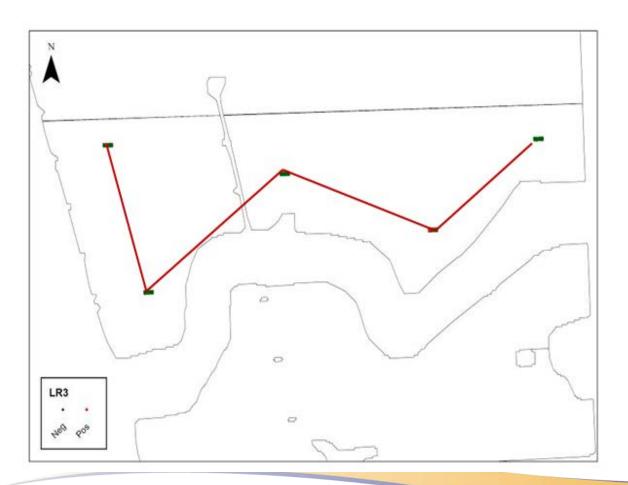
Block sampling for disease incidence

If you don't find it, is it really not there?

$$\Pr(X=0) = (1+n\theta)^{-N\frac{p}{\theta}}$$

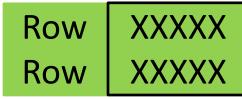
Probability of not detecting disease if true vine incidence is p, group size is n and N groups of tests are made

Maximum true vine disease incidence that could result in zero positives, given group size n, N groups, with probability P.


$$N = -\theta \cdot \log(P)/p \cdot \log(1 + n\theta)$$

 $p = -\theta \cdot \log(P)/N \cdot \log(1 + n\theta)$

Sample size required to generate zero positives, given group size n and true disease incidence p, with probability P. Larger samples will give one or more positives


Case Study

Grower decided to test using this structure:

- 5 sets (quadrats)
- 10 samples (n=10) in each set

- Each vine individually tested
- "W" formation throughout field block

"X" works too

Where are the positives?

GRBaV

15 positive of 50, approx. 15%

5 Quadrats of 10:

Quadrat	# Positive
1	3/10
2	2/10
3	0/10
4	0/10
5	10/10

GLRaV-3

5 positive of 50, approx. 5%

5 Quadrats of 10:

Quadrat	# Positive
1	1/10
2	0/10
3	0/10
4	0/10
5	4/10

GLRaV-3 in the given samples

BINOMIAL

BETA-BINOI	MIAL
-------------------	------

	Fit Statistics	
	-2 Log Likelihood	17.2
1	AIC (smaller is better)	19.2
	AICC (smaller is better)	20.5
	BIC (smaller is better)	18.8

Fit Statistics	
-2 Log Likelihood	13.3
AIC (smaller is better)	17.3
AICC (smaller is better)	23.3
BIC (smaller is better)	16.5

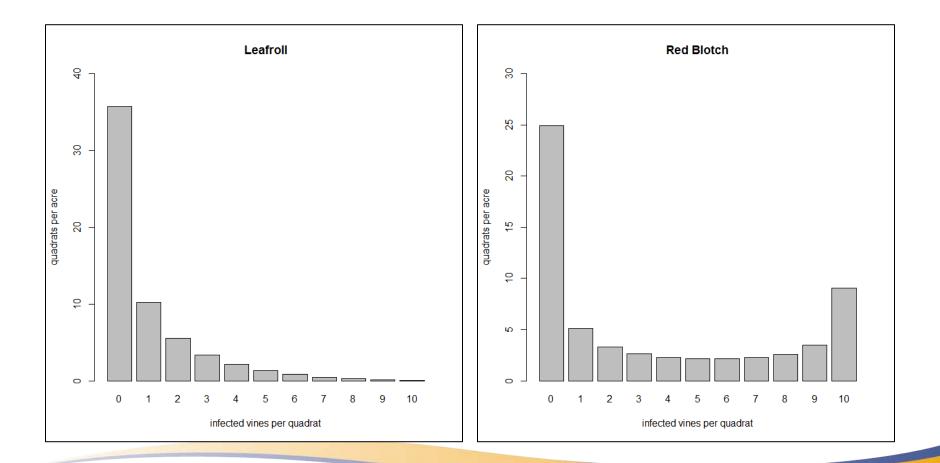
Label	Estimate S	andard Error	DF	t Value	Pr > t	Alpha	Lower	Upper
р	0.1	0.04243	5	2.36	0.065	0.05	-0.00906	0.2091

Label	Estimate S	tandard Error	DF	t Value	Pr > t	Alpha	Lower	Upper
р	0.09716	0.07138	5	1.36	0.2316	0.05	-0.08632	0.2806
alpha	0.3491	0.4129	5	0.85	0.4364	0.05	-0.7123	1.4105
beta	3.2439	4.3086	5	0.75	0.4854	0.05	-7.8316	14.3194
rho (intraclass corr.)	0.2177	0.2201	5	0.99	0.3681	0.05	-0.3482	0.7836

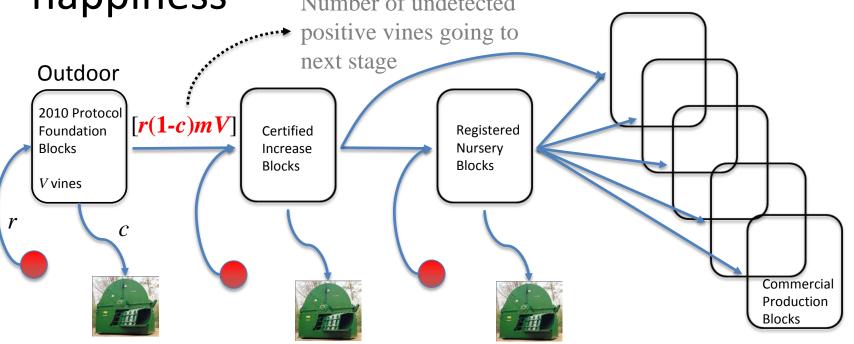
GRBaV in the given samples

BINOMIAL

Label


p

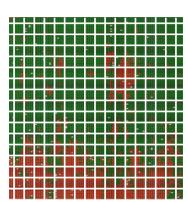
Fit Statistics	
-2 Log Likelihood	43.9
AIC (smaller is better)	45.9
AICC (smaller is better)	47.2
BIC (smaller is better)	45.5


BETA-BINOMIAL

		Fit	Statistics							Fit	Sta	tistics]		
		-2 I	og Likelihood	43.9					-2 I	-2 Log Likelihood			19.4				
		AIC	C (smaller is bette	er)	45.9	5.9				AIC	AIC (smaller is better)				23.4		
		AIC	C (smaller is bet) 47.2				AIC	AICC (smaller is better)) 29.4	29.4				
		BIC	c (smaller is bette	er)	45.5					BIC	: (sn	naller i	s better)	22.6	5		
	\checkmark																
	Estim	ate	Standard Error	DF	t Value	Pr>	> t	Alpha	Lc	ower	Upp	ber					
		0.3	0.06481	5	4.63	0.0	0057	0.05	0	.1334	0.	4666					
				_										_			
		La	abel		Estimate	e St	anda	ard Erro	or	DF		t Value	Pr > t	Alpha	Lower	Upper	
		р			0.351	9		0.173	88		5	2.02	0.0988	0.05	-0.09483	0.7986	
		al	pha		0.192	8		0.170)9		5	1.13	0.3105	0.05	-0.2465	0.6321	
		b	eta		0.355	1		0.351	1		5	1.01	0.3582	0.05	-0.5474	1.2576	
		rł	no (intraclass cor	r.)	0.64	6		0.201	.7		5	3.2	0.0239	0.05	0.1277	1.1644	

Potential Distribution

The certification discussion and the future: realistic expectations are the key to happiness Number of undetected



 $c = d \times tpp$

d = probability of detection (sampling) = $f(n,N,p,\theta)$ tpp = diagnostic true positive proportion

r: *background contamination rate*

Sampling depends on spatial scale relationships

Assume composite samples of n vines each In a simple world where disease has a random pattern

$$p_c = 1 - (1 - p_v)^n$$

The proportion of composites with at least one positive test as a function of the proportion of infected vines

$$p_{v} = 1 - (1 - p_{c})^{(\frac{1}{n})}$$

The proportion of infected vines as a function of the proportion of infected composites

$$\tilde{v}_v = \frac{p_c (1 - p_c)^{(\frac{2 - n}{n})}}{n^2}$$

Approximate variance in vine disease incidence based on composite disease incidence

What about composites?

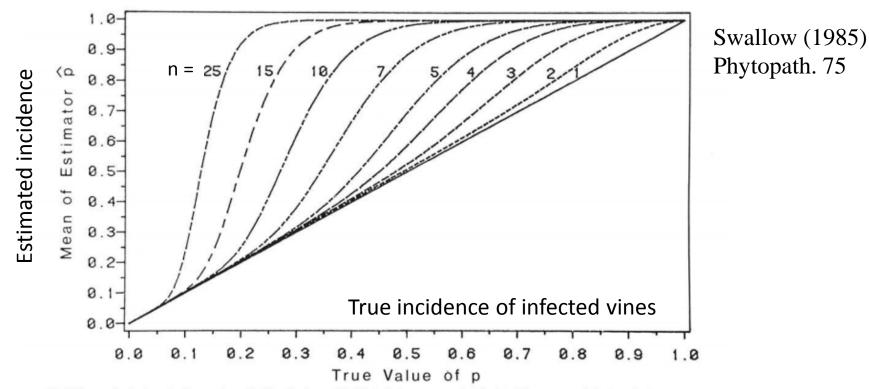
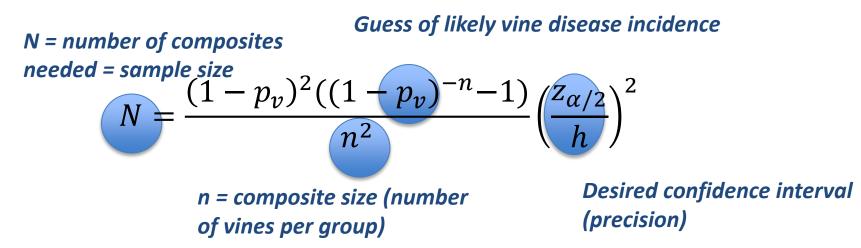
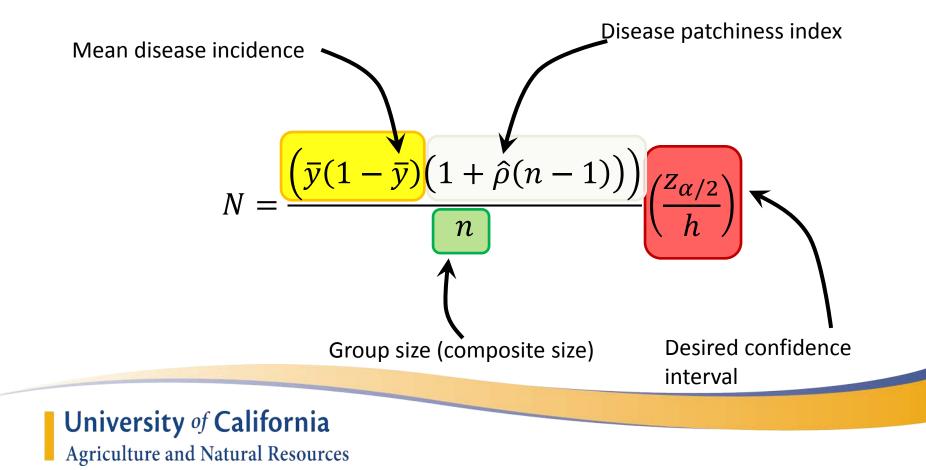



Fig. 1. Expected value (mean) of the maximum likelihood estimator (\hat{p}) of the infection rate or probability (p) of disease transmission by a single vector versus the true value of p for tests employing k = 1 to 25 vectors per test plant with N = 25 test plants.

Sample size calculation for composite sampling (*at low incidence*)


For $n \leq 10$ estimated vine incidence is not overly biased provided: Assumption of "randomness" is met True disease incidence is 40% or less

Certification and sampling: take home

Certification is based on sampling not a census

Sampling is *not perfect*

Sampling according to a known statistical model provides *long-run known results The long-run known results are what certification "means"*

Thank you: AVF, CGRIC, IAB, CDFA

Questions?