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ABSTRACT
The overall goal of our project is to determine whether β-1,4 glucanase (EGase), the major enzymatic protein in the saliva of
glassy-winged sharpshooter (GWSS), co-localizes via immunocytochemistry with the few ‘pioneer’ Xylella fastidiosa (Xf)
cells that are inoculated by this vector’s probing (stylet penetration) behaviors.  If it does, then this suggests that the
enzymatic portion of GWSS saliva is a carrier of the bacteria during inoculation. This year, we acquired commercially-
produced, polyclonal antibody serum to purified EGase from GWSS salivary glands, and developed methods for separate
immunolocalization of:  1) this purified EGase, and 2) Green fluorescent protein (GFP) Xf in grape petioles, using
commercial Xf antibody, to complement the GFP Xf detection method devised last year.  We also performed three
experiments to monitor feeding of inoculative GWSS, via Electrical Penetration Graph (EPG) technology.  Feeding was
recorded on healthy grape petiole, followed by histological processing of the fed-upon grape tissues.  To date, results show
that glucanase is found throughout the solid salivary sheath that encases stylets (the piecing-sucking mouthparts of GWSS
that penetrate the plant).  However, glucanase was not found diffused into adjoining plant cells along the stylet pathway, as
was hypothesized.  Glucanase was the major constituent of the deep, narrow sheath branches that enter the xylem, indicating
that glucanase is injected into xylem during feeding.  If our hypothesis on the role of saliva in inoculation is supported, it
suggests that future development of salivary antagonists could enable interference with Xf inoculation of grape.

INTRODUCTION
As introduced in detail in Backus and Labavitch (2006, 2007), this goal of this project is to determine whether the major
enzyme in glassy-winged sharpshooter (GWSS) saliva histologically co-localizes with Xylella fastidiosa (Xf). Sheath saliva
of hemipterans in fed-upon plants can be routinely imaged histologically (e.g. Leopold et al. 2003, Backus et al. 2005).
However, no researcher studying hemipteran feeding has ever directly visualized enzymatic watery saliva in plants, due to its
usually fluid and dispersive nature.  This project will also partially test Backus’s hypothesis that enzymatic salivary
secretions of GWSS aid in the cell-to-cell movement of newly inoculated Xf cells.  Salivary enzymes may break down pit
membranes, allowing the few pioneer bacterial cells inoculated during feeding to move between adjoining xylem cells.
Carbohydrase enzymes with very high activity for cell wall polymer-degradation, especially β-1,4 glucanase (EGase, often
identified as cellulase in the literature), have been found in GWSS salivary gland fractions (Labavitch 2006, unpub. data).
We use immunohistological methods combined with Electrical Penetration Graph (EPG) monitoring of GWSS feeding, to
determine whether Xf co-localizes with EGase in saliva.

OBJECTIVES
1. Purify and characterize β-1,4-glucanase (EGase), a putatively cell wall-degrading salivary enzyme of GWSS, and

develop antibodies for in planta localization of saliva.
2. Determine whether GWSS salivary proteins (injected into grape during EPG-controlled insect feeding) affect the

distribution of recently inoculated Xf, as detected by immunocytochemistry.

RESULTS
Objective 1 – Purify and characterize β-1,4-glucanase and develop antibodies.
Study a: β-1,4-glucanase isolation and purification
EGase was isolated and purified last year in the Labavitch lab, from GWSS salivary glands previously dissected in the
Backus lab (Backus & Labavitch 2007).
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Study b:  Determination of cell-wall degrading properties of β-1,4-glucanase
The glucanase enzyme was purified based on its ability to digest carboxymethyl cellulose.  However, tests showed that it
could also digest xyloglucan (XyG), a major cell wall hemicellulosic polysaccharide that is present in grape tissues, including
leaf petioles. At least one of the β-1,4-glucanase enzymes of Xf also digests XyG.  Therefore, the ability of the tomato
xyloglucanase-inhibiting protein to block the action of the GWSS glucanase was tested.  Unfortunately, as was found for the
Xf glucanase, no inhibition was detected (Labavitch, 2006).

Study c:  Development of antibody to β-1,4-glucanase
Polyclonal antibodies were raised in guinea pig by Antibodies, Inc. (Davis, CA) in late November 2007, then were further
purified in the Labavitch lab in December 2007.  This objective was completed when antibody serum was delivered to the
Backus lab, in January 2008.

Objective 2 – Determine whether GWSS salivary proteins (from EPG-controlled insect feeding) affect the
presence/distribution of inoculated Xf.
Studies a and b:  Immunocytochemistry of probes by a) clean and b) GFP-Xf inoculative GWSS
Our ultimate goal for this objective is to combine five challenging procedures into one large experiment with the following
steps (first described in Backus & Labavitch 2007):
1) Allow one group of GWSS to acquire Xf expressing green fluorescent protein (hereafter, GFP-Xf)(Study a) and another

(control) group to remain non-inoculative (Study b), then…
2) EPG-record a single, standardized probe consisting of pathway followed by ingestion lasting no more than three – six

min, as described in Backus & Labavitch (2006), then…
3) Excise, histologically prepare, and section the fed-upon grape tissue, using methods that retain fluorescence of GFP,

then.
4) Probe the sectioned tissue with primary antibody to EGase (from Objective 1) then secondary, fluorescently conjugated

antibody, and finally.
5) Use confocal laser scanning microscopy (CLSM) to simultaneously locate and image autofluorescent salivary sheaths

and cell walls, GFP-Xf, and fluorescently-stained EGase/saliva.

In this way, we hoped to visualize the location of both watery saliva (i.e. EGase) and sheath saliva in relation to presence,
location and movement of Xf bacterial cells, during certain EPG waveforms.

Postdoctoral Research Associate Kim Kingston worked in the Backus lab from 1st July 2007 until 30th June 2008, under joint
supervision by Backus and Labavitch.  Prior to her arrival, preliminary attempts were made to achieve steps 1 – 3, above,
which partially failed.  We attempted to view salivary sheaths containing GFP Xf left by inoculative GWSS, using the
fluorescence-retaining protocols developed last year (Backus & Labavitch 2007).  To our dismay, sheath saliva was so
strongly autofluorescent (at all excitation wavelengths) that its brightness overwhelmed and overlaid the lesser brightness of
the GFP Xf (except in a few rare cases wherein the sheath was very diffuse, confirming presence of bacteria in the sheath;
Backus 2007).  Also, Xf were not seen outside the salivary sheath, only embedded within sheath saliva.  These results
confounded the rest of our tests because we could not be sure that all bacteria injected by every insect would consistently be
visible.

Consequently, we spent the first six mo. of Kingston’s tenure (including the
first four mo. of the reporting period) successfully developing a protocol for
a more reliable means of histologically detecting Xf, i. e. immunolocaliza-
tion. We used commercially-prepared Xf primary antibody from rabbit
(Agdia, Elkhart, IN) and secondary, anti-rabbit conjugated with Alexa Fluor
647 (Invitrogen, Carlsbad, CA) with mechanically inoculated vs. control
grape petioles (Figure 1).  We anticipate that this protocol will enable
visualization of GFP Xf inoculated into the plant by GWSS, even if bacteria
are embedded in the salivary sheath.

Also in Kingston’s first six mo., we performed two major experiments to
EPG-record feeding of putatively inoculative GWSS on healthy grape
petioles, following the procedure outlined in step 2, above.  Putatively clean
GWSS were provided by David Morgan (CDFA).  Recordings were
performed in the dark, using a petiole whose leaf was masked by wet tissue
paper and plastic wrap (according to a procedure developed with advice of
Andrew McElrone, ARS Davis, CA).  This was to reduce the likelihood that
bacteria injected into the xylem would be rapidly pulled out of the confocal
field of view by xylem tension.  Following each recording, the insect head
was fixed in 4% paraformaldehyde, for separate examination by confocal
microscopy to verify the presence of GFP Xf in the cibarium and

*

*

Figure 1. Immunohistological confocal image
of grape petiole xylem (autofluorescent cell
walls, blue) mechanically inoculated with Xf
(yellow).  White coloration is overlay of
yellow and blue.
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precibarium.  Petiole tissue was excised and fixed under dim light,
then further prepared for sectioning and later confocal microscopy.

Once the EGase antibody serum arrived, we spent Kingston’s last six
mo. developing a successful protocol for its use in immunoprobing and
-localizing EGase in GWSS salivary sheaths.  The protocol visualizes
the EGase primary antibody (from Objective 1) with goat-anti-guinea
pig secondary antibody conjugated with Alexa Fluor 647 or 568
(Invitrogen, Carlsbad, CA) (Figures 2a and b).

Contrary to our initial hypothesis, there was no evidence that
glucanase diffused into plant tissues adjoining the salivary sheath
(Figure 2).  At no concentration of EGase antibody was a diffuse
‘halo’ seen only around the salivary sheath, as has been enzymatically
detected surrounding aphid salivary sheaths (Ma et al. 1990).  Salivary
glucanase was strictly localized to the sheath, though along its entire
length.  The polyclonal EGase antibody also bound non-specifically to
small plastids and certain vacuole contents (Figure 2a, *’s).
Nonetheless, these were easily distinguished from saliva by their paler
coloration and their widespread distribution in all parenchy-mous
tissues (Figure 2a).  For most of the sheath length, EGase was co-
localized with the hardening (autofluorescent) constituents of the
sheath.  However, the narrowest, deepest branches of the sheath
(which ultimately enter the target xylem cell), were composed almost
exclusively of EGase.  They did not autofluoresce like the rest of the
sheath.  Also, EGase both bound to and evidently infiltrated the cell
walls of the xylem, probably due to cell wall loosening caused by the
enzyme (Figure 2b).  This would produce a very strong seal of the
stylets into the cell, as hypothesized by Backus et al. (2005).  In
addition, glucanase-labeled saliva was found in xylem cells distant
from the sheath, indicating that it traveled from the site of injection
(Figure 3).

Toward the end of Kingston’s tenure, we performed one more EPG
experiment to generate GWSS-inoculated grape petioles,
this time with young, newly eclosed adults from a
putatively clean GWSS colony in Fresno, CA.  Thus, a
total of about 160 GWSS probes were EPG-recorded on
grape petiole, producing salivary sheaths for
immunohistology work.

Although proposal funding has ended, work on this project
will continue to completion using ARS in-house funds.
Steps 4 and 5 (above) will be performed during the coming
year, with the addition of immunolocalization of Xf from
probed grape petioles.  We will attempt to co-localize both
Xf and EGase in the GWSS saliva within probed grape
petioles (step 5, above).

CONCLUSIONS
The described findings continue to support the following
hypotheses: 1) cell wall-degrading salivary enzymes are
injected during the earliest stages of stylet penetration, as well as further along the pathway and into a xylem ingestion cell,
2) GFP-Xf exit the stylets during stylet penetration, and become embedded in the salivary sheath, as well as injected directly
into xylem cells, and 3) EGase-containing saliva infiltrates xylem cell walls at its site of injection and further distant; it could
potentially interact with pit membranes at any site.  Findings from this study will help solve the PD/GWSS problem by
opening up all-new avenues for transgenic host plant resistance.  Novel transgenes could be developed by engineering an
inhibitor of the salivary components that aid inoculation.  In addition, differences in vector efficiency among GWSS
populations, or other vector species, could be related to salivary enzyme composition.  Biochemical analysis of saliva in other
vectors (e.g. Brazilian vectors of Citrus Variegated Chlorosis, or vectors of Oleander and Almond Leaf Scorches) could aid
understanding of the epidemiology of all xylellae diseases.

Figure 3.  a. EGase-containing sheath saliva lining a xylem
cell several sections away from a salivary sheath.  Note
infiltration of walls. b. A large blob of EGase-containing
sheath saliva inside a xylem cell, many sections away from,
but in the same terminal xylem cell as, a salivary sheath.

ba

*

*

Figure 2.  a. Immunohistological confocal
image of a GWSS salivary sheath in grape
petiole.  Single-branched sheath penetrates to a
large, lignified xylem cell (autofluorescent cell
walls, blue).  Sheath is brightly autofluorescent
in blue and green wavelengths, while the
EGase fluorochrome is red.  White coloration
is overlay of all wavelengths.  * plastids and
vacuole contents also binding polyclonal
EGase. b. Higher magnification view of the
terminal sheath branch and xylem cell.

a

b

*

*
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ABSTRACT
The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) is a xylophagous insect that is an endemic pest
of several economically important plants in Texas.  GWSS is the main vector of Xylella fastidiosa (Xf; Wells), the bacterium
that causes Pierce’s disease (PD) of grapevine, and can travel long distances putting much of the Texas grape production at
risk.  Understanding the movement of GWSS populations capable of transmitting Xf into PD-free areas is critical for
developing a management program for PD.  To that end, the USDA-APHIS has developed a program to sample vineyards
across Texas to monitor populations of GWSS. From this sampling, GWSS collected during 2005 and 2006 over the months
of May, June, and July from eight vineyards in different regions of Texas were recovered from yellow sticky traps and tested
for the presence of Xf. The foregut contents were vacuum extracted and analyzed using Quantitative Real-Time PCR (QRT-
PCR) to determine the percentage of GWSS within each population that harbor Xf and have the potential to transmit this
pathogen.  GWSS from vineyards known to have PD routinely tested positive for the presence of Xf. While almost all GWSS
collected from vineyards with no history of PD tested negative for the presence of the pathogen, three individual insects
tested positive.  Furthermore, all three insects were determined to be carrying the PD-strain of the pathogen through DNA
sequencing, signifying them as a risk factor for new Xf infections.

INTRODUCTION
With the ability to travel long distances, the glassy-winged sharpshooter [GWSS; Homalodisca vitripennis (Germar)] can
spread quickly once established and have recently been found in French Polynesia, Tahiti, and Hawaii (Hoddle et al. 2003).
GWSS have the ability to ingest in excess of 100 times their weight in xylem fluid in a day (Purcell 1999).  They have been
reported to feed on host plants from at least 35 families including both woody and herbaceous types (Hoddle et al. 2003).
GWSS feeding can impact plant health directly by depriving the plant of nutrients and damaging the xylem sufficiently to
preclude vascular flow.  Indirectly, plant damage is done by the transmission of the xylem-limited bacterium Xylella
fastidiosa (Xf) (Purcell 1999).

Xf infection in grapevines may result in Pierce’s disease (PD), which has caused major losses in both wine and table grape
production in the US (Davis et al. 1978).  In the grapevine (Vitis sp.), PD symptoms include marginal leaf scorch, chlorosis,
necrosis, stunted growth, leaf loss and dieback, all of which result from occlusion of the xylem tissue by polymeric matrix
enclosed bacterial aggregates attached to the inner xylem wall (Hopkins 1989). Xf can cause systemic failure of a grapevine
within one to five years of initial infection and previous studies have shown that as few as 100 cells (Hill and Purcell 1995)
can initiate an infection.  As there is currently no cure for PD (Pooler et al. 1997), grapevines showing characteristic
symptoms must be uprooted and replanted, usually resulting in a two or three year loss of individual plant productivity.

Many economically important plants including citrus, almond and oleander are affected by separate strains of Xf resulting in
a multitude of plant diseases such as citrus variegated chlorosis (Chang et al. 1993; Pooler and Hartung 1995), almond leaf
scorch (Mircetich et al. 1976) and oleander leaf scorch (Purcell 1999).  Many strains of Xf are host specific and in
transmission studies the strain that causes disease symptoms in oleander will not cause disease symptoms in grape or almond.
Additionally, the grape and almond strains were unable to cause disease symptoms in oleander.
Greenhouse studies suggest that between 10% and 20% of GWSS are able to transmit Xf (Almeida and Purcell 2006) but
there is little data on naturally occurring infectivity (Daane et al. 2007).  Many methods have been developed to detect Xf in
natural and experimental environments including transmission (Purcell and Finlay 1980), insect head culture (Almeida and
Purcell 2003), plant tissue culture (Hill and Purcell 1995), chloroform/phenol extraction (Frohme et al. 2000) and PCR-based
vacuum extraction (Bextine et al. 2005).  Culture based detections methods are difficult and time consuming given the
fastidious nature of the bacterium and are inherently less sensitive than PCR based techniques.  QRT-PCR can be used to
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detect as few as five Xf cells in an insect head (Bextine et al. 2005) and is a viable approach even when dealing with dead
insects making it a highly valuable procedure when compared to other forms of detection.

In Xf, gyrase B is conserved in all strains and is diverse enough to also be used as a molecular marker for both detection and
strain differentiation (Bextine et al. 2005).  In this study, eight vineyards from different regions of Texas were surveyed for
the presence of GWSS and potential vectors were tested for the presence and strain of Xf.

MATERIALS AND METHODS
Sample Preparation. Eight vineyards in different regions of Texas were sampled for the presence of Xf vector species.
Vineyard A is in Washington County, Vineyard B is in  Anderson County, Vineyard C is in Camp County, Vineyard D is in
Tarrant County, Vineyard E is in Wichita County, Vineyard F is in Lubbock County, Vineyard G is in Tom Green County
and Vineyard H is in Val Verde County (Figure 1).  Monitoring of  insect populations took place using standard double-
sided traps (Seabright Laboratories, Emeryville, CA), each 23 x 14 cm in size, bright yellow in color (Pantone® Matching
System (PMS) 102) and coated with Stikem Special® glue. Traps were tightly stapled to a 1.8 m bamboo stake driven into
the ground a little lower than grapevine canopy. Between 6 and 13 traps were placed in each vineyard (Lauziere et al. 2008).
Upon retrieval from the vineyard, the traps were placed into Ziploc bags and stored at 4˚ C.  The traps were then removed
from the bags and GWSS were removed by applying the solvent orange oil (Citrus King, St. Petersburg, FL) around the
insect to dissolve the adhesive and remove the insect from the trap.  Each insect was then washed in 95% ethanol and then in
deionized water to remove any residual orange oil.  Insect heads were removed (Bextine et al. 2004) and a novel silica-based
DNA extraction was performed to test for the presence of Xf.

DNA Extraction. Each head was placed into a well of a 96-well plate (VWR International – North American, West Chester,
PA) and submerged in 100 μL of PBS buffer.  Vacuum pressure was applied to the plate four times for two minutes each
(Bextine 2004).  With Xf cells dislodged during vacuum extraction, the heads were discarded and the vacuum solution was
retained.  To each well, 100 μL of Lysis Buffer L6 [50 samples - 18.6 g Guanadine Thiocyanate, 1.5 ml Tris-HCL (1M, 6.8
pH), 1.2 ml EDTA (0.5M, 8.0 pH), 390 μl Triton X-100, 26.9 ml ddH2O] was added to lyse bacterial cells.  The contents
were mixed by pipetting and the mixture was centrifuged for 5 min at 5000 rpm to separate DNA from the cellular debris.
The contents of each well were then transferred into the corresponding wells of 0.2 mL eight-well strips and 53 μL of silica
slurry (molecular grade H2O and silicon dioxide) were added and mixed by pipetting.  The eight-well strips were then
returned to their corresponding rows in a 96-well plate.  The plate was incubated at RT for 5 min and centrifuged at 2000 rpm
for 5 min.  The supernatant was then discarded and the DNA pellet was retained.  DNA pellets were washed four times by
resuspending the silica in 200 μL wash buffer [40% vol/vol 100 mM Tris-Cl (pH 7.5), 20 mM EDTA (pH 8.0), 0.4 M NaCl
and 60% vol/vol 100% EtOH] and centrifuging for 5 min at 2000 rpm.  After the wash buffer was removed, the resulting
pellets were dried in an incubator at 60º C for 10 min.  The silica was resuspended in 100 μL of TE Buffer and incubated
again for 5 min at 60º C, followed by a final centrifuge for 5 min at 5000 rpm.  Seventy μL of the resulting DNA elution were
then saved for PCR analysis.

Xf Detection. A SYBR-green based quantitative real-time PCR (QRT-PCR) was performed on the subsequent elutions using
Xf specific primers (Bextine and Child 2007).  A master mix was made using 10 μL of IQ Supermix (BioRad, Hercules, CA),
0.8 μL of both primers (at a concentration of 10 μM), 5.4 μL of autoclaved molecular grade water, 1 μL of 10 μM Sybr Green
(Invitrogen, Carlsbad, CA) and 2 μL DNA template per reaction.  The run conditions for the PCR were 95˚ C for 3 min then
40 cycles of 95˚ C for 20 sec, 55˚ C for 30 sec and 72˚ C for 60 sec followed by DNA melting temperature curve analysis
which ramped from 77-90˚ C by 0.5˚ C each step.

Xf Strain Differentiation. Another SYBR-Green based QRT-PCR was performed on the GWSS testing positive for Xf using
GyrBLONG primers.  A master mix was made using 10 μL of IQ Supermix (BioRad, Hercules, CA), 0.8 μL of both primers
(at a concentration of 10 μM), 5.4 μL of autoclaved molecular grade water, 1 μL of 10 μM Sybr Green (Invitrogen, Carlsbad,
CA) and 2 μL DNA template per reaction.  The run conditions for the PCR were 95˚ C for 3 min then 40 cycles of 95˚ C for
30 sec, 53˚ C for 60 sec and 72˚ C for 120 sec followed by DNA melting temperature curve analysis which ramped from 70-
99˚ C by 0.1˚ C each step.

The positive PCR products were purified using the QIAquick PCR purification kit (Qiagen, Valencia, CA, USA) according to
the manufacturer’s protocol. A DNA-sequencing PCR was performed in a 10-μl reaction containing 4 μl of DTCS Quick
Start Master Mix (Beckman Coulter, Fullerton, CA, USA), 2 μl of either the forward or reverse primer, 2 μl of autoclaved
nanopure water, and 2 μl of a DNA template. The sequencing PCR (30 cycles) was conducted under the following
conditions: 95°C for 20 s, 50°C for 20 s, and 60°C for 4 min, with the product then held at 4°C until removal from the
machine. The DNA product was purified using standard ethanol precipitation, which resulted in samples re-suspended in
40 μl of sample-loading solution (Beckman Coulter).
The resuspended samples were transferred to the appropriate Beckman Coulter 96-well microplates, centrifuged at 300 rpm at
2°C for 30 s, and then overlaid with one drop of mineral oil. Samples then were sequenced in a CEQ 8000 Genetic Analysis
System (Beckman Coulter) using the manufacturer’s protocol. Sequences were processed using BioEdit (Ibis Biosciences,
Carlsbad, CA, USA) and matched to known sequences using basic local alignment search tool (BLAST) (www.ncbi.nih.gov).
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RESULTS
As expected, some vineyards were more heavily infested with GWSS than others.  Vineyards such as H and A had as many
as two-hundred or more GWSS recovered from their yellow-sticky cards whereas other vineyards like D and G had around
one-hundred.  More northern vineyards (E and C) had as few as three and as many as a few dozen individuals while the
Vineyard F, the only vineyard sampled on the High Plains had no GWSS at all.  While this trend may seem concordant with
the presence or absence of PD in a vineyard, there were exceptions and irregular sampling at various sites. Vineyard B was
collected from only once in 2005 which prevented statistical analysis of this site.
Of those GWSS collected, many tested negative for the presence of Xf. Taking all vineyards into account, the statewide
percentage positive was 6.16 (79/1283), this is a lower percentage than estimation given by Almeida and Purcell (2003). The
highest percentage positive occurred in the same vineyard as the highest number of individuals positive (Vineyard A,
11.96%, 25/209).  Other vineyards such as B and D had similar percentage positives (9.09 and 9.33 respectively) but lower
GWSS counts.  The northern-most vineyards (Vineyard F, E and C) tended to have not only the lowest numbers of
individuals but also the lowest percentages positive for both years sampled (0/0, 0/17 and 1/85 respectively).  Almost all
samples that tested positive for the presence of Xf contained the PD strain of the pathogen.

Samples that tested positive for the presence of Xf from vineyards that had no history of PD were reanalyzed to determine
strain through DNA sequencing. Sequence data from the gyrB and mopB genes were analyzed to determine the strain of Xf
that was detected within the vector insects (Morano et al. 2008). The GWSS that were collected from vineyards that were
considered PD-free (E, G and C) were found to be positive for a Temecula-like PD-strain.

Figure 1. Regional map of Texas showing collection locations in counties sampled.  Percentages
shown reflect Xf infectivity for 2005 and 2006.  Also shown are independent results of PD known
for each vineyard.

Vineyard F:
2005  0% (0/0)
2006  1.69% (0/0)
PD  (-)

Vineyard G:
2005  0% (0/64)
2006  1.69% (2/118)
PD  (-)

Vineyard H:
2005  5.5% (11/200)
2006  4.65% (6/129)
PD  (+) Vineyard A:

2005  11.96% (25/209)
2006  2.82% (2/71)
PD  (+)

Vineyard B:
2005  9.09% (1/11)
2006  8.20% (10/122)
PD  (+)

Vineyard C:
2005  0% (0/21)
2006  1.56% (1/64)
PD  (-)

Vineyard D:
2005  9.33% (14/150)
2006  6.54% (7/107)
PD  (+)

Vineyard E:
2005  0% (0/3)
2006  0% (0/14)
PD  (-)
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DISCUSSION
Screening of samples was conducted using the INF2 and INR1 primer set. These primers were originally designed to
differentiate between strains of Xf through melt curve analysis; however, the results were difficult to interpret due to the
influence of background noise that caused overlapping melt temperatures between strains. Using GyrBLONG primers
(another primer set that is being developed for Xf strain identification), we determined that while the majority of the samples
tested positive for the PD strain of Xf (about 99%), some of the GWSS that tested positive for Xf contained an ornamental
strain (Xf multiplex) (Schaad et al., 2004) of the bacterium.  Strains of Xf are specific in respect to their role in pathogenicity
and as such colonization by ornamental strain Xf multiplex or Xf sandyi) (Schaad et al., 2004) will be benign and not result in
the overt symptomology typical among PD infections (Almeida and Purcell 2003).

Although the results reported here are reasonably consistent with greenhouse infectivity estimates published by Almeida and
Purcell (2003), there is always the possibility of false negatives or inconclusive "positives" due to environmental background.
Some potential false negative could be the results of trap exposure to the elements.  The two-week period in which the traps
were exposed to cycles of mid-day heating and nighttime cooling could have lead to degradation of Xf DNA.  However, in
previous studies DNA was recoverable and detection by PCR was competent from insects on traps that were exposed to the
elements in southern California as long as 10 days (the longest period tested). We feel confident that false negatives did not
impact the integrity of the studies.

Most GWSS collected within vineyards with a documented history (B, D and A) tested positive for the PD strain of Xf. This
was not surprising, given the presence of this bacterial strain in the immediate plant community. However, the detection of
the non-PD strain in insects collected from vineyards with a known history of PD was not expected and suggests a level of
migration between vineyard and non-vineyard wild populations.  This is an interesting finding, given the availability of the
PD strain of Xf.

Overall, the majority of GWSS collected from multiple locations in Texas over two years in this study (more then 93%)
tested negative for the presence of Xf. Yet, GWSS is considered one of the greatest risk factors in relation to the
epidemiology of Xf spread in the grape-growing regions of the US (Hoddle et al. 2003). The specifics of Xf spread are not
simple; in fact, two modes of spread can be involved in PD epidemiology. Primary spread, or the movement of the pathogen
into an area from an outside source, is of major concern in non-PD vineyards. Understanding where new infections come
from is of paramount importance when attempting to control the problem through area-wide management programs.

REFERENCES CITED
Almeida, R. P. P. and A. H. Purcell. 2003. Transmission of Xylella fastidiosa to grapevines by Homalodisca coagulata.

Journal of Economic Entomology 96, 264-271.
Almeida, R. P. P. and A. H. Purcell. 2006. Patterns of Xylella fastidiosa colonization of the precibarium of sharpshooter

vectors relative to transmission to plants. Annals of the Entomological Society of America 99, 884-890.
Bextine, B., S. J. Tuan, H. Shaikh, M. Blua and T. Miller. 2004. Evaluation of Methods for Extracting Xylella fastidiosa

DNA from the Glassy-Winged Sharpshooter. Journal of Economic Entomology. Vol. 97, No. 3 pp. 757–763.
Bextine, B., M. Blua, D. Harshman and T. Miller. 2005. A SYBR Green-Based Real-Time Polymerase Chain Reaction

Protocol and Novel DNA Extraction Technique to Detect Xylella fastidiosa in Homalodisca coagulata.  Journal of
Economic Entomology: Vol. 98, No. 3 pp. 667–672.

Bextine, B., and B. Child. 2007. Xylella fastidiosa genotype differentiation by SYBR® Green-based QRT-PCR. FEMS
Microbiology Letters 276 (1), 48–54.

Chang, C. J., M. Garnier, L. Zreik, V. Rossetti, J. M. Bove. 1993. Culture and serological detection of xylem-limiting
bacterium causing citrus variegated chlorosis and its identification as a strain of Xylella fastidiosa. Current
Microbiology 27, 137-142.

Costa H.S., Raetz E., Pinckard T., Gispert C., Hernandez-Martinez R., Dumenyo C.K. & Cooksey D.A. 2004. Plant hosts of
Xylella fastidiosa in and near southern California vineyards. Plant Dis. 88: 1255–1261.

Daane, K., C. Wistrom, J. Hashim, G. Yokota, M. Pryor and R. Almeida. 2007. Host plant preferences and natural infectivity
of insect vectors of Xylella fastidiosa on common weeds and crop plants, pp 3-6. In: Proceedings, 2007 Pierce’s Disease
Research Symposium. California Department of Food and Agriculture, Sacramento, CA.

Davis, M. J., A. H. Purcell and S. V. Thomson. 1978. Pierce’s disease of grapevines: isolation of the causal bacterium.
Science 199, 75-77.

Frohm, M., A. A. Camargo, S. Hebber, C. Czink, A. J. D. Simpson, J. D. Hoheisel and A. Pereira de Souza. 2000. Mapping
analysis of the Xylella fastidiosa genome. Nucleic Acids Research 28, 3100-3104

Hoddle, M. S., S. V. Triapitsyn and D. J. W. Morgan. 2003. Distribution and plant association records for Homalodisca
coagulata (Hemiptera: Cicadellidae) in Florida. Florida Entomology 86, 89–91.

Hopkins, D. L. 1989. Xylella fastidiosa: A xylem-limited bacterial pathogen of plants. Annual Reviews - Phytopathology
27:271-290.

Hill, B. L., and A. H. Purcell. 1995. Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala
atropunctata. Phytopathology 85, 209-212.



- 11 -

Hill, B. L., and Purcell, A. H. 1995. Multiplication and movement of Xylella fastidiosa within grapevine and four other
plants. Phytopathology 85:1368-1372.

Hunnicutt, L., W. B. Hunter, R. D. Cave, C. A. Powell and J. J. Mozoruk. 2006. Genome sequence and molecular
characterization of Homalodisca coagulate virus-1, a novel virus discovered in the glassy-winged sharpshooter
(Hemiptera: Cicadellidae). Virology 350: 67-78.

Mircetich, S. M., S. K. Lowe, W. J. Moller and G. Nyland. 1976. Etiology of almond leaf scorch disease and transmission of
the causal agent. Phytopathology 66,1-24.

Morano, L.D., Bextine, B.R., Garcia, D.A., Maddox, S.V., Gunawan, S., Vitovsky, N.J., Black, M.C. 2008. Initial Genetic
Analysis of Xylella fastidiosa in Texas. Current Microbiol. 56, 346-351.

Pooler, M. R. and J. S. Hartung. 1995. Specific PCR detection and identification of Xylella fastidiosa strains causing citrus
variegated chlorosis. Current Microbiology 31, 377-381.

Pooler, M. R., I. S. Myung, J. Bentz, J. Sherald and J. S. Hartung. 1997. Detection of Xylella fastidiosa in potential insect
vectors by immunomagnetic separation and nested polymerase chain reaction. Letters in Applied Microbiology 25, 123-
126.

Purcell, A. H. and A. Finlay. 1980. Evidence for noncirculative transmission of Pierce’s disease bacterium by sharpshooter
leafhoppers. Phytopathology 69, 393-395

Purcell, A. H., S. Saunders, M. Hendson, M. Grebus and M. Henry. 1999. Causal role of Xylella fastidiosa in oleander leaf
scorch disease. Phytopathology 89, 53-58.

Turner, W., and H. Pollard. 1959. Life histories and behavior of five insect vectors of phony peach disease. Technical
Bulletin of the United States Department of Agriculture 1188, 28.

Schaad, N. W., E. Pastnikova, G. Lacey, M. Fatmi, and C. J. Chang. 2004. Xylella fastidiosa subspecies: X. fastidiosa subsp.
piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst. Appl.
Microbiol. 27:290–300.

Young, D.A.. 1958. A synopsis of the species of Homalodisca in the United States. Bulletin of the Brooklyn Entomological
Society 53 (1), 7–13.

FUNDING AGENCIES
Funding for this project was provided by the Texas Pierce’s Disease Research and Education Program, and the USDA
Animal and Plant Health Inspection Service.



- 12 -

USING AN ORANGE OIL SOLVENT TO REMOVE INSECTS FROM YELLOW STICKY TRAPS:
IMPACTS ON THE DETECTION OF XYLELLA FASTIDIOSA DNA

IN GLASSY-WINGED SHARPSHOOTER SAMPLES

Principal Investigator:
Blake Bextine
Department of Biology
University of Texas
Tyler, TX  75799
bbextine@uttyler.edu

Researcher:
Patrick Marshall
Department of Biology
University of Texas
Tyler, TX  75799
mmarshal@uttyler.edu

Cooperators:
Forrest Mitchell
Texas AgriLife Research
Stephenville, TX  76401
f-mitchell@tamu.edu

Jeff Brady
Texas AgriLife Research
Stephenville, TX  76401
j-brady@tamu.edu

Reporting Period: The reports reported here are from work conducted October 2007 through September 2008.

ABSTRACT
Xylella fastidiosa (Xf) Wells is a plant pathogenic bacterium that causes many economically important agricultural diseases
and is transmitted by the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Hemiptera: Cicadellidae).  Effective
detection of Xf in field collected GWSS in an area-wide management program can contribute to the assessment of risk
associated with insect presence in vineyards.  Prior to conducting molecular assays for detection of Xf in individual insects,
GWSS must be removed from yellow sticky traps using a solvent. In this study, we determined the effect of orange oil
concentration in individual GWSS on detection of Xf by QRT-PCR.  In a ten-fold dilution series of orange oil, increased
amounts of orange oil caused decreased levels of Xf detection in standardized positive samples.  Additionally, we determined
methods for lowering the concentration of orange oil found in processed field samples below the point where detection of Xf
is negatively impacted.

INTRODUCTION
The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Hemiptera: Cicadellidae), is the major vector of Xylella
fastidiosa (Xf) Wells in the southern USA (Adlerz 1980; Blua et al., 1999).  The plant pathogenic bacterium, Xf, has caused
economic losses to a several agricultural industries in North, Central, and South America.  Pierce’s disease (PD) of grapevine
has become a well understood Xylella-related disease; the vector complement is well known and the epidemiology of the
disease is well documented (Hopkins et al., 2002).  The introduction of GWSS into new areas is directly related to increased
occurrence of PD in vineyards (Perring et al., 2001).  Therefore, the management and control of PD depends heavily on the
ability to closely and accurately monitor its vectors, especially GWSS.

In area-wide management studies in California and Texas, GWSS are collected using yellow sticky cards such as the Trece
Inc. adhesive trap T3306 (Trécé, Inc., Adair, OK).  This method works very well for monitoring population numbers and
identifying species that occur in the field; however, the adhesive that coats the yellow sticky card can be problematic when
applying molecular techniques (DNA and RNA studies) to these samples.  Therefore, the sticky adhesive on the yellow sticky
cards must be removed.  This specimen extraction process involves application of a strong organic solvent to remove the
adhesive.  Because the downstream molecular assays involving DNA extraction and PCR both require the heating of
samples, a solvent with a low flashpoint must be used.  Orange oil has the lowest flashpoint of any organic solvent on the
market, 118˚F/48˚C (Florida Chemical Co. Inc., Winter Haven, FL).  In addition to its non-volatile composition, this product
is inexpensive, nontoxic and effective at removing sticky adhesives.  Orange oil is the most common product used in studies
involving the removal of insects from yellow sticky cards and is usually applied directly to insects on the adhesive traps.
Because all specimens come in direct contact with the solvent, they often absorb unknown amounts of the orange oil.  As a
result of this, concern was expressed as to whether or not orange oil retained in the insect bodies interfered with quantitative
real-time polymerase chain reaction (QRT-PCR).  It was speculated that the presence of orange oil in an GWSS specimen
containing Xf would inhibit either the extraction of DNA, the amplification of target DNA during PCR, or the fluorescence
signal emitted during QRT-PCR.  In this study, a 10-fold dilution series of different volumes of orange oil mixed with
positive Xf control specimens were analyzed by QRT-PCR to determine the amount of interference caused by the solvent.
We also determined the amount of orange oil contained in a typical extracted sample and discussed the potential effect this
will have on Xf detection in field samples.

MATERIALS AND METHODS
Sample Collection. Samples were collected using sticky adhesive-based double-sided traps (Seabright Laboratories,
Emeryville, CA), each 23 x 14 cm in size, bright yellow in color (Pantone® Matching System (PMS) and coated with Stikem
Special® glue, stored at -4˚C, and transported to the University of Texas at Tyler in Tyler, TX.  Traps were processed one at
a time by individually marking GWSS that were to be recovered and then placing traps in plastic containers and soaking them
in orange oil (Citrus Depot, St. Petersburg, FL) for five minutes per two-sided card.  Then, using tweezers, the insects were
removed individually from the traps, and placed into micro centrifuge tubes (MCTs).  Each MCT was labeled according to its
corresponding trap with its vineyard’s location and its individual location within said vineyard.
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DNA Extraction. Once extracted from sticky traps, GWSS bodies were separated from their heads and placed back in their
original MCTs (Bextine et al. 2004).  Briefly, the heads were then placed in 96 well plates, with one head per well, and
covered with 200µL PBS buffer.  The plates were placed under vacuum suction for two minutes a total of five consecutive
times.  The heads were removed, and 200µL of Lysis Buffer L6 was added to each well.  The plates were centrifuged at
5,000rpm for 5 minutes, and 300µL of the supernatant in each well was transferred into a corresponding MCT.  Afterward,
53µl of silica slurry was mixed into the 300µL solution, and the MCTs were incubated at room temperature for five minutes,
and centrifuged at 2000rpm for another five minutes.  Afterward, the supernatant was drawn off and discarded, and 200µL of
wash buffer was added to each MCT.  The MCTs were then centrifuged at 2,000rpm for five minutes, and the supernatant
was drawn off and discarded.  This washing step was repeated twice for a total of three washes.  The MCTs were dried at
60˚C with their caps open for ten minutes, or until the silica was dry.  One hundred µL of TE buffer was gently mixed with
the silica in each MCT, and the MCTs were incubated at 60˚C for another five minutes, and centrifuged at 5,000rpm for
another five minutes.  Seventy µL of the supernatant was transferred into a sterile MCT, without picking up any silica, and
the MCT’s were labeled and placed in the freezer.

QRT-PCR. The PCR hood was left under UV light for a minimum of thirty minutes prior to use.  Once UV light was turned
off, the station was sterilized using 10% bleach.  All samples to be run were placed in a cold block, and the master mix
reagents were allowed to defrost.  PCR was conducted in 10µL reactions, including two Xf positive controls and two No
Template Controls (NTCs).  Each sample reaction, a total of 10µL, included 5µL iQ™ Supermix (Bio-Rad Laboratories,
Hercules, CA), 0.5µL SYBR® Green nucleic acid gel stain (Molecular Probes™, Eugene, OR), 1.7µL nanopure water, 0.4µL
forward primer, 0.4µL reverse, and 2µL sample DNA.  Each Xf positive control contained only 1µL DNA, and each NTC
contained only 10µL master mix (every reagent except DNA).  Each reaction was carried out in 0.1mL PCR tubes (Corbett
Research, St. Neots, Cambridgeshire, UK).  The prepared samples were placed into a Rotor-Gene RG-3000 QRT-PCR
machine (Corbett Research, St. Neots, Cambridgeshire, UK) and run to determine if they contained Xf positive DNA.

Determining Orange Oil Retained. In order to create an applicable orange oil dilution series, the average amount of orange
oil retained in each GWSS body was first determined.  Ten empty MCTs were weighed and logged.  The average MCT mass
was found to be 965.7mg.  The same ten MCTs were each filled with 100µL orange oil and weighed once more.  The average
MCT + 100µL orange oil mass was found to be 1044.5mg.  Ten GWSS bodies were soaked in orange oil for five minutes,
following the trap removal protocol. The heads were removed, placed in ten MCTs, and centrifuged at maximum rpm
(14,000rpm) for one minute.  The heads were then removed and the MCTs containing retained orange oil were weighed.  The
average mass of the MCTs + retained orange oil was 965.84mg. The average mass of an MCT containing retained orange oil
minus the average mass of an empty MCT was found to be the average mass of retained orange oil in an GWSS head
(965.84mg - 965.7mg = 0.14mg).

Dilution Series. Two orange oil dilution series were run through QRT-PCR in this test.  The first was a ten-fold dilution
series.  Triplicates of samples containing 8µL master mix, 1µL positive Xf DNA, and 1µL of either 100%, 10%, or 1%
orange oil were run through QRT-PCR.  With the information gained from the ten-fold dilution series, a more precise
dilution series was developed.  This dilution series was a 1/1 – 1/10 dilution of orange oil.  The same reaction volumes were
used, and the same procedure was followed.

RESULTS AND DISCUSSION
Determining Orange Oil Retained. The average mass of an MCT containing retained orange oil minus the average mass of
an empty MCT was the average mass of retained orange oil in an GWSS head (965.84mg - 965.7mg = 0.14mg).  The average
mass of an MCT containing 100µL orange oil minus the average mass of an empty MCT equaled the average mass of 100µL
of orange oil (1044.5mg - 965.7mg = 78.8mg).  Since M1/M2 = V1/V2, the average mass of orange oil retained divided by
the average mass of 100µL of orange oil was equal to the volume of orange oil retained divided by 100µL orange oil
(0.14mg/78.8mg = V1/100µL).  The average volume of orange oil retained by an individual GWSS head was 0.178µL
(0.14mg/78.8mg x 100µL).  This figure was used to determine the range of an orange oil dilution series.

Dilution Series. From the QRT-PCR data collected (Figure 1), 1µL of 100% as well as 1µL of 10% orange oil in a 10µL
reaction completely inhibited binding of fluorescent binding proteins to Xf DNA, and 1% orange oil had no effect on binding.

Following the first dilution series, a more precise dilution series was developed.  This dilution series was a 1/1 – 1/10 dilution
of orange oil.  The same reaction volumes were used, and the same procedure was followed.  The result was a strong
deviation from fluorescence expected under normal conditions in samples containing between 1µL and 0.1µL of orange oil.
The average volume of retained orange oil per GWSS head, 0.178µL, is within this range, proving that the orange oil present
in GWSS heads interferes with Xf DNA fluorescence in QRT-PCR.
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CONCLUSIONS
The presence of orange oil does inhibit the ability to detect Xf DNA by QRT-PCR by inhibiting the extraction of Xylella
DNA, the amplification of target DNA during PCR, or the fluorescence signal emitted by fluorescent binding proteins during
QRT-PCR.  In our protocol, care was taken to avoid an overabundance of orange oil in samples.  Primarily, we were
extremely selective and conservative with the amount of orange oil used during insect extraction.  Instead of soaking an
entire trap, our procedure calls for a squeeze bottle that can directly apply small amounts of orange oil to each individual
insect.  Another step is the prompt transfer of each insect into a 70% ethanol wash, followed by a DI water wash, before
being placed in a sterile MCT.  This step ensures that each insect has been thoroughly washed of enough orange oil that
contamination is no longer a concern.  Seventy percent ethanol also cleanses each insect of many other contaminants as well.
Concentrated orange oil can also be diluted, but loses its solvent strength the more it is diluted.  We use concentrated orange
oil in our trap extractions because it dissolves the sticky trap adhesive faster and more efficiently.  Again, other solvents may
be more efficient and less contaminating, but we must use orange oil in our extractions due to its high flashpoint.  Other
strong organic solvents, such as turpentine, hexanes, or ethers have flashpoints too low to be used in silica-based DNA
extraction or QRT-PCR.  The temperatures reached in these processes are too high for other organic solvents except orange
oil.

Another factor in the inhibition of QRT-PCR performance by Xylella DNA may be the sticky adhesive that is dissolved in
orange oil during the trap extraction process.  We believe that this does not have an inhibiting effect due to the adhesive’s
inability to absorb into the bodies of GWSS.  However, our follow up experiment will test this theory using the same
methods discussed in this test.

The results of this experiment are crucial in further understanding the insect vector, GWSS.  The management and control of
Pierce’s disease depends heavily on the ability to closely and accurately monitor its vectors.  This experiment impacts any
insect extraction and trap removal procedure involving organic solvents, a prominent practice in entomology across the
globe.
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ABSTRACT
Leafhoppers are considered the second most important vector of agricultural diseases.  We examined the gene expression
across three leafhopper species, the glassy-winged sharpshooter (GWSS; Homalodisca vitripennis), the blue-green
sharpshooter (BGSS; Graphocephala atropunctata), and the black-winged sharpshooter (BWSS; Oncometopia nigricans),
which are vectors of the plant-infecting bacterium, Xylella fastidiosa, which causes Pierce’s disease (PD) of grapes.  The use
of genomic data is providing new information on the biology and relatedness of these and other leafhoppers.  Using a
genomics approach has also advanced the understanding of leafhopper immunity, pathology, and development.  As new
developments in genomics and RNAi methodologies emerge, researchers will be able to use this genetic information to
design highly specific and effective management tools to reduce either leafhopper populations, and/or leafhopper-transmitted
diseases.  The importance of these leafhoppers as the vectors of PD, the abundance of Expressed Sequence Tags (ESTs)
produced for each, and their differences in host plant preferences, provide an excellent opportunity to conduct comparative
examination of these leafhoppers.  Several cDNA libraries which had been made from adult GWSS, BGSS, and BWSS, plus
nymphs, and tissues, provided a resource totaling almost 50,000 ESTs.  When assembled, we obtained ~5,000 specific
transcripts for each species for comparison. This is approximately one-third of all the predicted active genes available, as
other insect genomes have demonstrated ~15,000 total genes.  These were used for analyses between these species as well as
for larger analysis to known genomes. Further analyses were conducted in silico using software programs available online
Internet Resources, NCBI, EXPASY, and others to compare assembled data, predict proteins and compare them to the
broader scope of insect genomes.

Many other genes of interest which have various functions in leafhopper biology and physiology have also been identified
but are not reported herein.  The EST sequences reported in this study have been deposited in GenBank’s dbEST (see
references: Hunter 2005, 2006, 2007).

INTRODUCTION
Sharpshooter leafhoppers are vectors of a number of economically important destructive plant diseases caused by the plant
infecting bacterium, Xylella fastidiosa (Xf).  Understanding how these leafhoppers interact with their host plants and the
pathogens they transmit is key to developing new management strategies against Pierce’s disease (PD).  Advances in
genomic sequencing now permits researchers to examine thousands of genes which leafhoppers depend during feeding,
development, and which are associated with disease acquisition and transmission.  We compared the available genetic data
for three leafhopper species, Homalodisca vitripennis (glassy-winged sharpshooter; GWSS), Graphocephala atropunctata,
and Oncometopia nigricans, (Hunter 2003, Hunter et al., 2005, 2006, 2007) which are vectors of the plant-infecting
bacterium, Xf, which causes PD of grapes, and other ‘scorch-like’ diseases in other woody crops. (Hopkins and Purcell,
2002).

Sharpshooter leafhoppers, belong to the insect order Hemiptera, and feed primarily from the plant xylem, with minor
amounts of feeding from the mesophyll and phloem (Backus and Hunter 1989, Hunter and Backus 1989).  Xylem unlike
plant phloem does not contain large amounts of sucrose and amino acids. Amino acids and soluble proteins are the primary
nitrogen nutrients in xylem fluid (Andersen et al., 1989,1992).  The dietary nitrogen impacts survival, growth, and
reproduction of phytophagous insects (Bi et al., 2005).  Consequently, the nutritionally dilute chemistry of the xylem fluid is
a probable cause of the extremely high rate of feeding by leafhoppers (Brodbeck et al., 2004).  The reported ability of
leafhoppers to physiologically assimilate at least 99% of the amino acids, organic acids, and sugars is an evolutionary
adaptation in response to their unique food source (Andersen et al., 1989; Brodbeck et al., 1999, 2004, Redak et al., 2004).
This adaptation has a genetic basis and using genomics we can start to identify many of the genetic components which are
key to leafhopper feeding, digestion, and growth.
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Thus an important part of our project involves gaining a better understanding of the digestive physiology of leafhoppers
vectors of PD.  Genomics is providing the molecular tools needed to investigate the role proteins and peptides play in
leafhopper nutrition.  The increased comprehension of leafhopper digestive physiology also provides a more thorough
understanding of the nutritional requirements, effects of host plants, and will provide the information needed to produce more
effective mass rearing methods for application in the production of leafhoppers for parasitoid production.

Although the full extent to which leafhoppers, like GWSS, utilize host plant proteins is not understood, the ability to utilize
xylem proteins as a nutrient source depends heavily on the presence and activity of the kinds of proteases within the digestive
tract.  Therefore, identifying these proteases and other enzymes will influence current tenets and advance our understanding
of the underlying mechanisms of leafhopper digestive physiology.  The use of expression libraries is a timely approach to
understanding the genetic basis of proteolytic activity as it relates to insect development (Hunter et al., 2003; Sabater-Munoz
et al., 2006), feeding and digestion (Colebatch et al., 2002; Coudron et al., 2007).

OBJECTIVES
Apply comparative genomics to advance the understanding of leafhopper biology, digestion, and development.  These data
support development and application of emerging management strategies which rely on an understanding of leafhopper
genetics.

RESULTS
The datasets were produced in the Hunter lab (2005-2007), with sequencing performed at the Genomic lab, ARS, U.S.
Horticultural Research Lab, Ft. Pierce, FL.

Sequence Analysis: Base calling was performed using TraceTuner™ (Paracel, Pasadena, CA) and low-quality bases (quality
score <20) were stripped from both ends of each Expressed Sequence Tag (EST).  Quality trimming, vector trimming, and
sequence fragment alignments were executed using Sequencher™ software (Gene Codes, Ann Arbor, MI).  Sequencher contig
assembly parameters were set using a minimum overlap of 50 base pairs (bp) and 90% identity.  Contigs joined by vector
sequence were flagged for possible misassembly and manually edited.  Putative sequence identity was determined based on
BLAST similarity searches using the NCBI BLAST server (www.ncbi.nlm.nih.gov) with comparisons made to both non-
redundant nucleic acid and protein databases using BLASTN and BLASTX, respectively (Altschul et al., 1997).  Matches
with an E-value ≤-10 were considered significant and were classified according to the Gene Ontology (GO) classification
system (Schäffer et al., 2001).  A partial list of ~29 transcripts (Table 1) show homologous matches between leafhoppers,
and the E-values showing relative homology.  As the value approaches zero, the more significant the homology match
(yellow), as sequences diverge, having less homology the values become farther away from zero, approaching a positive
number (note: all values in Table 1 under E-value are negative or zero).

Digestive Enzymes:  Aminopeptidases, several cathepsin L–like cysteine proteases, and other proteases have been identified
in these leafhoppers which are also in other piercing-sucking feeding insects (Foissac et al., 2002, Wright et al., 2006, Zhu et
al., 2003).  In aphids, a cathepsin B protease has been shown to be constitutively expressed in all aphid individuals,
suggesting gene duplication and evolution of a novel biological function of cathepsin B in the aphid lineage (Houseman and
Downe 1983).  Cathepsin B proteases were also identified in these leafhoppers and may show similar duplication.

Cleavage of food proteins into peptides and amino acids is an important process for which an array of proteases of different
substrate specificity and enzymatic activities are produced in the alimentary tract and are involved in protein digestion (Terra
et al., 1996, Sajid and McKerrow 2002).  Gene duplications relevant to biological requirements such as those which encode
digestive proteases, have been documented in:  lepidopteran insects (Chougule et al. 2005), coleopteran insects (Zhu-Salzman
et al. 2003; Brown et al. 2004), parasitic helminths (Dvora´k et al. 2005), and will most likely be found to have occurred
within leafhoppers.  The number of genes associated with leafhopper biology continues to expand as more genetic
information is produced and compared from different species of leafhoppers (Figure 1). Annotation of these data advances
current understanding of leafhopper biological pathways while providing clues to the genetic basis of such processes in
insect-pathogen, and insect-plant interactions (Figures 2 and 3).  The availability of genomic data for these leafhoppers
continues to increase, thus uses of the current data provides a solid foundation for future studies in leafhopper functional
genomics.

CONCLUSIONS
The information gained from this study provides the first investigation using comparative genomics of the transcriptomes
from three leafhopper vectors of PD of grapes: H. vitripennis, G. atropunctata, and O. nigricans.  Amino acid sequence
comparisons BLASTX, BLASTP with other known proteins relies on conserved motifs of specific domain(s), NCBI
GenBank database (http://www.ncbi.nlm.nih.gov/blast). In silico analysis based on protein domains is a widely accepted
method which continues to increase in quality and demonstrates the application of Bioinformatics to address many biological
questions.  Many of the discoveries made in other insects, such as Drosophila, Honey Bee, or Lepidopteran species, can be
applied within the Hemiptera when the same genetic transcripts can be identified.  For example, we increased our
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understanding of the roles and pathways of heat shock proteins in leafhoppers by examining the data completed in Locusts,
Flies, and Nematodes.  The same is true for digestive enzymes.
The increasing application of transcriptional data is leading the way in the development of new strategies to reduce plant
diseases and their insect vectors.  Application of RNAi against a wide range of insect species from spruce budworm to
whiteflies are viewed as the future in insect pest control, and many new methods which incorporate the use of native
endophytic bacteria and/or viruses as the mechanism for delivery or expression of dsRNA within plants are being widely
evaluated.  The main advantages of applying genomic data in this manner to solve agricultural problems is that the plants are
not ‘transformed’, thus the quality of the crop is not altered, saving time, money, and reducing the effort needed to find
solutions to many emerging devastating agricultural problems.  Collectively, these genetic sequences provide the foundation
needed for further functional genomic studies which will enable the development of more biorational management strategies
to reduce losses from the diseases spread by these and other leafhopper pests.
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Table 1. Partial Comparison of cDNA’s in three leafhopper species, Homalodisca vitripennis, Graphocephala
atropunctata, and Oncometopia nigricans.  Analysis using BlastX, Values approaching zero are more significant in sequence
identities (Yellow).  Genes which have more variability (Blue).  Sequence homology was greater between Homalodisca and
Oncometopia than to Graphocephala, which supports current taxonomy separating these leafhoppers.  Only a partial list is
shown for sequences within Molecular Function.
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Figure 1.  Composite figure showing distribution of Homalodisca vitripennis transcripts across other species (along left),
with the top 6 species homologies being in these insects whose genomes have been completed: Drosophila melanogaster,
Aedes aegyptii, Tribolium castaneum, Anopheles gambiae, Nasonia vitripennis, and Apis mellifera. Molecular functions of
transcripts gave the greatest number within: Catalytic activity=1,945; Binding=1,731; and then transporter activity=505.
Broad Categories.  Represents EST’s from three cDNA libraries, Adults, 5th instar, and Midgut. H. vitripennis, (Blast2GO
analysis).



- 21 -

Sequence Distribution: Molecular Function- cutoff 50.0/category

Figure 2. Sequence Distribution: Molecular Functions. Categories had to have at least 50 members.  Represents EST’s
from three cDNA libraries, Adults, 5th instar, and Midgut. Homalodisca vitripennis, (Blast2GO analysis).  Highest Categories
in descending order: Ribosome structure= 296, Calcium ion binding=218, ATPase activity=154, Actin binding= 134,
Microfilament motor activity=180, Endopeptidase activity=114, Oxidoreductase activity= 109, Protein Kinase activity= 107.

Sequence distribution: Cellular Component- cutoff=20.0/categorySequence distribution: Cellular Component- cutoff=20.0/category

Figure 3.  Sequence Distribution: Cellular Component. Categories had to have at least 20 members.  Represents EST’s
from three cDNA libraries, Adults, 5th instar, and Midgut. Homalodisca vitripennis, (Blast2GO analysis).
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ABSTRACT
Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, appears to be limited to discrete regions within the San
Joaquin Valley where winter temperatures are mild and the temperature rarely drops below freezing.  Prior research indicates
that GWSS adults cannot feed at maximum daily temperatures below 50°F (= 10°C), thereby reducing its ability to survive
cold winters.  We verified the impact of cool temperatures on GWSS adults by exposing them to a regime of seasonal
temperatures (within temperature cabinets) that reflect a variety of areas within the state.  As expected, mortality rates varied
greatly among sites tested, and it appears that mortality is related to both length of exposure as well as intensity of exposure
(i.e., amount of cold endured).  Using temperature records to calculate numbers of cooling degree days, we constructed ten
GIS maps to delineate areas where post-winter GWSS mortality should be substantial, thereby providing a tool to estimate
the springtime GWSS threat to different regions.  However, estimates of post-winter GWSS mortalities were usually smaller
(< 90%) than expected across much of the agricultural production areas of the Central Valley.

INTRODUCTION
The initial arrival of glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, into California’s Orange and Ventura
counties was predicted to dramatically change Pierce’s disease (PD) epidemiology within infested areas (Varela et al. 2001).
The insect soon spread into other southern California localities.  PD devastated the wine grape industry in the Temecula
Valley resulting in significant losses.  First detected in Kern County in 1998, GWSS is now present in the San Joaquin
Valley. However, the rapid population expansion first observed in southern California appears to be limited to discrete
regions within the San Joaquin Valley coincident with citrus production areas where overwintering populations are highest
and winter temperatures are relatively mild compared to locations elsewhere in the San Joaquin Valley.  Additionally,
persistent, localized GWSS populations are present within the urban areas of Fresno, Sacramento, and San Jose Counties
where a range of perennial plant host types and slightly elevated daytime high and evening low temperatures might favor the
survival and persistence of established populations.

Hoddle (2004) used the climate modeling program “CLIMEX” to estimate the potential worldwide distribution of GWSS.
His reported estimates for California (when all localities received supplemental irrigation water) suggested that GWSS could
establish reproducing populations along much of the California coast from San Diego north to the Eureka vicinity and within
the Central Valley from Bakersfield north to the Redding vicinity.  He did propose cold stress as a potential limitation to the
establishment of GWSS in states north of California (i.e., Oregon, Washington).  However, other observations and studies
suggest that low winter temperatures may be the “bottleneck” that limits GWSS survival and distribution in the higher
altitudes and northern regions of California (Pollard and Kaloostian 1961, Russell Groves et al., unpublished data from
2003).

CDFA-funded research showed that GWSS adults do not feed near or below 50°F (10.0°C), and that individuals will die if
held below 50°F for long periods (e.g., 15 or more days) even in the presence of food and water (Johnson et al. 2006).  Also
of significant importance is that the overwintering adult cohort is responsible for producing the offspring in the spring, which
may start as early as late-February in some southern California areas (Krugner 2007).  Given this, if the daily maximum
temperature infrequently surpasses the thermal activation threshold (50°F) necessary for GWSS ingestion, then GWSS
survivorship may be curtailed by extended periods of cool temperatures in specific microclimatic regions of California.  We
experimentally showed this phenomenon using programmable, temperature cabinets to simulate fluctuating diurnal
temperature regimes based on January temperatures in the locations of Riverside (Riverside County.), Oakville (Napa
County), and Buntingville (Lassen County), CA.  In our study, the Riverside temperature always exceeded 50°F (= 10°C),
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and about 20% of the test insects remained alive after 115 days; for Oakville it daily exceeded 50°F for 18 hours and only
10% of GWSS survived after 115 days; and for Buntingville the temperature never reached 50°F, and the entire test group
died within 20 days (Youngsoo Son et al., unpublished data).  We have applied the concept of cooling degree-days (CDD) to
estimate the impact of cool temperatures on GWSS survival.  The equation for CDDGWSS may be expressed as:

Daily CDDGWSS = ⎥
⎦

⎤
⎢
⎣

⎡ <−

otherwise
Tm

,0
F50T if,50 o

m

where Tm = daily mean temperature in a given locality, | Tm – 50 | = absolute value of difference between Tm and the feeding
threshold of 50°F when the mean daily temperature is lower than 50°F.  Daily CDDGWSS equals zero if the daily mean
temperature (Tm) is higher than 50°F.  By summing the CDDGWSS for each day over an extended period, one can estimate the
cumulative CDDGWSS over the specified time period for that locality.  Using unpublished field data collected by Don Luvisi,
Farm Advisor Emeritus, in 2001-2002, we plotted the relationship between cumulative CDDGWSS and GWSS survival at
various sites in the vicinity of Bakersfield (Kern County).  Based on a curvilinear regression, GWSS survival dropped to 0%
when about 321 CDDGWSS in °F (or 178 in °C) were accumulated.

Because most of our previous CDFA-funded work on the impact of cool temperatures on GWSS feeding and survival was
conducted using constant temperatures, it was necessary to validate our findings under actual fluctuating temperatures in the
field.  Prior efforts to field-validate the impact of cool winter temperatures on caged GWSS adults in the crop production
areas of the San Joaquin Valley (e.g., east and west of Bakersfield, central Fresno and Merced Counties) and farther north
(Napa and Sonoma Counties) were prevented due to concerns over potential escapes of GWSS individuals.  Fortunately, we
were permitted to establish one field test comparing GWSS adults caged in the urban area of Bakersfield versus caged GWSS
in Riverside (UCR Citrus Experiment Station).  The GWSS individuals died in a shorter amount of time at the cooler
Bakersfield site than the Riverside site.  However, only one field test of our hypothesis using fluctuating temperatures is
inadequate.  Therefore, we proposed to test the impacts of fluctuating temperatures on GWSS survival using programmable
temperature cabinets as we have done for the study mentioned above.  These additional studies would provide insights into
the benefits of using cumulative CDDGWSS to estimate GWSS survival.  We also planned to analyze historical temperature
data for various locations within the agricultural production areas of California to determine if winter conditions (e.g.
November to March) would permit significant GWSS survival based on CDDGWSS accumulation.  The eventual product that
we aim to produce from these efforts will be the production of GIS maps that estimate CDDGWSS accumulation over the
winter months to provide estimates of the ability of local GWSS populations to pose a substantial threat to local agriculture in
the following growing season (i.e., a risk assessment).  As resources for GWSS management dwindle, government agencies
will be forced to make decisions on which regions should receive area-wide treatment to suppress GWSS populations.  Our
studies suggest that the presence of the GWSS threat may vary with the severity of local winter temperatures.  An annual
estimation of overwintering GWSS survival across agricultural regions will provide insights into where resources for GWSS
suppression should be most effectively allocated.

OBJECTIVES
1. Verify impacts of winter temperatures on GWSS survival from selected California sites;
2. Quantify and compare variation in “cooling degree day” accumulation within and among selected California sites using

historical temperature data; and
3. Construct Geographical Information Systems (GIS) maps that estimate GWSS survival during the winter period.

RESULTS AND DISCUSSION
Objective 1
Verify impacts of winter temperatures on GWSS survival from selected California sites

Dr. Hannah Nadel conducted experimental studies in temperature-controlled growth chambers at the University of California
at Riverside.  Laboratory studies were conducted because using live GWSS in field-cage studies was prohibited outside of the
GWSS-infested areas of California.  Cabinets were programmed to run various fluctuating, diurnal temperature patterns that
were representative of historical patterns from selected sites within California’s agricultural regions.  For nine CIMIS sites
(i.e. Riverside, Santa Ynez, Porterville, Merced, Davis, Oakville, McArthur, Gerber, and Arvin), mean daily maximum and
minimum temperatures were calculated for the months of November, December, January, February, and March.  GWSS
adults were caged under a given temperature regime (e.g., McArthur) for a five month period. In chronological order
(November, December, January, February, and March), the temperature cabinets were programmed to simulate the average
maximum and minimum temperature patterns for the individual months (i.e., 30 days for November, 31 days for December,
31 days for January, etc.).  To avoid mortality due to freezing, the minimum temperature was set at 3°C.

Adult GWSS were collected by beat-netting from lemon trees at the UCR Agricultural Operations citrus orchard in Riverside,
CA, between late October and early December 2007.  They were held on potted sweet orange and prostrate acacia in mesh
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and vinyl cages in a greenhouse at 25 ± 4°C with natural light (supplemented with sodium vapor lamps L:D 12:12) for 4 – 7
days before use.

Two plant species were selected as winter hosts for the study, ‘Washington Navel’ orange (Citrus sinsensis [L.] Osbeck)
grafted on trifoliate orange (Poncirus trifoliata [L.] Rafinesque) rootstock, and prostrate acacia (Acacia redolens Maslin cv
‘prostrata’).  Grapevines were not used as originally planned because of difficulty locating nursery stock not treated with
insecticides.  Prostrate acacia is a leguminous evergreen shrub that is an overwintering host for GWSS (H. Nadel, personal
observation).  One orange (75 cm tall) (TreeSource Citrus Nursery, Exeter, CA) and one acacia (Parkview Nursery,
Riverside, CA) were potted together in a 180 cm2 (7-inch) pot and all plants were acclimated at least 1 month in a greenhouse
before the study started.  A 3.0 mm layer of white sand was placed over the potting medium to facilitate observation of
insects on the soil.  A 10-day study revealed that the nursery plants were apparently free of toxic residues.

Exposure of GWSS to simulated November temperatures began on the following dates: Riverside 11/9/07; Arvin 11/14/07;
McArthur, Oakville and Merced 11/16/07; Porterville, Gerber and Davis 11/30/07; and Santa Ynez 12/6/07.  Five male and
five female GWSS were transferred in vials from holding cages to each experimental cage.  Seven replicate cages were
placed individually in water saucers in each temperature cabinet and the plants and insects allowed to acclimate at 18°C for
24 hours before winter temperature simulations began.  Cabinets were lighted from 6:00 AM to 6:00 PM by four 32 W
fluorescent tubes and two 15 W incandescent bulbs.

GWSS mortality was recorded weekly.  Cages were removed from temperature cabinets only long enough to examine and
remove dead insects, and were quickly returned (2-5 min).  Insects that appeared to be dead were removed from cages, placed
on paper under room temperature (20-21°C), and covered with a clear vial.  Those that did not revive within two hours were
recorded as dead; revived GWSS were returned to their respective cages.  Examination of cages was done during the warmest
hours of the simulated day, when the insects were likely to show movement.  Dead insects were counted and sexed.  The
potting medium was kept moist with weekly or biweekly watering, as needed.

Numbers of live and dead individuals were counted weekly until all insects died or the 5-month study period ended.  The
cumulative CDDGWSS were calculated for each location regime (e.g., Riverside, McArthur) based on temperatures recorded
with HOBO recorders within the temperature cabinets (Table 1) and percent survival will be compared among regimes using
survival analysis.  The numbers of cumulative CDDGWSS required to kill all GWSS individuals per cage will be compared
across location regimes to determine if the value to kill all test insects remains fairly constant across different diurnal
temperature patterns.  Mortality in all environments was > 97% at the end of the study (Figure 1).  As expected, all GWSS
died in the McArthur environment by early December, after exposure to temperatures below feeding threshold.  All insects
died in the Davis and Oakville environments before accumulated CDD reached the average predicted value for 100%
mortality.  Although the Riverside environment accumulated no CDD, ~ 98% of the insects died by the end of the study.  A
modification of the planned analysis will therefore be necessary, possibly including a senescence function.  It was apparent
that there was a relationship between the rate of CDD accumulation and how quickly the insects died.

Objective 2
Quantify and compare variation in “cooling degree day” accumulation within and among selected California sites using
historical temperature data

Daily maximum and minimum temperature data were downloaded for 10 winter periods (November through March 1997 –
2007) from 15 CIMIS stations in several climatic regions of California, including areas expected to be suitable and unsuitable
for GWSS winter survival.  Two CIMIS stations, Merced and Porterville, were operative less than 10 years prior to 2007, and
had only eight and seven years of data, respectively.  CDD were calculated for each date and summed for each winter month,
then averaged (Figure 2).  Most of the sites accumulated less than 300 CCDs (based on °C).  Five sites accumulated less than
200 cumulative CDDs.

Objective 3
Construct Geographical Information Systems (GIS) maps that estimate GWSS survival during the winter period

We produced 10 GIS maps that show estimates of post-winter mortality of GWSS populations (estimated as % mortality) in
regions across California following the periods of November through March for each year from 1998-1999 to 2007-2008.
These maps were based on temperature data collected during the target months of November through March by CIMIS and
the Western Regional Climate Center (WRCC).  We estimated the cumulative CDDGWWS based on mean daily temperatures
for about 340 temperature monitoring sites.  One hundred percent mortality was achieved at 321 cumulative CDDGWWS
(based on °F).  Spatial statistics techniques using ESRI ArcGIS® Geostatistical Analyst were used to create interpolated
surface maps using an Inverse Distance Weighted Analysis with a standard search of 206 points using 15 neighbors (at least
10 were found for each search).  Two examples of the maps are provided showing dramatic differences in estimated GWSS
mortality in the Central Valley in 1998-1999 (Figure 3A) versus 2007-2008 (Figure 3B) with much less mortality during the
latter period.
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Contrary to our initial assumptions, estimated post-winter mortality was not as high as we expected (i.e., 100%) in most of
the agricultural areas of the state and was quite variable throughout the ten years examined.  Within the Central Valley,
estimated GWSS mortality resulting from cool temperatures (that inhibit normal feeding) usually varied from 80 to 95%.
Based on these results, we now realize that there is a need to be able to estimate the size of GWSS populations at the end of
the winter months as well as the potential for increase in various areas based on climatic conditions.  Small post-winter
populations in cool areas (Santa Ynez) may not pose a threat to agriculture compared to large post-winter populations in
warmer areas (e.g., Merced).  Also of importance is the time when GWSS females initiate egg laying in the spring.  Egg
laying may be as soon as late February in Riverside compared to later dates farther north in cooler areas.

CONCLUSIONS
This project has generated significant new information regarding the impact of California winter temperatures on GWSS
survival and also provides a practical tool to use in the decision making process for GWSS management.  However,
estimated post-winter GWSS mortality due to cold inhibition of feeding was smaller (< 90%) than expected across much of
the agricultural production areas of the Central Valley in most of the winters for which maps were produced.  In much of the
Central Valley, mortality estimates ranged from 80 to 90%, which may be insufficient to prevent the initiation of threatening
spring populations of the GWSS.  However, occasionally estimates were as high as 90 to 99%.  Another important factor is
geographical location because GWSS populations in southern latitudes are typically able to initiate egg-laying earlier than
populations farther north.  More northern populations will suffer greater temperature-related mortality before they can initiate
egg-laying activities.
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Table 1. GWSS adult mortality and total CDD (based on a feeding
threshold of 10°C) accrued to reach > 95% mortality.
CA Site Accumulated CDD Mortality (%) Weeks elapsed
Riverside 0 98.6 17
Arvin 86 95.7 12
Oakville 117 97.1 9
McArthur 144 97.1 4
Davis 145 97.1 11
Santa Ynez 154 97.1 11
Porterville 221 95.7 18
Merced 236 97.1 21
Gerber 237 96.7 16
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Figure 1. Relationship between accumulated CDD (Based on °C) and GWSS mortality under
simulated winter conditions for nine California sites. Points represent mean weekly mortality data.
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Figure 2.  Mean (± SEM) accumulated CDD (in ºC) for each winter month at CIMIS sites in California over
a recent 10-year period (November 1997 through March 2008).  The selected CIMIS stations represent
climates in the San Joaquin Valley (Arvin, Porterville, Merced, Manteca), Sacramento Valley (Davis,
Brown’s Valley, Durham, Orland, Gerber), south coast (Riverside), central coast (Sta. Ynez), north coast
(Oakville, Hopland), Cascades Range (McArthur), and Klamath Basin (Tulelake Fire Station).
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A B

Figure 3. Estimated percentage of cold-induced mortality of adult GWSS populations throughout California
regions experiencing different levels of cumulative cooling day degrees (CCD) from A) November 1998 thru
March 1999 and B) November 2007 thru March 2008. Dark blue represents 100% GWSS mortality (> 321
cumulative CDD based on ºF or > 178 cumulative CDD based on ºC) and red represents 0 to 69% GWSS
mortality.  Green circles indicate CIMIS weather stations.
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ABSTRACT
The glassy-winged sharpshooter (Homalodisca vitripennis; GWSS) is a xylem specialist in the Hemiptera Auchenorrhyncha
which has the potential to transmit Xylella fastidiosa, the causal agent in Pierce’s disease of grapevine.  It is the most
common leafhopper associated with vineyards in Texas.  Using wild GWSS adults collected in Central Texas parks and
vineyards, egg loads and biometrics were obtained and used to determine the seasonality of reproduction in females of this
insect species.  Captive adults reared in the greenhouse during the summer and fall months were studied throughout their
lifespan.  During this study, caged females produced large numbers of eggs in the same seasons as wild females do.  Fall
females delayed oviposition by about 75 days, with nymphal emergence being postponed then until late winter.  More
suitable rearing conditions are needed to reduce the duration of the pre-oviposition period in fall emerged females.

INTRODUCTION
Between 1995 and 2004, (fresh) grape production in the United States averaged 6.5 million tons annually (NASS, Crops
Branch, 2005).  With citrus and commercial apples, grapes are the most important fruit crop in the country.  In recent years,
grapes have been a very popular fruit crop in Texas, the fifth largest wine producing state in the nation.  There are currently
over 220 family-owned vineyards and about 3,700 acres under production; this industry contributes over $1 billion a year to
the state’s economy (Texas Wine and Grape Growers Association).  The leading grape varieties are the French/European
hybrids of Vitis vinifera traditionally associated with the highest quality wines.  These varieties are susceptible to Pierce’s
disease (PD), an incurable and fatal bacterial infection of disseminated by xylem specialist insects such as the glassy-winged
sharpshooter (Homalodisca vitripennis; GWSS; Hemiptera: Cicadellidae).  These insect pests are often designated as vectors.
Certain grape varieties such as Blanc du Bois, Le Noir, Champanel or the muscadines may be better adapted for Texas and
are considered fairly immune to this disease, whereas the most popular V. vinifera are susceptible to diverse degrees.  PD of
grapevine is the most important limiting factor to grape production in Texas (Texas Pierce’s Disease Task Force 2004).  A
research program was initiated in 2002 with funding from the U.S. Department of Agriculture.  Within this program,
researchers are provided an opportunity to study the vectors in their natural habitat and their interaction with cultivated vines
and other vegetation.

OBJECTIVES
1. Wild GWSS populations have been monitored in Central and North Central Texas since 2003-2004.  A number of adult

females were sorted out to assess biometrics and evaluate their reproductive status through time based on egg load.
2. Using GWSS reared in captivity, total fecundity, daily oviposition pattern and longevity of GWSS females produced in

summer and fall months were determined.  Embryonic and nymphal survival and sex ratio of the first generation were
measured in both seasons.

RESULTS
GWSS populations are monitored using sticky traps in Texas vineyards and in situ in urban areas of Central and North
Central Texas.  Wild adult females used in this study were from a subsample of insects harvested from July 2005 to October
2008 and stored at 10°C until processed.  Dissections of the ovaries were carried out under stereomicroscope and egg loads
were assessed individually.  Only mature eggs were counted.  Over 3,000 adult GWSS females were sorted out, with
numbers varying from 44 in the combined months of January 2006-2008 to 700 in the months of June 2006-2008.  These data
reflected well the seasonal abundance of GWSS in our area (Lauzière et al. 2008).  Females exhibiting active egg production
(vitellogenesis) were harvested from February to September.  Eggs loads varied significantly between months (F = 60.0; df =
11, 3152; P < 0.0001).  Highest egg loads were observed in March (13.8 ± 7.2 eggs/female; n = 155).  The length of the left
hind tibia was measured individually and used as an indicator of adult size.  Tibia are relatively well conserved in trap
collected adults and therefore a suitable choice for this study.  The size of the tibia in wild females varied significantly
between months (F = 36.8; df = 11, 3069; P < 0.0001).  The largest females were caught in May, June and July (4.1 ± 0.2
mm; n = 1605), the smallest ones in December (3.9 ± 0.2 mm; n = 44).

GWSS adults were reared to adulthood under greenhouse conditions using black-eyed peas and hibiscus as hosts.  Newly
emerged females (n = 30) were selected and individually introduced into cages, each with five adult males.  Adults and plants
(leaves) were monitored once daily.  The duration of the pre-oviposition period (time elapsed between adult emergence and
first egg laid) was determined.  Oviposition was recorded as the number of eggs per day.  Host plants were renewed every
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two weeks and observations continued until females died.  After their death, tibias were individually measured under
stereomicroscope.  Females reared during the summer months initiated oviposition within 13 days of the last molt to
adulthood and deposited on average 187 eggs (range: 36-457) in approximately one month.  The duration of the pre-
oviposition period in females reared during the fall months was 5.6-fold longer than in summer individuals (F = 48.12; df = 1,
48; P < 0.0001).  Both the oviposition (F = 2.30; df = 1, 48; P < 0.0001) and post-oviposition (F = 1.21; df = 1, 48; P <
0.0001) periods were not affected by the season.  The mean number of eggs laid by females in confinement did not vary
significantly with seasons (F = 2.2; df = 1, 49; P = 0.2).  In both seasons, a high proportion of females (≥ 80%) deposited at
least one egg during their lifespan and season did not affect the egg laying ability of captive females (χ2 = 1.2; df = 1; P =
0.3).  Three of the summer females and six of the fall females never laid eggs in captivity.  The mean size of an egg mass was
5.4 and 5.7 eggs in the summer and fall, respectively.  The largest egg mass contained 39 eggs in the summer and 37 eggs in
the fall group.  A mixed model analysis showed that in greenhouse-reared individuals, both the size of the female (F = 0.1; df
= 1, 54; P = 0.8) and the season (F = 0.2; df = 1, 54; P = 0.7) did not affect total fecundity.  However, the total number of
eggs laid by GWSS females was significantly and positively affected by their longevity (F = 5.5; df = 1, 54; P = 0.02).
Unlike many insect species where longevity is positively determined by size, in captive H. vitripennis, we observed that
longevity was strongly dependent upon the season in which the adults emerged (F= 124.0 ; df = 1, 176; P < 0.001).  Mated
summer adult females lived on average 49.3 ± 2.9 days, as compared to 104.0 ± 7.9 days in the fall counterparts.  The
viability of H. vitripennis eggs exceeded 77% and there was no significant difference observed between seasons (F = 0.8; df
= 1, 49; P = 0.4).  However, nymphal survival to adulthood was season dependent (F = 5.5; df = 1, 49; < 0.001 ).  The
ultimate percentage of adult emergence (from egg to adult) was also affected by the season with significantly more adults
obtained from eggs laid by the fall emerged females.  Of all the F1 adults emerged, the sex ratio was near 50:50 in both
seasons (F = 0.3; df = 1, 49; P = 0.6).

CONCLUSIONS
In captivity, the onset of the oviposition period in summer females occurred two weeks after emergence, whereas in fall
emerged females, oviposition was delayed for about 75 days, which in turn postponed nymphal emergence to mid February-
early March of the following year.  Under the greenhouse conditions tested, i.e., warm temperatures and supplemented
artificial lighting maintained throughout the winter, adult fall females behaved as they would have under field conditions
(mortality due to harsh weather and predators excluded) where no reproduction was observed between November and
January.  Additional research is underway to better understand reproductive behaviors in H. vitripennis, stimulate mating and
reproduction in captivity off season so that a reliable rearing procedure that would allow fall-winter production of GWSS
immatures needed for other research activities can be developed.
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ABSTRACT
An ecological model taking into account climactic, environmental and ecological factors was presented as a poster at the
2007 CDFA Pierce’s Disease Symposium.(Lewis, 2007)  The resulting risk map showed that conditions in the High Plains
growing region of Texas were similar enough to other regions where Pierce’s disease (PD) had been previously diagnosed to
suggest this area could be vulnerable to the disease as well. In response, considerations for a new risk map for the state of
Texas were proposed and sampling of suspect vineyards was carried out.  Results of this sampling were used as a basis for
the proposal of a program to examine the distribution of disease in this growing region.  Additionally, possible agents of
transmission were explored starting with an evaluation of the local insect population for putative vectors.  The disease was
found to be widely distributed in this growing region and a number of xylem specialists previously unrecognized to reside in
this area were identified.  Further analysis showed a percentage of these putative vectors to be positive for multiple strains of
Xylella fastidiosa.

INTRODUCTION
There have been periodic observations and diagnostic results to indicate Pierce’s disease (PD) has been an ongoing problem
in the far west Texas grape growing region for decades.  The vineyard originally diagnosed with PD in west Texas is situated
at an elevation of 5410 ft. above sea level and experiences average winter low temperatures of 32˚ F with frequent drops well
below freezing.  When in 2007, testing for possible causes to explain symptoms observed in vineyards in far west Texas
returned negative results, PD was considered as a possible cause.  Sampling of all west Texas vineyards in commercial
production indicated that PD had at that time become geographically widespread in this growing region.  In the process of
compiling statewide ecological and environmental information for addition to a GIS for vineyard information for the state of
Texas, similarity of environmental and ecological conditions between these vineyards and those in what was then described
as an “extremely low risk” wine grape growing region in the Texas High Plains became evident (Perry and Bowen 1974).
Based on this realization, a new risk model for the state of Texas was initiated taking these factors into account.

During the compilation of information for this GIS, current and historical information regarding vineyard establishment and
decline, disease symptoms, and cultural practices was obtained. During the course of this data collection, it was ascertained
that for several years, growers in this area had reported symptoms of “unusual” leaf discoloration, decline in yield and fruit
quality, higher than expected loss of vines to winter injury, and unexplained difficulty in successfully establishing previously
successful varieties such as 'Chardonnay' (Lewis unpublished data, Burns personal communication September 2007).  While
this region has historically been considered to be in a zone of “very low risk” for PD, the combination of these factors lead
researchers and extension personnel to consider the possibility that PD might be implicated in some of these previously
unexplained grower reports.

While the premise for this study was realized well past the optimal season for the collection of plant samples for detection of
Xylella fastidiosa (Xf), the decision was made to begin a preliminary sampling of some of the vines in this area to be used
both to potentially justify further investigation into PD in this growing region and to serve as a pilot study for a potential
research program, should these results be positive.  While certainly not conclusive, based in part on the deteriorated quality of
the plant material at the time of sampling; this investigation returned positive results for Xf by QrtPCR from 31 of 39 samples
in 12 of 12 vineyards with 3 negative and 5 inconclusive results.

Due to what was historically considered a very low potential for PD in this area, the High Plains was not considered a high
priority area for the evaluation of potential vectors for Xf. Trapping in this area was limited to 12 traps in three vineyards,
returning only 10 individual insects representing eight species of potential vectors over a three year period.  The near absence
of potential vectors in this area, presented as a contradiction in the understanding of how Xf infection may have become so
apparently widespread across this region.  Non-traditional possibilities that might account for disease spread in this area
needed to be considered, however a more thorough investigation into potential vector populations needed first to be
completed.  It was in order to narrow the gap in knowledge and understanding of both the incidence of Xf and of the potential
for the range of known vectors to extend into this region that this project was designed and initiated.  Over time, a
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comprehensive understanding of both the vector ecology and bacterial pathogenicity in this area may increase the
understanding of the epidemiological effects of PD in temperate regions world wide.

OBJECTIVES
1. Assess the distribution of Xf infection and PD in the Texas High Plains Growing Region.
2. Asses the presence and distribution of putative vectors of Xf in the Texas High Plains Growing  Region.
3. Evaluate putative vectors for association with Xf.

RESULTS
Objective 1
Assess the distribution of PD in the Texas High Plains Growing Region.
Twenty-six vineyards in the High Plains were selected for potential PD infections based on a number of criteria.  Eleven
vineyards had previously tested positive for Xf in a 2007 pilot survey with QRT-PCR.  A representative sample was selected
to include the range of growing conditions in the High Plains grape growing region.  In addition to meeting ecological and
geographic criteria, several of the selected vineyards had histories of unexplained symptoms and mortality.  Each vineyard
was sampled in May, July, and October.  The sampling procedure consisted of collecting petioles with blades attached from
vines exhibiting suspicious symptoms.  A minimum of 3-4 petioles were removed, starting with the basal position and
moving acropetally to the end of a cane.  When no symptoms were present, a random sample of vines were included to
represent the entire vineyard, bringing the total number of vines to 10/vineyard.  The presence of foliar scorching, green
islands, matchsticks and other appropriate observations were made for the sampled vines.

Samples were placed in an ice chest with blue ice and returned to the laboratory for processing with ELISA, QRT-PCR, and
direct isolation of the pathogen on culture media.  ELISA analyses were done according to manufacturer’s instructions
(Agdia, Elkhart, IN  46514).  QRT_PCR procedures have been established and described in previous studies (Schaad et al.
2002). Culturing of tissue samples for pathogen isolations was done on PW media according to previously accepted practices.

Table 1. Summary of survey and diagnostic results for PD on vines testing
positive in Texas High Plains vineyards in samples collected in June, 2008.

Vineyard
No.

No. Samples
Processed

No. ELISA
Positive

No. QRT-PCR
Positive

No.
Isolations

1 20 3 2 0
2 19 1 1 0
3 13 1 1 0
4 19 1 2 0
5 18 1 0 0
6 22 3 1 0
7 21 2 2 0
8 16 0 1 0
9 22 4 4 0

10 19 1 0 0
11 16 0 2 0
12 16 0 1 0
13 16 0 1 0

Thirteen of the 26 surveyed vineyards tested positive for PD (Table 1).  Seven of those 13 positive vineyards were among
those testing positive in the original 2007 pilot survey.  Although QRT-PCR proved to be more sensitive to detection of the
pathogen in terms of numbers of vineyards, in a few cases ELISA positives were obtained with the sample testing negative
by QRT-PCR.  In no case was the pathogen isolated from the samples, regardless of the results of the indirect tests.
Due to the implications of expanding the recorded range of PD into a previously unaffected, major Texas grape growing
region every precaution has been taken to insure the reliability of the diagnostic results.  The results of the ELISA and QRT-
PCR are considered to be sufficiently reliable to conclude that Xf infections of grape are widespread on the Texas High
Plains.  However, the diagnostic step of isolating the pathogen and completing strain analyses will continue to be pursued in
order to further define the status of PD on the High Plains.

The results from the 2008 sampling extend the range of PD in Texas well into the High Plains growing region.  The apparent
widespread distribution of the disease within this region would suggest that it has been present in this area for several years
and that a competent vector of the bacteria is active in the environment.  The High Plains of Texas is the most productive
wine-grape region in the state, with approximately 1500 acres in commercial production with production expanding yearly.
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Environmental conditions are very different from most other grape growing regions of the state where PD has become a
limiting factor.  It is possible that PD has been responsible for many of the chronic problems for vine production in the past
on the High Plains.  The environmental conditions on the High Plains may be less conducive to epidemic development of PD,
such as that seen in the more southern Texas growing regions.  If so, the economic impact and prospects for control may be
vastly better than in those areas where the disease has been historically devastating.

Objective 2
Assess the presence and distribution of putative vectors of Xf in the Texas High Plains Growing Region.
A number of trapping sites within the High Plains growing region were selected in an effort to identify the presence and
distribution of putative vectors for Xf in grapevines.  In order to identify occupant vector species in the High Plains, a
trapping program which included both active and passive trapping methodologies was designed and implemented during the
2008 growing season.  Results available for this report come from the passive portion of this program.
Nineteen sites were selected for the placement of yellow sticky traps.  These traps were scheduled to be collected on a 14 day
rotation, which was at times amended due to adverse weather or vineyard conditions which made trap collection on the
planned day impossible.  Other factors forced researchers to change the collection schedule for three trapping areas to once
monthly.

Traps placed within vineyards were placed at a density of 10 traps per acre.  A trapping protocol developed to both address
the unique environmental conditions and lack of knowledge of target species was utilized (unpublished).  Trap height varied
with trellis height but was standardized primarily to be wholly or partially within the canopy level for that location.
Additionally, in some locations traps were standardized to heights both “short” approximately two feet from the ground and
“high” approximately four feet from the ground.  Finally, in some “non-vineyard” locations, traps were set using local
vegetation as the indicator for trap height.  This technique helped to increase trapping efficiency for a variety of insect
species, giving a more comprehensive representation of the resident population of putative vectors.

Trapping locations within vineyards were selected based on the following criteria:

1. The 11 vineyards that tested positive for presence of Xf in the 2007 pilot study were given priority.
2. Vineyards not included in any pre-existing trapping programs were prioritized over those that were.
3. Vineyards were grouped into five geographic areas in order to properly assess the entire growing region. A minimum of

one vineyard per geographic region was selected.
4. Vineyards were further selected based on surrounding vegetation in order to include as many ecological/environmental

types as possible.

Trapping sites outside vineyards were selected in order to adequately represent as many of the environmental and
ecologically distinct areas within the region as possible.  In addition, both areas directly adjacent to and several miles from
the nearest vineyard were selected.

This report contains the first nine trapping periods in the 2008 cycle beginning in May and ending in September.  As
previously stated, some trapping periods were either shortened or lengthened as a result of weather conditions, or other
vineyard considerations including pesticide applications and harvesting (Tables 2 and 3).

This program resulted in the capture of approximately seven distinct species of xylem feeders, six which are known vectors
of Xf in grape.  Of these, the range of at least two were not known to extend into this area and at least one species is currently
classified as “undescribed.”  Previous to this study, 10 individual insects representing seven species of xylem feeders had
been observed by vineyard trapping efforts in this area over a three year period (Lauzière et al. unpublished).



- 33 -

Table 2. Putative vector’s captured during the months of May through August of 2008
on traps set inside vineyards. In addition to total # of xylem specialists recovered, data is
reported for the three most commonly occurring species in this study.

Trapping
Site

Total # Xylem
Specialists H. vitripennis G. hieroglyphica Cuerna sp.

1 15 0 8 3
2 8 0 5 2
3 2 2 0 0
4 2 0 2 0
5 0 0 0 0
6 7 0 0 7
7 7 0 0 7
8 17 0 0 17
9 8 0 1 7

10 1 0 1 0
11 6 0 0 4
12 4 0 0 4
13 10 0 0 6
14 13 0 0 12

Table 3. Putative vector’s captured during the months of May through August of 2008
on traps set outside vineyards. In addition to total # of xylem specialists recovered, data
is reported for the three most commonly occurring species in this study.

Trapping
Site

Total # Xylem
Specialists H. vitripennis G. hieroglyphica Cuerna sp.

15 59 0 53 1
16 2 0 0 2
17 1 0 1 0
18 199 0 198 0
19 1 0 1 0
20 32 1 2 26
21 2 1 0 1

Objective 3
Evaluate putative vectors for the presence of Xf.
A number of insects from this region representing eight species were examined by PCR using an established protocol
(Schaad et al. 2002), for the presence of Xf. Of those tested, approximately 30% tested positive for Xf. The insects that were
selected for testing were chosen based on overall condition and preservation of the available specimens and represent a
random sample of insects with regard to where within the research area they were captured.  Specimens from this area are in
the process of being analyzed in order to determine which specific strain of the bacteria is present in these insects.  As of the
time of this report, this data is still pending.  The presence of Xf, in xylem specialists captured on the High Plains would
suggest that it is likely that vectors are active in this region.  It appears likely that at least some portion of the widespread
presence of Xf and PD in this growing region is the result of vine to vine transmission by insect vectors.

CONCLUSIONS
This study was designed as a first step to examining the occurrence of Xf infection in the High Plains growing region as well
as the potential for increased incidence of infection over time.

Findings from Objective 1.would suggest that Xf infection occurs widely in this area and that PD should be considered in
previously unexplained grower reports of vine decline and reductions in fruit quality and yields as well as other symptoms
such as higher than expected percentages of vine loss due to winter injury.  During this study, symptoms indicative of PD
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including leaf blade scorching, petiole retention and uneven periderm formation were observed in vineyards across the
region.

The presence of Xf in samples taken in early June, supports the hypothesis that the bacteria is able to over-winter in vines in
this area both serving as a source for inoculum for subsequent spread within and among vineyards, and potentially impacting
vine health from season to season.  The widespread distribution of infection appears to imply that infection may have been
actively spreading in this area for some time.  Coupling the current distribution of the disease with the historical accounts
reported by growers further supports the conclusion that Xf has been present and active in this growing region for a number
of years.  Lack of suitable historical records and the relatively new nature of large scale grape production in this area will
make it extremely difficult to ever make an accurate estimate of how long PD may have been impacting vineyards in this
region.

The data collected in order to satisfy Objectives 2. and 3. support the conclusion that the potential exists for continued spread
of Xf in the High Plains region of Texas.  While the first season of trapping recovered low numbers of potential and known
vectors, the diversity of these putative vectors was moderately high and species known to be very competent vectors of the
bacteria were among those recovered.  Of the species captured, 30% of these species were found to be carrying Xf. Because
the 2008 trapping program results contained in this report represents only a single “short” (May-Aug) season of collection
and the trapping protocol was in the process of being refined, this data is far from comprehensive.  Only with several seasons
of collection and an increase in trapping intensity can an in depth understanding of the vector ecology of this area begin to
become clear.  A solid understanding of how vectors behave in the environment over time is necessary in order to develop
targeted strategies for management of this disease.

The newly recognized range of PD in this growing region brings attention to the danger of making assumptions about the
susceptibility of vineyards to disease based on geographical location or historic climactic patterns.  While it is impossible to
be certain, it is logical to conclude that a lack of recognition of disease and the subsequent complacency with regard to
preventive strategies to control the spread of the bacteria may be at least partially responsible for the widespread presence of
the bacteria in this region today.  Based on the preliminary findings of this study, it seems prudent to re-evaluate the potential
for vineyards across much of temperate North America to be affected by PD, and to reconsider the potential for further
disease spread into regions currently considered to be at very low risk.

Continuation of this study will further define the vector population in this area as well as serve to provide an initial
understanding of  the local ecology of the guild of xylem specialists in this and other temperate regions.  More in depth
knowledge of possible migratory, reproductive, and over-wintering behaviors as well as feeding strategies of the individual
species in this group will aid in both an understanding of the current and historical epidemiology of the disease as well as the
development of control strategies specifically targeted at this region.  Preliminary data suggests that this guild may have a
very different species composition and exhibit behaviors that differ from their functional equivalents in warmer and/or higher
precipitation areas.  Further, continued investigation into the long term health and productivity of individual vines and
vineyards will aid in the understanding of the epidemiology both at the vineyard and the landscape level of this disease in
more temperate regions.  This is an area of knowledge for which there is currently very little data and could prove invaluable
in the future protection of vineyards in these lower temperature regions.
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ABSTRACT
The emergence pattern was changed after immature G. ashmeadi were stored within their Homalodisca vitripennis egg hosts
under a fluctuating temperature and a short-day photoperiod for 30 d.  The fitness of parasitoids collected from three
emergence peaks coming 1-5, 12-16, and 23-26d after the onset of the first emergence was investigated by examining
developmental and reproductive parameters.  Likewise, these parameters were also determined for the F1 and F2 progeny.
The development to adulthood of the parental parasitoids collected from second and third emergence peaks was delayed by
approximately 106% and 279% while the parasitoids collected from first emergence period had no developmental delay.
Compared to the control group, the parasitism of the egg hosts by parasitoids collected from the first, second, and third
emergence periods was decreased by 43, 68 and 80%; the fecundity by 53, 84 and 89%; and the longevity by 27, 72 and 67%,
respectively. The F1 parasitoids derived from parents collected from second and third emergence periods also had a lower
incidence of parasitism.  The fecundity and longevity of F1 and F2 parasitoids derived from parents collected from second and
third emergence periods were significantly reduced.  However, development and emergence of the F1, F2 and F3 parasitoids
were not influenced by any of the periods from which their ancestors emerged.

INTRODUCTION
Dormancy is one of the major strategies employed by insects and mites to survive harsh environmental conditions (Leopold,
1998).  It is an adaptive response of arthropods to adverse environmental conditions by often entering a state of diapause or
quiescence.  Diapause is an indirect response to unfavorable conditions.  It is mediated via the endocrine system, resulting in
developmental arrest and adaptive physiological changes (Blum, 1985).  Development usually resumes upon exposure to the
appropriate environmental signals.  Quiescence is a direct response to harsh conditions and results in suppression or arrest of
development. Once adverse conditions cease, the organism can quickly recover and resume immediate development (Tauber
et al., 1986).  Either diapause or quiescence can be used in devising cold storage methods to facilitate mass-rearing of
beneficial insects in classic biological control programs.

The egg parasitoid, Gonatocerus ashmeadi Girault, is one of the most common natural enemies of the glassy-winged
sharpshooter (GWSS), Homalodisca vitripennis (Germar), in California.  Augmentative release of this parasitoid is a feasible
approach for control of the GWSS in affected areas where other methods are not accepted or appropriate.  Mass-rearing
parasitoids for control of the GWSS becomes problematic when there is a shortage of host eggs because there is currently no
artificial diet to rear these wasps.  Shortage of GWSS eggs can occur because there is a reproductive diapause in this insect
that occurs during the winter months. Oftentimes there are insufficient numbers of parasitoids in the colder areas of
California to produce an impact on sharpshooter populations (Morse et al, 2005), so it is important to develop effective
methods to store a large number of hosts and parasitoids to meet these fluctuating demands in the field.

The effects of cold storage on parasitized and non-parasitized eggs of the glassy-winged sharpshooter have been recently
studied to aid the mass-rearing of G. ashmeadi (Chen and Leopold, 2007, Chen et al, 2008a).  Chen et al (2008b) also
developed a method to store adult G. ashmeadi and examined the subsequent storage effects on maternal and progeny fitness.
Storage at 4.5-7.5°C for 30 d induces quiescence in parasitoids stored within H. vitripennis eggs deposited beneath the
surface of euonymus (Euonymus japonica Thumb.) leaves (Chen et al, 2008a).  After cold storage, emerging adults have
three emergence peaks after the initial onset (Chen et al. 2008a) whereas parasitoids reared continuously at 16-32°C have
only one peak (Chen et al. 2006).  In this study, we examined the biological and reproductive fitness of the parental
generation of this parasitoid collected separately from the three emergence peaks and also of the F1 and F2 progeny to
determine whether the gated emergence response elicited by extended storage had an effect on the fitness of maternal and
progeny G. ashmeadi.

OBJECTIVES
1. Determine whether the extended emergence pattern affects reproduction and/or development of the post-storage parental

generation.
2. Determine whether the extended emergence pattern affects fecundity and longevity of parental, F1 and F2 generations

and progeny development.
3. Determine the post storage incidence of parasitism, emergence pattern and sex ratio of the parents and their progeny.
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RESULTS AND CONCLUSIONS
Objective 1.  Adult emergence pattern and developmental time of post-storage parasitoids.
After the parasitoids were stored within their host at 4.5, 6.0 and 7.5 °C, (each temperature changing at eight h intervals over
a 24 h period for 30 d) the emerging adult parasitoids displayed an emergence pattern consisting of three peaks while the
control group only had one emergence peak (Figure 1).  To determine possible effects on development after cold storage,
parasitoids were collected during each period of emergence (i.e., 1-5 d; 12-16 d; and 23-26d after the initial onset of
emergence).  Development time in this study was measured from the removal from cold storage to the medium time of adult
emergence.  Wasps emerging from the control group were also collected during their emergence peak. Figure 2 shows that
development time of stored parasitoids varied significantly with the emergence periods (F = 835.72, df = 3,15, P < 0.0001).
After storage for 30 d, more than 60% of the wasps emerged during first period and the development time was similar to the
control group (Figure 1).  These results indicate that a large of number of immature G. ashmeadi could quickly recover from
the cold-induced quiescence and resume normal development.  However, when compared to the control, the development
time of wasps collected from second and third emergence periods was delayed approximately one-(106%) and three-fold
(279%), respectively.  Approximately 26% and 4% of parasitoids collected from the second and third emergence periods
(Chen et al, 2008a) did not quickly resume development after removal from cold storage.  It is uncertain what causes this
significant delay in development time.  These results are being studied further.

Objective 2. Parasitism, fecundity and longevity of parents and progeny.
A repeated measure ANOVA showed that the incidence of parasitism by the parasitoids varied significantly with generation
(F = 6.08, df = 2,56, P = 0.004) and emergence period (F = 13.73, df = 3,28, P < 0.0001)  and that there was significant
interaction between generation and the emergence period of the parasitoids (F = 2.37, df = 6,56, P = 0.042).  Parental (F =
9.77, df = 3,29, P < 0.0001) and the F1 (F = 2.78, df = 3,28, P = 0.034) generations showed a significant decrease in
parasitism of host eggs across the emergence periods.  When compared to the control group, the parasitism by the wasps
collected from the first, second, and third emergence periods declined by 43, 68 and 80%, respectively.  There was no
difference in the rate of parasitism by the F2 generation whose grandparents were collected from different emergence periods
(F = 1.49, df = 3,36, P = 0.235) (Figure 3A).

Lifetime fecundity varied significantly with generation (F = 24.02, df = 2,56, P < 0.0001) and the emergence period (F =
37.55, df = 3,28, P < 0.0001).  There was a significant interaction between generation and the emergence period of
parasitoids (F = 6.07, df = 6,56, P < 0.0001).  The fecundity of parental parasitoids was significantly influenced by the period
that the wasps emerged.  Compared to the control group, the fecundity of parasitoids collected from the first, second, and
third emergence periods decreased by 53, 84 and 89%, respectively.  There was also a significant decrease in fecundity of F1
and F2 parasitoids derived from the parents that were collected during the second and third emergence periods (Figure 3B).
Longevity of the parasitoid varied significantly with generation (F = 9.81, df = 2,56, P = 0.0002) and the emergence period
(F = 54.64, df = 3,28, P < 0.0001).  There was no significant interaction between generation and the emergence period of
parasitoids (F = 1.36, df = 6,56, P = 0.247).  The longevity of parental parasitoids was significantly influenced by the
emergence period.  Compared to the control group, the longevity of parasitoids collected from the first, second, and third
emergence periods decreased by 27, 72 and 67%, respectively.  The longevity of F1 and F2 parasitoids derived from the
parents that were collected during the first emergence period was similar to that of the control group.  However, there was a
significant decrease in longevity of F1 and F2 parasitoids derived from the parents there collected during the second and third
emergence periods (Figure 3C).

Objective 3. Development, emergence and sex ratio of F1, F2 and F3 generations.
A repeated measures ANOVA showed that emergence of parasitoids was not significantly influenced by generation (F =
2.45, df = 2,50, P = 0.097) and the period (F = 0.47, df = 3,25, P = 0.703) that the parasitoids emerged.  There was no
significant interaction between generation and the emergence period of parasitoids (F = 0.74, df = 6,50, P = 0.620)
(Figure 4A).  The development time of parasitoids emerging from non-stored, recently collected H. vitripennis eggs (< 24 h
old) was not significantly influenced by generation (F =2.81, df = 2,36, P = 0.074) or the peak (F = 2.37, df = 3,18, P =
0.079) from which the parasitoids emerged.

There was no significant interaction between generation and the emergence period of parasitoids (F = 0.74, df = 6,36, P =
0.082) (Figure 4B).  Data on sex ratio of F1, F2 and F3 generations are not shown here because of a lack of a sufficient number
of replicates.  The complementary experiments are in the process of being conducted.
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Figure 1. Adult emergence pattern of G. ashmeadi after
being held in cold storage under the 4.5-7.5 °C daily
fluctuating temperature for 30 d.

Figure 2. Development time of G. ashmeadi collected from
various emergence periods after being held in cold storage
under the 4.5-7.5 °C daily fluctuating temperature for 30 d.
Columns denoted by differing letters are significantly
different.

Figures 3 A-C. Parasitism (A), fecundity (B), and
longevity (C) of the parental, F1 and F2 generations of
G. ashmeadi collected from various emergence periods
after cold storage under the 4.5-7.5 °C daily fluctuating
temperature for 30 d.
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Figures 4A & B. Developmental time (A), emergence (B) of the F1, F2 and F3 generations of G. ashmeadi collected
from various emergence peaks after cold storage of their ancestors that were stored under the 4.5- 7.5°C daily
fluctuating temperature for 30 d.
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ABSTRACT
Plum leaf scald (PLS) is a severe disease caused by Xylella fastidiosa (Xf), which drastically affects cultivation of plum in
Brazil, but little is known about its epidemiology.  We carried out faunistic analyses of sharpshooter leafhoppers in two plum
orchards of Rio Grande do Sul (RS) State, in order to identify potential vectors in this crop, based on their ecological
characteristics.  Sharpshooters were sampled fortnightly by yellow sticky cards placed on the plum tree canopy (1.7 m above
ground) and just above the ground vegetation (0.5 m), in 10 sampling points per orchard.  A total of 23 and 18 species were
trapped in orchards located in the municipalities of Farroupilha and Bento Gonçalves, respectively, in 50 sampling dates from
Sept/2006 to Sept/2008.  Seven sharpshooters were classified as predominant (dominant, very abundant, very frequent and
constant) in the plum orchards: Bucephalogonia xanthophis (Berg), Dilobopterus dispar (Germar), Erythrogonia dorsalis
(Signoret), Macugonalia cavifrons (Stal), Molomea lineiceps Young, Sibovia sagata (Signoret) and Spinagonalia
rubrovittata Cavichioli.  Among them, D. dispar, M. cavifrons and M. lineiceps are likely associated with disease spread
because of their activity on the plum canopy.  Considering the diversity of sharpshooter species in plum orchards, additional
data on spatial patterns of disease, alternative hosts of Xf, vector infectivity and transmission efficiency are needed to
determine key vectors for PLS spread.

INTRODUCTION
A major factor limiting cultivation of plum in Brazil is the widespread occurrence of Plum leaf scald (PLS), a bacterial
disease caused by Xylella fastidiosa (Xf) (Raju et al. 1982).  First detected in plum in Pelotas, Rio Grande do Sul (French &
Kitajima, 1978), PLS is now endemic in most plum production areas not only in RS, but also in the states of Santa Catarina,
Paraná, São Paulo and Minas Geraes (Ducroquet et al. 2001).  This disease is thought to be the main reason for the decline in
cultivated areas of plum since the 1970’s (Leite et al., 1997; Hickel et al., 2001). Xf can be transmitted by several species of
leafhoppers in the subfamily Cicadellinae (Hemiptera: Cicadellidae), commonly known as sharpshooters, and by a few
spittlebugs (Redak et al. 2004).  Despite the importance of PLS in Brazil, sharpshooters involved in the spread of this disease
have not been identified.  The only vector survey in this crop was done with sweep nets and Moericke yellow water-pan traps
in orchards of a single locality in the State of Santa Catarina, Brazil, indicating the presence of five sharpshooter and two
spittlebug species (Hickel et al. 2001).  However, little information on activity and abundance of these potential vectors in
plum orchards is available.  Because there is virtually no specificity for transmission of Xf within Cicadellinae (Almeida et al.
2005), any sharpshooter species that visit host plants of this bacterium is a potential vector. Indeed, three sharpshooter
species found by Hickel et al. (2001) in plum orchards [Bucephalogonia xanthophis (Berger), Ferrariana trivittata (Signoret)
and Plesiommata corniculata Young] have been reported as vectors of Xf in citrus (Redak et al. 2004).  In order to identify
potential vectors of Xf in plum, we carried out a faunistic analysis of Cicadellinae species in two orchards of the ‘Serra
Gaúcha’, a major production region in State of Rio Grande do Sul, Brazil.

OBJECTIVES
1. Determine the composition of sharpshooter (Cicadellinae) species in plum orchards of Rio Grande do Sul, Brazil.
2. Identify predominant species based on faunistic indices.
3. Determine potential vectors of Xf based on prevalence in the orchards and activity on the plum canopy.

RESULTS
We sampled sharpshooters in two plum orchards located in the municipalities of Farroupilha and Bento Gonçalves, State of
Rio Grande do Sul, from September 2006 to September 2008.  In Farroupilha, the survey was carried out in 1-half orchard of
European plum (Prunus domestica L.) cv. Italianinha, located in a hilly area surrounded by woody vegetation (29° 08’ 47’’S,
51° 23’ 21’’ W).  The orchard was five years old when the survey started, and >20% trees showed PLS symptoms.  In Bento
Gonçalves, the experimental area (1 half) was a four-year old orchard of P. domestica cv. Italianinha and Rubimel, located in
the District of Pinto Bandeira (29° 07’ 43’’ S, 51° 26’ 58’’ W).  The orchard was neighbored by a road in one edge and by
peach orchards in the other edges, and showed 10% trees with PLS symptoms.  The ground vegetation of these two orchards
was comprised mainly by grasses [Digitaria sanguinalis (L.) Scop., Paspalum conjugatum P.J. Bergius and Brachiaria
plantaginea (Link) Hitchc.] and herbs of the Polygonaceae (Rumex obtusifolius L.), Asteraceae (Bidens pilosa L., Galinsoga
parviflora H. St. John & D. White), Fabaceae (Trifolum repens L.) families.  Sharpshooters were sampled by rectangular (8.5
x 11.5 cm) yellow sticky cards (Biocontrole®, Sao Paulo, SP, Brazil).  Two cards were installed per sampling point in 10
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points that were spaced 35 m apart, in two lines.  In each point, one card was attached to a wood stick at a height of 0.5 m
above soil, and the other was fixed on the north face of the plum canopy, at a height of 1.7 m.  We exchanged the yellow
sticky cards every 15 days and the trapping data of all sharpshooter species were submitted to a faunistic analysis.  Prevalent
species were determined based on higher constancy, frequency, abundance and dominance índices (Silveira Neto et al.,
1995).  We also calculated indices of diversity of Shannon-Weaner (H’), equitability (E) and similarity of sharpshooter
species for the two experimental orchards.

In Bento Gonçalves, a total of 214 individuals of 18 species of sharpshooter leafhoppers were trapped by yellow sticky traps
in 50 sampling dates.  Based on the faunistic analysis, eight species were dominant and four of them, B. xanthophis,
Erythrogonia dorsalis (Signoret), Macugonalia cavifrons (Stal)  and Molomea lineiceps Young were classified as
predominant because they were also very abundant, very frequent and constant (Table 1).  In Farroupilha, 899 specimens of
23 species were captured in the 50 sampling dates.  Five out of 13 dominant species in this locality were considered
predominant, Dilobopterus dispar (Germar), E. dorsalis,, M. cavifrons, Sibovia sagata (Signoret) and Spinagonalia
rubrovittata Cavichioli (Table 2).

The diversity index (H’) was significantly higher in the plum orchard of Farroupilha (2.26) compared with Bento Gonçalves
(2.18) (P<0.05), showing that the two areas were distinct regarding the composition of sharpshooter species, with higher
diversity in the former one.  Species richness was also higher in Farroupilha, but there was no difference in the equitability
index between the two locations, indicating uniformity in abundance of sharpshooter species in the two communities.  The
higher diversity of species in the plum orchard of Farroupilha may be explained by the presence of adjacent woody
vegetation with a variety of native trees, which might serve as natural hosts for a larger number of sharpshooter species, as
well as a refugium when the orchard does not offer adequate conditions for feeding or reproduction of these insects.

Concerning the sharpshooter activity on the plum canopy, measured by trap catches at 1.7 m above ground, we noticed that
most species from tribe Proconiini were captured mainly on the tree canopy, in both areas (Tables 1 and 2).  Conversely,
Cicadellini species (including the very abundant E. dorsalis) were usually trapped in much larger numbers at 0.5 m, which
suggests a greater activity of these species on the ground vegetation (herbaceous plants); an exception was D. dispar,
captured mostly (89%) on the tree canopy.  Among the predominant species, D. dispar, M. cavifrons and M. lineiceps were
the most trapped on the plum canopy.  Other less abundant dominant species, e.g. B. xanthophis, Oncometopia facialis
(Signoret), O. fusca Melichar and Pawiloma victima (Germar), were also trapped in significant numbers on the tree canopy.
Considering that the probability of Xf transmission is enhanced by vector abundance, natural infectivity and preference for
the host plant (Purcell 1981), these sharpshooters trapped more frequently on the plum canopy are more likely to play an
important role in PLS epidemiology.  Two of them, B. xanthophis, O. facialis, are considered key vectors of Xf in citrus
orchards, for similar reasons (Lopes, 1999; Almeida et al. 2005).  It should be noted, however, that abundant sharpshooter in
the ground vegetation of plum orchards, such as E. dorsalis, S. sagata and S. rubrovittata (Table 2), may also be important
for disease spread if the pathogen colonizes herbaceous weedy hosts.  Information on spatial patterns of PLS, possible
alternative hosts of the pathogen in plum orchards, as well as on sharpshooters associated with those hosts, will be critical to
determine key vectors for PLS epidemiology.  Because most sharpshooters tested for transmission of Xf to other host plants
have been confirmed as vectors (Redak et al. 2004), we expect that sharpshooters considered here as potential vectors will be
shown to transmit the causal agent of PLS if tested in future studies.

CONCLUSIONS
Plum orchards in Rio Grande do Sul, Brazil show a high diversity of sharpshooter species that may serve as vectors of Xf,
particularly in areas surrounded by native woody vegetation.  The faunistic analyses classified five sharpshooter species as
predominant in the plum orchards: B. xanthophis, D. dispar, E. dorsalis, M. cavifrons, M. lineiceps, S. sagata and S.
rubrovittata (Tables 1 and 2).  Among them, D. dispar, M. cavifrons and M. lineiceps are likely associated with spread of
PLS because of their higher activity on the plum canopy.

REFERENCES CITED
Almeida RPP, Blua MJ, Lopes, JRS, Purcell AH. 2005. An. Entomol. Soc. Am. 98: 775-786.
Ducroquet JPHJ, Andrade ER, Hickel ER. 2001. Florianópolis: Epagri, 55p. (Epagri Boletim Técnico, 118).
French, WJ, Kitajima EW. 1978. Plant Disease Report, 62, 12: 1035-1038.
Hickel ER, Ducroquet JPHJ, Leite Júnior RP, Leite RMVBC. 2001. Neotrop. Entomol., 30,.4:725-729.
Leite RMVBC, Leite Júnior RP, Ceresini PC. 1997. Fitopatol. Bras., 22: 54-57.
Lopes JRS. 1999. Laranja, Cordeirópolis, SP, 20: 329-344.
Purcell AH. 1981. Phytopathology, 71:429-435.
Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell RF, Andersen PC. 2004. Annu. Rev. Entomol., 49: 243-270.
Raju BC, Wells JM, Nyland G, Brlansky RH, Lowe SK. 1982. Phytopathology: 72:1460-1466.
Silveira Neto S, Monteiro RC, Zucchi RA, Moraes RCB. 1995. Scientia Agrícola, 52:1:9-15.



- 41 -

FUNDING AGENCIES
Funding for this project was provided by Conselho Nacional Desenvolv. Cientif. e Tecnol. (CNPq) (485868/2007-5).
C. Muller received a scholarship from Fundação de Apoio à Pesquisa do Estado de S. Paulo (FAPESP) (06/60024-7).

Table 1.  Total number of individuals and faunistic indices of leafhopper species of the subfamily Cicadellinae trapped by
yellow sticky traps in a plum orchard of Bento Gonçalves, Rio Grande do Sul, Brazil, from September/2006 to
September/2008.

Leafhopper species Total (1)

D (2)

Faunistic indices

A (3) F (4) C (5)
per trap height
0,5 m 1,7m

Tribe Cicadellini

Bucephalogonia xanthophis (Berg, 1879)* 34 D va VF W 100 -
Caragonalia sp. 1 ND r LF Z - 100
Diedrocephala variegata (Fabricius, 1775) 2 ND d LF Z 50 50
Dilobopterus dispar (Germar, 1821) 2 ND d LF Z 88 12
Erythrogonia dorsalis (Signoret, 1853)* 30 D va VF W 97 3
Macugonalia cavifrons (Stal, 1862) * 30 D va VF W 73 27
Macugonalia geografica 1 ND r LF Z 100 1
Macugonalia leucomelas (Walker, 1851) 2 ND d LF Z 50 50
Morfo 5 1 ND r LF Z - 100
Pawiloma victima (Germar, 1821) 9 D c F Y 50 50
Sibovia sagata (Signoret, 1854) 5 ND c F Y 100 -
Spinagonalia rubrovittata Cavichioli 2008 11 D c F W 90 10

Tribe Proconiini

Molomea consolida Schoder, 1959 2 ND d LF Z 50 50
Molomea lineiceps Young, 1968* 60 D va VF W 15 85
Molomea personata (Signoret, 1854) 1 ND r LF Z - 100
Oncometopia facialis (Signoret,1854) 8 D c F Y 25 75
Oncometopia fusca Melichar, 1925 14 D c F W 52 48
Homalodisca ignorata Melichar, 1924 1 ND r LF Z - 100

Capture (%)

(1) Total number of individuals of each species captured in all traps and sampling dates
(2) Dominance - D: dominant; ND: non-dominant
(3) Abundance – va: very abundant; c: common; d: dispersive; r: rare
(4) Frequency – VF: very frequent; F: frequent; LF: little frequent
(5) Constancy – W: constant; Y: accessory; Z: accidental
* predominant species
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Table 2.  Total number of individuals and faunistic indices of leafhopper species of the subfamily Cicadellinae trapped by
yellow sticky traps in a plum orchard of Farroupilha, Rio Grande do Sul, Brazil, from September/2006 to September/2008.

Leafhopper species Total (1)

D (2)

Faunistic indices

A (3) F (4) C (5)
per trap height
0,5 m 1,7m

Tribe Cicadellini
Bucephalogonia xanthophis (Berg, 1879)
Caragonalia sp
Diedrocephala variegata (Fabricius, 1775)
Dilobopterus dispar (Germar, 1821) *
Erythrogonia dorsalis (Signoret, 1853)*
Hortensia similis (Walker, 1951)
Macugonalia sp.
Macugonalia cavifrons (Stal, 1862) *
Morfo 5
Morfo 2
Morfo 9
Morfo 8
Pawiloma victima (Germar, 1821)
Fonsecaiulus sp.
Sonesimia sp.
Sibovia sagata (Signoret, 1854) *
Spinagonalia rubrovittata Cavichioli 2008*

Tribe Proconiini

Aulacizes quadripunctata (Germar, 1821)
Molomea consolida Schoder, 1959
Molomea lineiceps Young, 1968
Oncometopia facialis (Signoret,1854)
Oncometopia fusca Melichar, 1925
Tapajosa rubromarginata (Signoret, 1855)

37
1

11
185
114
1
9

215
5
4
1
2

11
18
1
74
77

1
3

32
61
26
1 

D
ND
D
D
D

ND
D
D

ND
ND
ND
ND
D
D

ND
D
D

ND
ND
D
D
D

ND 

c
r
d
va
va
r
d
va
r
r
r
r
d
c
r

va
va

r
r
c
c
c
r 

F
LF
LF
VF
VF
LF
LF
VF
LF
LF
LF
LF
LF
F

LF
VF
VF

LF
LF
F
F
F

LF 

W
Z
Y
W
W
Z
Y
W
Z
Z
Z
Z
Y
Y
Z
W
W

Z
Z
Y
Y
W
Z 

64
-

90
11
95
100
100
60
60
100
100
100
72
72
-

84
88

-
67
3

19
27
- 

36
100
10
89
5
-
-

40
40
-
-
-

28
28
100
16
12

100
33
97
81
73

100
(1)

Capture (%)

Total number of individuals of each species captured in all traps and sampling dates
(2) Dominance - D: dominant; ND: non-dominant
(3) Abundance – va: very abundant; c: common; d: dispersive; r: rare
(4) Frequency – VF: very frequent; F: frequent; LF: little frequent
(5) Constancy – W: constant; Y: accessory; Z: accidental
* predominant species
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ABSTRACT
This study is part of our larger project aimed at understanding the feeding biology of the glassy-winged sharpshooter
(GWSS) as it relates to acquisition and transmission of Xylella fastidiosa (Xf).  GWSS feeding biology was studied in three
seasons (summer, fall, winter) on mature Cabernet Sauvignon and Chardonnay grapevines using choice and no-choice
studies.  When given a choice, GWSS males and females chose to feed on young leaf, petiole, and stem tissue compared to
the same tissues on older parts of the cane.  However, there was substantial time spent feeding on old stem tissue, a
phenomenon that would result in more rapid chronic infection than feeding on young tissue.  We also learned that throughout
the day, GWSS adults change position frequently between the various tissues, a characteristic that would support the rapid
spread of Xf that has been associated with GWSS. In no-choice studies, we found that GWSS adults were not able to feed on
cordon tissue, regardless of the time of year.  They were able to feed on old and young grapevine tissue throughout the year,
but the relative amount of feeding on this tissue varied with the season.  Future work will evaluate GWSS feeding behavior
when confronted with PD-infected grapevines.

INTRODUCTION
Pierce's disease (PD), a disease of grapes caused by the bacteria, Xylella fastidiosa (Xf) Wells et al., was described in
California in the 1880s during an epidemic in Orange County (Pierce 1882).  A second epidemic occurred in Tulare County
in the 1930s (Hewitt et al. 1949), and until the mid-1990s, it was considered only a minor problem in vineyards close to
riparian areas.  In the early 1990s a new vector, the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar)
(formerly Homalodisca coagulata Say), was introduced into the state (Sorenson and Gill 1996), and became associated with
a devastating epidemic of PD in the Temecula Valley.  Since 1994, at least 1,500 acres of vineyards have been lost to the
disease in California; in the Temecula Valley alone, losses have been estimated at  $13 million (Wine Institute 2002).  The
GWSS has different feeding and dispersal capabilities than native insect sharpshooter vectors and these attributes are thought
to have contributed to the increased number of PD-infected grapevines in California (Almeida et al. 2005a, Blua et al. 1999,
Redak et al. 2004).  Like other insect-borne plant pathogen systems, there are two potential types of pathogen spread: primary
or secondary spread.  Primary spread occurs when the pathogen is obtained by the vector from sources outside the crop and
transported and inoculated into the crop. Secondary spread occurs when the vector acquires the pathogen from infected vines
in the vineyard, and subsequently inoculates healthy vines within the same vineyard (i.e. vine to vine spread).  It is thought
that Xf spread with native California vectors was the result of primary spread, but that rapid spread by GWSS may be the
consequence of primary and secondary spread (Almeida et al. 2005a, Hill 2006).  Understanding details of primary and
secondary spread of Xf by GWSS can assist in the development of alternatives to the areawide management program.  For
example, to reduce primary spread, efforts must focus on reducing bacteria-carrying GWSS from entering healthy vineyards,
through continued areawide or local treatment programs outside the vineyard, barriers, trap crops, and/or removal of
pathogen sources outsides the vineyard.  Reduction of secondary spread can be accomplished by in-field control of GWSS,
finding and roguing infected vines in the vineyard (Varela et al. 2001), and/or minimizing acquisition from infected vines and
transmission to healthy vines.

The relationship among time of inoculation, location of inoculation, and disease progression in the vine likely plays a role in
determining whether disease becomes chronic and when a vine becomes a source plant for additional spread.  When another
PD vector, the blue-green sharpshooter, Graphocephala atropunctata, infected grapevines early in the season, more
persistent infections resulted than from later season infection (Purcell 1981).  A potential difference between blue-green
sharpshooter transmission and GWSS transmission is that the former is known to prefer feeding at the tips of canes (Purcell
1976), whereas the latter has been reported to feed on older plant parts.  Almeida et al. (2005b) demonstrated that GWSS
could even transmit Xf to dormant vines in the field.  However acquisitions from dormant vines in the field were negative.
Whether these transmissions and acquisitions are important to disease spread depends on GWSS feeding preferences during
the winter months when the vines are dormant.  Similarly, it is possible that infection at certain times of the season may not
become systemic because infection is pruned out at end of year, or environmental conditions limit bacterial spread (Feil and
Purcell 2001, Feil et al. 2003, Hill 2006).
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OBJECTIVES
The objectives of the project are:
1. Document GWSS feeding preference, through the growing season, on established Cabernet Sauvignon and Chardonnay

grapevines that either are healthy or have been infected with Xf for 2, 3, or 4 years.
2. Evaluate the acquisition by GWSS, through the growing season, from established Cabernet Sauvignon and Chardonnay

grapevines that either are healthy or have been infected with Xf for 2, 3, or 4 years and determine the subsequent
transmission from these acquisitions.

3. Determine the relationship between Xf inoculation by GWSS at different times of the year and the development of the
vine as a source for further acquisition by GWSS.

In order to proceed with Objectives 2 and 3, we first must determine where GWSS feed on mature vines and this is the focus
of the current report.

RESULTS
Choice Tests for Grapevine Tissue Selection
For this research, we placed GWSS adults individually in observation cages fabricated from acetate cylinders (25cm x 17cm
diameter) with organdy sleeves attached to the ends.  The cage was placed over the base of a Cabernet Sauvignon or
Chardonnay grapevine cane with the cane terminal looped back into the cage.  The ends of the observation cage were sealed
giving a single GWSS in each cage access to old and young stems, petioles, and leaves inside the cage.  The grapevines were
from a mixed field-grown vineyard at the University of California in Riverside (UCR) that was covered with 60% shade-
cloth to protect them from PD.  We made hourly observations during daylight hours over three consecutive days to determine
the location of each GWSS.  This experiment was executed twice in the fall of 2007, twice in the winter 2008 and once in
summer 2008.

Results of the two fall trials were pooled, as were the results of the two winter trials.  In the fall, GWSS were found on the
cage in 14% and 16% of our observations on Cabernet Sauvignon and Chardonnay vines, respectively (Figure 1).  We also
found that a high proportion (35%) of GWSS, averaged across variety and gender, switched from one tissue to another each
hour (data not shown).  Clearly, GWSS moved frequently among the vegetation, important for the spread of bacteria within
and among vines.  When GWSS were present on the canes, they utilized all tissues with no consistent preference for any
type.  However, over the course of the trial and averaged across both varieties, GWSS were found more frequently on young
tissue (18.2%) than on old tissue (10.7%).  Looking further at the data, GWSS were found more frequently on young stems,
petioles and leaves (28.5%, 6%, and 20%, respectively) than on old stems, petioles and leaves (7.5%, 7.5%, and 14.5%,
respectively).  Interestingly, the insects spent the least amount of time on petiole tissue of any age than on any other tissue
type.  There also were some interesting results with respect to variety.  GWSS were found more frequently on leaves (old and
young) of Cabernet Sauvignon compared to the leaves of Chardonnay while the reverse was seen for petioles and stems (old
and young).  These results suggest that the two grapevine varieties vary in the xylem components that are important for
GWSS feeding, a result that could impact the location where Xf cells are introduced into healthy grapevines.  To finish the
discussion of this trial, there appeared to be little difference between sexes in their selection of feeding sites (Figure 1).

In the winter trial, GWSS were found on the cage walls in 49% of our observations.  At this time of year, neither leaves nor
petioles were available to the sharpshooters, and GWSS were found on old stems and young stems in 11% and 40% of the
observations, respectively.  Those tissue preferences differed somewhat among the two varietals and the two sexes (Figure
1).  The major departure from these numbers was the preference for the old stem among sexes; females and males were on
the old stem in 20% and 1% of the observations, respectively.  The general preference for the young stem over the old stem
was consistent among varietals and among sexes.  Changes in GWSS position occurred in 14% of the observations,
considerably less than the 35% exhibited in the fall 2007 trials.  There was little difference in the tendency of GWSS to
change positions among variety or sexes.

The summer trial again offered GWSS young and old leaf and petiole tissue in addition to young and old stems.  GWSS were
found on the cage wall 12% of the time (Figure 1).  The general preference for young tissue that was found in the fall and
winter also occurred in the summer.  GWSS chose young leaves, petioles, or stems in 67% of the observations compared to
21% for the older tissues.  The young stem was the preferred tissue, both among varietals and among sexes.  However, there
were some differences in tissue selection among varietals and among sexes.  The old stem was selected 24% of the time on
Cabernet Sauvignon but only 5% of the time on Chardonnay.  The young leaf and young petiole each were selected in 1% of
the observations on Cabernet Sauvignon, while they were selected 8% and 7% of the time on Chardonnay.  Among sexes,
females chose the old stem in 22% of the observations, but males chose that tissue in only 7% of the observations.  Among
tissue types of any age, leaves, petioles, and stems were chosen in 12%, 5%, and 83% of the observations, respectively.
Changes in GWSS position occurred in 21% of the observations, and that rate of change was consistent among the varietals
and among the sexes.
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Figure 1. GWSS preference on field-grown Cabernet Sauvignon and Chardonnay grapevines in choice experiments initiated
on 29 August and 11 September 2007 (Fall 2007), 16 January and 6 February 2008 (Winter 2008) and 1 July 2008 (Summer
2008).  Bars represent average proportions of GWSS (+SE) observed on various tissue types for the two varieties and for the
two GWSS genders.

No-choice Tests Quantifying Feeding on Grapevine Tissues
No-choice feeding trials were conducted on the same mixed field-grown vineyard at the University of California in Riverside.
Individual GWSS were caged on selected grapevine tissue in 50 ml polypropylene centrifuge tubes (Thermo Fisher Scientific
Inc., Waltham, MA) by one of two methods.  The first method, modified from Andersen et al. (1992), was for use on
cordons, stems, and petioles.  The cages were made by melting a transverse hole in the side of the tube using hot metal
cylinders of diameters similar to the grape tissues.  The tube was pressed onto the plant tissue, so the GWSS had access to
about 2.5 cm length of the plant through the hole.  The cage was affixed and sealed to the tissue by wrapping the tube and
tissue with ca. 2 cm wide strips of Parafilm (Pechiney Plastic Packaging, Menasha, WI).  The screw cap was tightened, and
the cage rested vertically so that excreta collected in the bottom of the tube.  The second cage design was for use on leaf
tissue.  The mouth of an intact 50 ml tube was pressed to the abaxial leaf surface with a piece of coiled spring steel in a
clothes-pin like fashion (Blua and Perring 1992).  One end of the spring held the 50 ml tube.  The other end of the spring had
a plastic ring on which was glued a foam pad 1 cm thick by 3 cm in diameter which gently held the leaf against the
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polypropylene tube, giving the insect access to leaf tissue of ca. 5.7 cm2.  This cage, too, was oriented vertically, so excreta
drained to the bottom of the cage.  Each cage type was loosely covered with aluminum foil in order to shade it from direct
sunlight.

The day before the start of each test, GWSS adults were collected from citrus at Agricultural Operations, UCR, and placed in
a cage with a potted rough lemon plant.  The following morning, adults were isolated and sexed and then placed individually
into the tube cages.  Cages were inspected daily and the presence of excreta noted.  Cages with dead GWSS were removed,
and the amount of excreta was weighed.  Up to 1.5 ml of excreta from each cage was frozen for future analysis of chemical
content.  At the end of the trial, all remaining cages were collected, GWSS mortality was noted, and excreta was weighed.

During the winter trials, GWSS were placed on cordons, old stems, and young stems; leaves and petioles were not available.
The overall GWSS feeding rate was 0.37 g of excreta per day, but there was considerable variation among sharpshooters
(Figure 2).  In no case did discernible feeding occur on cordons, tissue several years old with thick dry bark.  The old stems
were covered with dry, but much thinner bark.  Feeding on the old stem averaged 0.92 g of excreta per day and on the young
stem, 0.57 g, however those amounts were not significantly different at p=0.05.  There were no significant differences in
feeding among varietals or among the sexes.  Survivorship in the winter trials averaged 2.04 days, and there were no
significant differences in survivorship among varietals or sexes.  There were significant differences in survivorship among
GWSS on different tissues (Figure 2).  Of 29 GWSS on cordons, only 6 lived into the second day for an average survivorship
of 1.2 days, significantly less than on the other tissues.  Among all insects, only one insect that produced no excreta survived
as long as 3 days, and only one insect that produced excreta died before the end of the trial.

Sharpshooters fed on all tissues except cordons in the summer trial (Figure 2), averaging 0.51 g of excreta per day.  Feeding
on non-cordon tissues was highly variable, but there were some significant differences.  Sharpshooters produced significantly
more excreta on young stems than on young petioles, old leaves, and cordons.  There were no significant differences among
varietals, sexes, or tissue age (i.e. old leaves, petioles, and stems vs. young leaves, petioles, and stems).  Among tissue types
there were significant differences in feeding.  Significantly more excreta was produced on stems (0.92 g) than on petioles
(0.45 g), leaves (0.41 g), and cordons (0 g), and excreta from the petioles and leaves was significantly greater than from the
cordons.  Average GWSS survivorship in the July trial was 4.06 days.  As in the winter, only survivorship on cordons was
significantly less than that on other tissues (Figure 2).  Other than cordons, there were no significant differences among
leaves, petioles, and stems.  In addition, survivorship among varietals and among sexes was not significantly different.

In the fall trial, GWSS again fed on all tissues except cordons (Figure 2), averaging 0.229g of excreta per day (range 0-
1.18g).  This was less excreta than that produced by sharpshooters feeding in the winter (0.37g) and summer (0.51g) trials.
While we are not sure why this reduction in feeding might occur, it may signal a natural decline in feeding as the
sharpshooters enter the winter months.  There was substantial variation among GWSS feeding in this trial (Figure 2).  While
it appears that GWSS feeding on old stems and young stems were nearly the same as the other non-cordon tissue, the means
in this case are misleading.  For the old stem, there were only 2 GWSS that survived longer than 1 day and of these 2 only 1
produced any measurable excreta (0.168g).  On the young stems, only 5/20 GWSS survived longer than 1 day, and these
insects produced an average of 0.24g of excreta per day (range 0.014-0.779g).  This is a contrast to the summer trials, during
which the insects survived well on the young stems.  We noticed that in the fall trial, the young stem tissue had become
hardened and woody, and while GWSS were able to feed on this tissue in the summer, they were not able to do so in the fall.
It also is interesting that survival on old stem tissue seemed much better in the winter than in the fall.  This may be due to the
adaptability of GWSS that were field collected for our trials.  In the winter months, GWSS may be better adapted for feeding
on woody tissue than populations in the fall.  Survival was consistently high on the leaves and petioles and production of
excreta was consistent with this survival.  The tissue yielding the most excreta was the young petiole (0.311g/day), followed
by young leaves (0.233g/day), and old leaves (0.208g/day).
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Figure 2. GWSS feeding on field-grown Cabernet Sauvignon and Chardonnay grapevines in no-choice
experiments conducted in Winter 2008 (26 February, 4 March), Summer 2008 (15 July), and Fall 2008
(19 September).  Bars represent A) average amount (g) of excreta per day (+SE) measured from various
tissue types, B) average GWSS survivorship (days) (+SE) on the same tissues.  Different letters above
bars represent statistically significant differences among means at p = 0.05 (ANOVA followed by
Tukey’s studentized range test for mean separation). At the writing of this report, statistical analyses
were not complete on the Fall trial, therefore only means ( + SE) are presented.

CONCLUSIONS
Vine to vine spread of Xf by glassy-winged sharpshooter (GWSS) has been hypothesized as a critical component of
devastating PD epidemics that occurred in Temecula and in the General Beale area of Kern County.  GWSS landing and
feeding behavior and tissue feeding capacity combine with grapevine phenology, and within-vine Xf distribution and
phenology to make vine to vine spread possible.  Our overall goal is to provide information on these various components to
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enhance our understanding of vine to vine spread so that strategies can be defined to reduce widespread epidemics in other
regions.  We have conducted experiments in the fall, winter and summer in which we made hourly observations on the
location of individual GWSS adults given access to mature tissue and young tissue on the same cane.  Both males and
females preferred young tissues (particularly the stems) to mature tissues on Cabernet Sauvignon and Chardonnay grapevines
throughout the year.  However, GWSS spent a substantial amount of time feeding on old stem tissue (7.5%, 11%, 15% in fall,
winter, and spring trials, respectively), where Xf could potentially be transmitted leading to chronic infection.  A significant
finding is that GWSS moved frequently throughout the days of our studies, changing position in 35%, 14%, and 21% of the
observations in the fall, winter and spring, respectively.  This has serious consequence for moving Xf around the vineyard at
various times of the year.  Further characterization of GWSS feeding behavior was conducted in no-choice studies.  We
learned that at no time of the year, were individuals able to feed on the cordon tissue.  While others have reported observing
GWSS feed in this tissue, we were not able to demonstrate it in our trials on mature vines.  Aside from cordons, GWSS were
able to feed on old and young stems, petioles, and leaves.  However, the amount of feeding varied with the season.  In the
winter and summer, GWSS utilized old stems and young stems, while during the fall they were not able to feed on old stems.
In addition, the young stems became hardened and woody, and survival and feeding on the young stems at this time of the
year were reduced.  Our goal is to integrate the information from the work reported here with planned studies on infected
grapevines at different times of the year.  Through this work, we will understand the interaction between feeding behavior on
specific grapevine tissues that contribute to the spread of Xf from infected to healthy vines. With this knowledge, we can
direct management strategies to mitigate vine to vine spread.
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ABSTRACT
The already described Neotropical species of the speciose fairyfly genus Gonatocerus Nees (Hymenoptera: Mymaridae) are
reviewed and re-diagnosed in the forthcoming publication, which is near completion (Triapitsyn et al. in preparation).  82
valid species are recognized including 10 newly described ones, and an illustrated identification key (based on females) to 77
species is provided (the remaining five species are known from the male sex only).  The known distribution ranges and host
associations of the included species are indicated, with emphasis on the egg parasitoids of the proconiine sharpshooters
(Hemiptera: Cicadellidae: Cicadellinae: Proconiini), all of which belong to the ater species group (the ater and morrilli
subgroups) of Gonatocerus.  Results obtained during the last year of this three-year project (a one-year no-cost extension was
granted by the funding agency) are being reported.

INTRODUCTION
In the New World, eggs of the proconiine sharpshooters, which are known vectors of Xylella fastidiosa, are parasitized by
various Mymaridae; their natural biological control is mainly due to the beneficial activity of the numerous species of
Gonatocerus.  A key to the Nearctic mymarid egg parasitoids of the proconiine sharpshooters was published recently
(Triapitsyn 2006a).  A rationale and a more detailed introduction for this project, which will result in publication of an
illustrated, annotated key to the Neotropical species of Gonatocerus, were given by Triapitsyn (Triapitsyn 2006b).

OBJECTIVES
1. Identification of the numerous species of Gonatocerus reared by USDA researchers (G. A. Logarzo) and others in

Argentina, Chile, and Peru, colonies of some of which were established in the quarantine facilities in California and
Texas, and also of several species reared in Mexico from eggs of Homalodisca and other proconiine sharpshooters.

2. Preparation and submission for publication of a pictorial, annotated key to the ater species group of Gonatocerus, egg
parasitoids of proconiine sharpshooters in the Neotropical region, with emphasis on the species targeted for introduction
into California (Years 2 and 3).

RESULTS AND DISCUSSION
Progress on Objective 1.
Specimen preparation. Due to the enormous volume of the material of Gonatocerus from Argentina and Chile (more than
5,000 specimens have already been point-mounted in the course of this project), work on point-and slide-mounting of the
specimens and their curation, which began in October 2006, will continue until July 2009.

Specimen identification. Sorting of the new material has continued. We described two new species of Gonatocerus reared in
Argentina from eggs of Tapajosa rubromarginata (Signoret) (Triapitsyn et al. 2007, 2008) and also a new species of
Gonatocerus from Sonora, Mexico, an egg parasitoid of Homalodisca liturata Ball (Triapitsyn & Bernal 2008).  Many other
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species of Gonatocerus egg parasitoids of Proconiini were identified using both morphological and molecular methods (de
León et al. 2008; Virla et al. 2008).

Progress on Objective 2.
Preparation of the illustrations. High quality digital photographs were taken, using an Automontage system, of all the
available types and many non-type specimens of the described Gonatocerus spp. from the Neotropical region and also of the
new species that are included in the key. All the illustrations have been arranged into plates (more than 100).

Preparation of the key. All keys have been completed and all the already described Neotropical species of Gonatocerus have
been re-described; descriptions of the 10 new species are under way.

Publications and reports. The project has already resulted in at least 12 scientific papers and reports that either have been
published or submitted for publication to the scientific journals (in press).  We expect that a review of the described species
of Gonatocerus in the Neotropical region will be completed in early 2009, and then it will be submitted to Zootaxa
(Triapitsyn et al. in preparation); it currently has more than 200 manuscript pages.

CONCLUSIONS
A review of the described species of Gonatocerus in the Neotropical region is near completion; it also includes descriptions
of 10 new species.  Additionally, two new species of Gonatocerus egg parasitoids of Proconiini were described during the
reporting period.  Results of this project will be of significant benefit to biological control (especially to the CDFA/PD
Biological Control Program) specialists, ecologists, and other researchers that manage the Pierce’s disease threat posed by
GWSS.  When published, this key will make possible identifications of the mymarid egg parasitoids of the proconiine
sharpshooters in America south of the USA, differentiation of native vs. introduced species of Gonatocerus, and also will
provide information on the candidate species of Mymaridae for introduction as part of biological control programs, facilitate
surveys for assessing levels of egg parasitism of the proconiine sharpshooters, and indicate all known host associations of the
mymarid species important for classical and neoclassical biological control of GWSS and other Proconiini.

REFERENCES CITED
de León, J. H., Logarzo, G. A. & Triapitsyn, S V.  2008.  Molecular characterization of Gonatocerus tuberculifemur

(Ogloblin) (Hymenoptera: Mymaridae), a prospective Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae)
biological control candidate agent from South America: divergent clades.  Bulletin of Entomological Research 98 (1):
97-108.

Triapitsyn S. V.  2006a.  A key to the Mymaridae (Hymenoptera) egg parasitoids of proconiine sharpshooters (Hemiptera:
Cicadellidae) in the Nearctic region, with description of two new species of Gonatocerus.  Zootaxa 1203: 1-38.

Triapitsyn, S. V.  2006b.  Identify the species of Mymaridae reared in Argentina and Mexico for potential introduction to
California against the glassy-winged sharpshooter and prepare and submit for publication a pictorial, annotated key to
the ater-group species of Gonatocerus - egg parasitoids of the proconiine sharpshooters (Hemiptera: Cicadellidae:
Proconiini) in the Neotropical region. In: Proceedings of the 2006 Pierce’s Disease Research Symposium, pp. 111-113.

Triapitsyn, S. V. & J. S. Bernal.  2008.  Egg parasitoids of Proconiini (Hemiptera: Cicadellidae) in northwestern Mexico,
with description of a new species of Gonatocerus (Hymenoptera: Mymaridae).  Journal of Insect Science, in press.

Triapitsyn, S. V., J. T. Huber, G. A. Logarzo, & D. A.  Aquino. A review of the described species of Gonatocerus
(Hymenoptera: Mymaridae) in the Neotropical region, with new additions.  To be submitted to Zootaxa in early 2009, in
preparation (more than 200 manuscript pages and more than 100 plates with illustrations).

Triapitsyn, S. V., G. A. Logarzo, J. H. de León & E. G. Virla.  2008.  A new Gonatocerus (Hymenoptera: Mymaridae) from
Argentina, with taxonomic notes and molecular data on the G. tuberculifemur species complex. Zootaxa, in press.

Triapitsyn, S. V., G. A. Logarzo, E. G. Virla & J. H. de León.  2007.  A new species of Gonatocerus (Hymenoptera:
Mymaridae) from Argentina, an egg parasitoid of Tapajosa rubromarginata (Hemiptera: Cicadellidae). Zootaxa 1619:
61-68.

Virla, E. G., Logarzo, G. A., Paradell, S. L. & Triapitsyn, S. V.  2008.  Bionomics of Oncometopia tucumana (Hemiptera:
Cicadellidae), a sharpshooter from Argentina, with notes on its distribution, host plants, and egg parasitoids.  Florida
Entomologist 91 (1): 55-62.

FUNDING AGENCIES
Funding for this project was provided by the University of California’s Pierce’s Disease Grant Program.

ACKNOWLEDGMENTS
We thank Vladimir V. Berezovskiy and Jennifer Walker (University of California, Riverside) for technical assistance.



- 51 -

Section 2:

Vector

Management



- 52 -



- 53 -

AGE DETERMINATION AND THE RED PIGMENT IN THE WINGS OF
THE GLASSY-WINGED SHARPSHOOTER

Principal Investigator:
Blake Bextine
Department of Biology
University of Texas
Tyler, TX  75799
bbextine@uttyler.edu

Cooperator:
Isabelle Lauzière
Texas PD Res. & Ed. Program
Texas Agrilife Research
Fredricksburg, TX  78624
mhlauziere@hotmail.com

Reporting Period: The results reported here are from work conducted October 2007 through September 2008.

ABSTRACT
The glassy-winged sharpshooter, Homalodisca vitripennis, has a red pigment that is found in its wings during the final
immature stage of its life.  Over the course of the sharpshooter’s lifespan, the red pigment darkens with maturation and
eventually becomes a brown/black color.  These pigments are unidentified but believed to be pheomelanin and eumelanin,
respectively.  The age of the sharpshooter can be determined by analyzing the amount of red pigment found in the wings.  In
this study, we attempted to identify the red pigment and quantify the amount of red pigment contained in wings via chemical
analysis.  Ultimately, we found that it was more practical to determine the amount of red pigment compared to brown/black
pigment using an image analyzing software (ImageJ) to compare the ratios of each color present.

INTRODUCTION
In area-wide management studies in California and Texas, glassy-winged sharpshooters (GWSS; Homalodisca vitripennis)
are collected using yellow sticky cards such as the Trécé Inc. adhesive trap T3306 (Trécé, Inc., Adair, OK).  This method
works very well for monitoring population numbers and identifying species that occur in the field.  However, determining the
age of sharpshooter off of traps can be difficult due to the degradation of internal tissues.  However, the GWSS’s wing color
changes from red to black based on its age and this is a static change that is not altered postmortem.  This compound is
proposed to be pheomelanin which is red-brown and can be converted in to eumelanin (a dark brown/black pigment)
(Wakamatsu 2002, Tran 2006).

MATERIALS AND METHODS
Determination of red and brown/black pigment. Age determination was done by scanning the wings using a Hewlett Packard
Scanjet 3500c scanner (Figure 1).  These images were labeled properly and then analyzed by ImageJ software.  A color
histogram was obtained along with the area of selection in square pixels, and the mean gray value.  A numerical value was
calculated for each wing (x=(R-((G+B)/2))*mean/area).  These values were used to set up a standard scale using known ages.

Figure 1. Development of Standards and Age Determination for field-collected insects.  GWSS were
reared from eggs at the Texas Agrilife Research facility in Fredricksburg, TX.  Each day, newly molted
adults were collected and transferred to separate cages. These insects were allowed to survive 3, 6, 9, and
15 days.  At that time the insects were sacrificed and analyzed for the ratio of red pigment to brown/black
pigment as described above.  From the yellow sticky traps, GWSS wings were collected and analyzed.

RESULTS AND DISCUSSION
GWSS collected on different days had significantly different levels of red pigment in their wings (Figure 2).  We tested a
large group of field-collected GWSS and where able to determine the relative age of the insects.  However, many of the
tested insects were determined to be older than 21 days.  Therefore, we need to refine the system and set standards at the max
age of the insects.
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Figure 2.  Decreasing levels of red pigment found in GWSS wings over time.

CONCLUSIONS
The unknown pigment in the sharpshooter wings is believed to be pheomelanin.  The other proposed pigments of
xanthomattin and erythropterin absorbance spectra are similar in shape to that of other organic pigments unlike the unknown
compound.  Pheomelanin is commonly found in nature and can be easily converted to eumelanin which is a darker, almost
black hue.  Pheomelanin (red) can be converted to eumalanin (black) if the solution is lacking a high concentration of sulfur
compounds.  Therefore if cysteine (sulfur containing) concentration is low, the pheomelanin will readily convert into
eumelanin.  In the sharpshooter this lack of cysteine would most likely come from a change in diet.  Further research is
needed to verify that the pigment is in fact pheomelanin.

The age of the sharpshooters can be determined by ImageJ.  In an area-wide management program, it is important to
understand as many biological factors as possible.  Age may have a direct correlation to the vectoral capacity of the insects.
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ABSTRACT
The impact of systemic treatments of dinotefuran on the adult and egg stages of the glassy-winged sharpshooter (GWSS;
Homalodisca vitripennis) is being evaluated using greenhouse and laboratory scale bioassays.  One reason for the use of
systemic treatments is that they exploit the xylophagous feeding behavior of the GWSS adult and immature stages.  Our
current data show that these treatments have an additional contact activity on emerging first instars before they begin feeding.
Preliminary data indicate that dinotefuran is inherently more toxic than imidacloprid to first instar GWSS.  In bioassays with
adults exposed to treated grapevines, we quantify dinotefuran concentrations within the xylem and related mortality.  From
these bioassays, we expect to generate a value that represents the effective concentration of dinotefuran needed to kill a
GWSS adult feeding on a vine.  This target threshold can then be used to guide growers in the selection of treatment rates,
and as an indicator of the efficacy of treatments and the level of protection their vines are receiving.

INTRODUCTION
Our research program focuses on the use of chemical insecticides for the management of the glassy-winged sharpshooter
(GWSS; Homalodisca vitripennis).  We are dedicated to formulating safe and effective treatment programs for California
growers, given the almost complete reliance by the grape industry on this method of control.  We have conducted extensive
trials in Coachella, Napa and Temecula valley vineyards to evaluate the uptake and persistence of three neonicotinoids –
imidacloprid, thiamethoxam, and dinotefuran – under the diverse range of climatic, soil, and agronomic conditions associated
with these regions.  We have an understanding about how the different chemical properties, particularly water solubility, of
these neonicotinoids can be exploited to achieve optimum uptake into vines, and we have developed sensitive techniques that
allow us to monitor the levels of insecticide present within the vines.  To exploit this knowledge further for the benefit of
California grape production, we need to ensure that the concentrations of insecticide present within the vines are reaching
levels that are effective at rapidly killing GWSS before they can infect vines with Pierce’s disease (PD).  We also need to
understand whether there is a sub-lethal impact of these insecticides on GWSS, since anti-feedant activity may not
necessarily eliminate the threat that an infective sharpshooter poses to a vine.  Our past and current research projects have
established the threshold levels of imidacloprid needed to kill a GWSS at 10 ng/ml xylem fluid, and optimized treatment
regimes for growers that will ensure these thresholds are attained following applications via different irrigation methods
(drip, sprinkler).  In 2007, a new systemic neonicotinoid, Venom (active ingredient dinotefuran), received full registration for
use on grapes.  An additional systemic neonicotinoid, Platinum (active ingredient thiamethoxam), is scheduled for
registration in 2008 (it will soon go through the 30 day posting process according to a personal communication from David
Belles, Syngenta).  Our work in this area has demonstrated the excellent uptake of these new insecticides following systemic
application to vines (Toscano et al., 2007).  This is good news for vineyard operators who have experienced problems with
imidacloprid.  Imidacloprid has been the predominant neonicotinoid in use in vineyards, but our research has shown that its
uptake and persistence within vines varies dramatically between regions (Coachella Valley, Napa Valley, Temecula Valley).
Despite its apparent poor uptake, growers continue to rely on imidacloprid in many areas.  The perception is that the
insecticide will work well in all areas given its successful implementation in Temecula vineyards (Byrne and Toscano, 2006).
Thiamethoxam and dinotefuran offer a potential solution to overcoming the problems encountered with imidacloprid use –
their rates of uptake are faster and they reach higher concentrations at peak uptake than imidacloprid under the more
challenging situations.  They also exhibit favorable persistence. Having established that the uptake and persistence of these
systemic insecticides is superior to imidacloprid in terms of insecticidal titers reached in the xylem, it is important to
determine the threshold levels of these insecticides to ensure that the levels attained in the xylem are active against
sharpshooters.  Comparative data on the efficacies of systemic thiamethoxam and dinotefuran against GWSS are not
available.

OBJECTIVES
1. Determine target thresholds for systemic neonicotinoids against glassy-winged sharpshooters in grapevines.

RESULTS
We are currently running two sets of experiments.  Potted grapevines have been treated with Venom (active ingredient
dinotefuran) at recommended field rates (6 oz/acre), and dilutions of this rate.  The efficacy of dinotefuran at these treatment
rates is being assessed by confining adult sharpshooters on the vines and determining the levels of mortality after one day of
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exposure.  The concentrations of dinotefuran in the vines are measured after the mortality has been scored so that we can
derive a lethal concentration for the insecticide.  Xylem fluid is extracted using a pressure bomb and the dinotefuran in the
extract is then quantified by ELISA.  In the first tests, the use of the field rate resulted in 100% mortality.  This is not
surprising since the concentrations of dinotefuran in the xylem fluid exceeded 100 ppb, the upper limit we set for the ELISA.
We are continuing with the evaluation of lower treatment rates, and will present the results at the annual symposium.

In the second set of experiments, we are evaluating the effect of dinotefuran against the eggs of the GWSS.  Adult GWSS are
confined in cages with cotton, which is an excellent host for GWSS oviposition.  Leaves with egg masses (not older than 24
hours) are cut from the plants and the petioles inserted into vials containing a range of insecticide solutions.  The uptake of
insecticide into each leaf is allowed to proceed for 24 hours and the leaves are then transferred to leaf boxes.  The leaf boxes
are maintained under lights until the normal period of embryonic development is completed.  Mortality is assessed at the time
of emergence of the first instar.  In our first set of experiments, we tested 0.1 ppm dinotefuran (prepared from Venom 70SG).
After 24 hours, the average concentration of dinotefuran present in the leaves was 7.3 ng/cm2 leaf.  At this concentration, we
observed 100% mortality of emerging nymphs.  As with imidacloprid, the nymphs developed fully within the egg mass and
only succumbed to the effects of contact with dinotefuran during emergence.  The high mortality at this concentration is in
contrast to our previous data for imidacloprid, where we observed an LC50 of 39 ng/cm2 leaf.  Our results show that
dinotefuran is more toxic to the 1st instar than imidacloprid.

CONCLUSION
In previous work, we showed that the rate of uptake of dinotefuran into grapevines was faster than imidacloprid.  Also,
concentrations of dinotefuran at peak uptake were higher.  The results we are generating from this project are encouraging
from two standpoints.  First, we have shown that dinotefuran is highly toxic to GWSS adults, indicating that it will be an
effective product for the control of the insect in vineyards. The use of dinotefuran will provide growers with a product that
acts effectively against sharpshooters, particularly in situations where growers must respond quickly to an infestation to
prevent the potential transmission of PD.  When we conclude our bioassays, we will generate a threshold level of dinotefuran
necessary to kill a sharpshooter quickly once it feeds from the xylem.  We will then be able to determine the level of
persistence that a treatment will provide.  And second, dinotefuran is highly toxic to emerging 1st instars.  Systemic
treatments exploit the xylophagous feeding behavior of the GWSS adult and immature stages.  We now know that these
treatments have an additional impact on emerging 1st instars before they begin feeding.

The systemic neonicotinoids imidacloprid and dinotefuran are effective insecticides that growers can use for long-term
management of GWSS populations.  Because of the contrasting chemical properties of these insecticides, growers can now
choose the most suitable product to meet their pest management needs.
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ABSTRACT
Here are presented the progress on a collaborative biotechnological work aimed to develop an RNA interference (RNAi)
strategy designed to control sharpshooter vectors of Xylella fastidiosa, the causal agent of Pierce’s disease.  In the year 2007-
2008 we constructed cDNAs corresponding to specific genes of the glassy-winged sharpshooter (GWSS), Homalodisca
vitripennis, and evaluated dsRNAs for their ability to induce RNAi effects against GWSS.  We performed injection
experiments in GWSS insects and evaluated effects by assessing target RNA degradation.  Identified genes will be used to
develop transgenic basil plants such that dsRNAs are expressed in xylem tissues via EgCAD2, a xylem-specific promoter.
Transgenic plants will be evaluated for their ability to induce RNAi effects on GWSS.

INTRODUCTION
Pierce’s disease (PD), caused by the xylem-limited bacterium, Xylella fastidiosa (Xf), is an important threat to the California
grape industry (http://www.aphis.usda.gov/lpa/pubs/fsheet_faq_notice/fs_phglassy.html
http://orsted.nap.edu/openbook.php?record_id=11060&page=21).  The most important recent epidemic of PD in California
was found to be associated with the introduction of the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, an
invasive sharpshooter leafhopper known to be indigenous to parts of the Southeastern United States (Blua et al., 1999).  The
GWSS is a large, robust leafhopper with a broad host range including many native, ornamental and crop plants.  The
combination of this new PD vector species, its wide host range, abundance of host plants, its affiliation for citrus as a host for
reproduction, and its ability for long-distance dispersal (Blua and Morgan, 2003) has raised concerns that PD and GWSS are
important threats to the California grape industry beyond the Temecula region.

In addition to being transmitted by GWSS, Xf is transmitted to plants by several other species of xylem-feeding leafhoppers
(Redak et al., 2004).  It is interesting to note that as opposed to phloem-feeding hemipterans, xylem feeders must ingest much
greater volumes of plant sap.  And it is the ingestion of large volumes of plant sap that offers the potential to deliver toxic
molecules to leafhoppers, even if these molecules are produced in low concentration in xylem sap.  This is an important
component of our strategy.

We propose a new approach, one based on RNA interference (RNAi) directed towards GWSS.  RNAi leads to sequence
specific degradation of target RNA molecules within the cell cytoplasm, resulting in eliminating or reducing gene expression
(mRNA degradation) or antiviral immunity (degradation of viral genomic RNAs) (Lu et al., 2004; Brodersen and Voinnet
2006).  There are already several examples of practical implementation of RNAi-based technologies for agriculture.  For
example, RNAi-based strategies for conferring plant resistance to bacterial, nematode and virus induced plant diseases have
been demonstrated, and some have been even used in commercial agriculture (Escobar et al., 2001; Huang et al., 2006;
Gonsalves 1998).  Recently, particular attention was devoted to RNAi efforts targeting insects.  For example in the
November 2007 issue of Nature/biotechnology, the “news and views” article was entitled “RNAi for insect-proof plants”
(Gordon, K.H. and P.M. Waterhouse, 2007) and two research articles in that issue presented current RNAi efforts towards
insect pests of plants (Baum, J.A., et al., 2007; Mao, Y.B., et al., 2007).  In 2008, in Trends in Biotechnology another article
was titled “RNAi-mediated crop protection against insects” (Price, D.R. and J.A. Gatehouse, 2008). Of relevance to this
proposal is that RNAi offers opportunities for targeting H. vitripennis via RNAi-based disruption of essential GWSS genes,
thereby resulting in insect deleterious effects.

OBJECTIVES
The objectives of our research effort are to develop new and effective, environmentally sound strategies for controlling the
GWSS and other leafhopper vectors of Xf. Our goal is to develop strategies that are effective and will provide control for PD
of grapes, but also have flexibility for use in other important California crops.

The specific objectives of our effort are:
1. To identify and develop RNAi-inducers capable of killing or reducing the survival and/or fecundity of GWSS.
2. To generate transgenic plants capable of expressing and delivering GWSS deleterious RNAi molecules within their

xylem.
3. To evaluate transgenic plants for their ability to generate inducers capable of inducing RNAi vs. GWSS.
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RESULTS AND DISCUSSION
For this effort we utilized in vitro and in vivo delivery systems.  We assessed RNAi effects in cultured GWSS cells. We also
screened dsRNAs in whole leafhoppers by injection, and we are optimizing dsRNA insect delivery by feeding in vitro.

Rearing GWSS and other PD vectors. A colony of GWSS insects was collected from Riverside and donated to us by Dr.
R. Almeida (UC Berkeley). The colony was transferred into the Controlled Research Facility (CRF) at UC Davis and insects
were reared there for more than one year. We were able not only to keep the original colony in good condition, but also to
rear continuously new generations of GWSS.  Dr. Almeida also provided us with a colony of Draeculacephala minerva (D.
minerva).  We decided to rear these insects because they are not quarantined in northern California, they are easy to rear and
they are California native vectors of PD. As for GWSS, we were able to maintain and rear colonies of D. minerva.

GWSS cells. Since GWSS insects are quarantined in Northern California, we decided to test the effect of RNAi in the
GWSS cells.  We received these cells from the Dr. Bruce Hammock laboratory (Kamita et al., 2005, GWSS cell line Z15).
We were able to optimize a cell transfection protocol with an efficiency higher than 50%, as measured using a siRNA
fluorescein labeled control. Cell viability was measured with trypan blue staining (data not shown).  Alexa-Fluor 488
phalloidin (Invitrogen) was used to label F- actin of GWSS cells grown and fixed on glass slides. This labeling procedure
allowed a first evaluation of actin integrity and structural appearance in GWSS cells transfected with actin dsRNA
(Figure 1).

Choice of dsRNA inducers: Fourteen GWSS nucleotide sequences, derived from EST based nucleotide sequences available
in GenBank and translatable in putative proteins, were used to design gene specific primers and to generate cDNAs from
GWSS cell line Z15. The same approach was used for D. minerva. Corresponding sequences were amplified by RT-PCR,
cloned and sequenced to confirm their identity.

cDNAs of actin, arginin kinase, lian 2 (a non-LTR retrotransposon) and sar1 mRNAs expressed in the GWSS cell line and
D. minerva insects were cloned in pGMTeasy vetor in both orientations relative to the T7 RNA polymerase promoter, and
sequenced. The vectors were used for T7 RNA polymerase-mediated in vitro transcription to generate specific dsRNAs
(Ambion, dsRNA MegaScript). These dsRNA were delivered via transfection in GWSS cells, and two of them (sar1 and
actin) via injection in GWSS insects.

Evaluation of RNAi effects in GWSS cells and whole insects. Realtime RT-PCR primer/probe sets were designed and
tested via real time RT-PCR assays of GWSS cell derived RNA.

RNAi in GWSS cells. Real time RT-PCR was used to measure the amount of target mRNA in GWSS cells.
Actin mRNA was first used as the RNAi target in GWSS cells. Upon cell transfection with actin dsRNA, a reduction of the
corresponding mRNA was observed, indicating effective RNAi in cells (data not shown). In a time course experiment, actin
dsRNA and actin hairpin loop (cloned in the Gateway pMT-Dest 48 plasmid, Invitrogen) were used in cell transfection. The
strongest RNAi effects were observed upon dsRNA delivery at 72 hours post transfection (hpt) (Figure 2).

When cells were transfected with actin dsRNA, siRNA and the actin hairpin loop plasmid to identify the best effector for
RNAi, the most efficient RNAi inducer proved to be actin dsRNA (data not shown). SiRNA was found to be a good
alternative RNAi inducer.

Actin and sar1 mRNAs were compared as targets for RNAi, via transfection of GWSS cells with actin and sar1 dsRNA
respectively. In these experiments, sets of GWSS cells were also transfected with GWSS arginin kinase and lian2 dsRNAs as
control of genes expressed in GWSS; and gfp dsRNA as exogenous control. RNAi was evaluated 72 hpt. Experiments were
repeated three times. Of these, twice the cell transfection was performed in three replicates and once in two duplicates. Real
time RT-PCR samples were always loaded in duplicates. As result, actin dsRNA seems to be a better RNAi inducer than sar1
dsRNA (Figure 3).

RNAi in GWSS insects. RNA interference was experimentally assessed in GWSS insects. Sets of 15 nymphs were injected
with 1µg of dsRNAs (gfp, actin or sar1) or buffer, and groups of 5 insects were sacrificed 1 and 3 dpi. Total RNA was
extracted from the insects and the amount of the mRNA was measured by two methods, real time RT-PCR and semi-
quantitative RT-PCR. Experiments were repeated three times.  Semi-quantitative RT-PCR and real time RT-PCR results
were comparable, and both confirmed that injection of dsRNA of corresponding endogenous genes in insects produced a
reduction of the mRNA, indicating RNAi in insects (Figures 4 and 5).

Xylem specific promoter cloning. We cloned the full length EgCAD2 xylem specific promoter from Eucalyptus gunii in
pGEMTeasy, and we are subcloning this promoter into the binary vector AKK 1431, obtained from Govindarajulu Manjula,
(C.G. Tylor lab Donald Danforth Plant Science Center, St. Louis). The plasmid contains the GUS gene. Our contructs will be
evaluated in transgenic basil plants and then the GUS sequence will be replaced by an RNAi inducer as identified above.



- 59 -

CONCLUSIONS
RNAi effects have been demonstrated in GWSS cells and insects after delivery of dsRNA, and GWSS cells can be used to
screen candidate gene silencing targets. This study provides the evidence that RNAi might be useful as part of the overall
strategy to control Xf leafhopper species and to break the cycle between bacterial diseases and their hosts. Future work
includes the identification of suitable RNAi targets, the production of transgenic plants expressing dsRNAs in their xylem
and the study of the fate of ds/siRNA delivery in insects after feeding.
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Figure 2.  Cells transfected with dsRNA actin, or the actin hairpin loop plasmid were
harvested 24, 48 and 72 hpt and their actin mRNA levels were quantified by real time
RT-PCR. Actin mRNA was reduced the most at 72hpt.

0

0.5

1

1.5

2

2.5

control actin
dsRNA

actin
hairpin
loop

control actin
dsRNA

control

24hpt                             48hpt                           72hpt

actin
dsRNAactin

hairpin
loop

actin
hairpin
loop

actin mRNA

Actin dsRNA
treated cells(bright
field light)

Control cells (bright
field light)

Actin dsRNA
treated cells( UV
light). No
ddifference was
visible with control
cells

Control cells (UV light)

Figure 1.  Microscope observations at 24 hpt.  GWSS cells were grown on a glass slide
and treated with Alexa-Fluor 488 phalloidin (Invitrogen).
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Figure 3.  Actin, lian2, arginin kinase, and GFP dsRNAs (upper panel) and sar1, lian2, arginin kinase and
GFP dsRNAs (lower panel) were transfected in GWSS cells. Cells were harvested 72 hpt and the level of
sar1 or actin mRNAs were quantified by real time PCR.  RNAi was reached as proven by the sar1 and actin
mRNA reduction in sar1 and actin dsRNA transfected cells, compared to cells treated with transfection
reagent only (control). Transfection of cells with actin dsRNA generated a better RNAi response compared
to transfection of cells with sar1 dsRNA. Data were generated in three biological independent experiments,
with 8 replicates total. Error bars above the columns indicate the standard deviation among the 8 replicates.
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Figure 4.  Gel representative of three separate experiment results. Semi-quantitative RT-PCR results,
showing the RNA level in insects injected with 1µg of dsRNAs. Insects were collected 24 and 72 hour post
injection. Each RT-PCR was performed using 100 ng total RNA. The PCR was stopped after 15, 18 and 21
cycles.

Figure 5.  Real time RT-PCR on same samples as above.
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ABSTRACT
Glassy-winged sharpshooter (GWSS) population densities have been steadily declining over a 6.5 year period in organic
lemons grown in an experimental study plot at UC Riverside Ag. Ops. Peak adult GWSS populations in July 2008 were just
21% of those observed around August 2002.  It is uncertain if egg parasitism, which has consistently averaged ~22% per year
of GWSS egg masses, is responsible for the observed decline.  Density dependent analyses of time series data are planned
once data sets are large enough to provide greater insight into factors (i.e., parasitism [density dependent mortality] or
weather [density independent mortality]) affecting GWSS population dynamics.

INTRODUCTION
Data collected from bi-weekly monitoring over the last 6.5 years from organic commercially-managed lemons at Ag. Ops.
UC Riverside indicates that glassy-winged sharpshooter (GWSS) populations are declining steadily each year (Figure 1).  It
is uncertain whether parasitism of GWSS eggs by mymarid parasitoids is responsible for this downward population trend
(Figure 2).  In California, there is a guild of natural enemies attacking GWSS.  The dominant parasitoid attacking GWSS in
California is Gonatocerus. ashmeadi followed by G. morrilli. G. triguttatus from Texas and G. fasciatus from Louisiana have
been released in California, but widespread establishment and proliferation has not occurred.  Other minor parasitoid species
include G. novofasciatus, Ufens sp., and Zagella sp.  Together, this guild of parasitoids provides an average of ~22%
parasitism of GWSS eggs over the entire 6.5 yrs that this study site has been monitored.  There are at least four possible
reasons for low seasonal parasitism levels in California: (1) competitive exclusion amongst members of the GWSS parasitoid
guild is reducing effective biological control; (2) An extremely aggressive and efficacious natural enemy that can outcompete
G. ashmeadi and completely dominate the system year round to the almost total exclusion of all current parasitoids has not
been established in California and is needed for successful biological control of GWSS (this would require exploitation of
non-GWSS hosts during long periods of host egg unavailability); (3) The absence of resource subsidies such as nectar
provided by flowering plants in agroecosystems may limit parasitoid efficacy because longevity and fecundity is significantly
reduced when parasitoids can not access carbohydrates.  Understory management may be an important cultural strategy to
benefit GWSS parasitoids if it can be demonstrated not to enhance GWSS and Xylella populations; and (4) Climate, in
particular, prolonged cool periods over winter when GWSS eggs are unavailable probably has a severe affect on parasitoid
reproductive success and the ability of G. ashmeadi populations to propagate through the winter.  Long-term phenology
studies which generate data similar to the project reported on here, can be used to tease out density-dependent and density-
independent factors affecting population dynamics to elucidate factors affecting GWSS population growth.

OBJECTIVES
This project has one objective:
1. Conduct bi-weekly surveys of GWSS eggs, nymphs, and adults, and associated rearing of parasitoids from harvested egg

masses from organic lemons at Ag. Ops., UC Riverside.

RESULTS
The population monitoring study and measures of percentage parasitism clearly indicate that GWSS densities have continued
to decline steadily at the long-term monitoring plot (Figure 1) and percentage parasitism have remained relatively constant
over this time period (Figure 2).  Detection of density-dependent mortality from sequential census data, such as that
presented here, is notoriously difficult and the results of analytical models differ in outcomes depending on assumptions
made even when dummy data sets have been constructed to show density dependent mortality.  One of the major problems
with these types of analyses is serial correlation, where densities at Nt directly influence the population at Nt+1.  Recent
developments in analyses of time series data, such as those we are collecting for GWSS, are now providing much more
robust tests that overcome autocorrelation problems.  The Partial Rate Correlation Function (PRCF) is a relatively new
statistical procedure specifically designed for time series analysis of biological populations to detect density dependent feed
back.  Literature searches so far indicate that PRCF is the best of the extant techniques for analyzing long-term population
counts.  Consequently, census data collected from GWSS monitoring will be subjected to PRCF once we have data for a
minimum of 10 consecutive years to determine if density dependent or density independent feed back is responsible for
observed fluctuations from generation to generation.  Detection of density dependent mortality will indicate that populations
are being regulated, and could suggest that natural enemy populations are responsible.  Currently, our data set is too short to
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determine if parasitoid activity is providing density dependent mortality and is subsequently responsible for decreasing
GWSS densities at the study site.

CONCLUSIONS
GWSS populations appear to be showing a steady annual decrease in numbers in an organic lemon orchard at the University
of California, Riverside.  Percentage parasitism of GWSS eggs by mymarid parasitoids, in particular, G. ashmeadi, has
remained relatively constant from year to year at ~22%.  It is unknown if this level of parasitism is sufficient to have caused
the steady decline in GWSS numbers observed over the past 6.5 years or whether climatic variables such as wet winters (e.g.,
2006), or very cold and dry winters (e.g., 2007) suppressed GWSS population growth, while warmer than normal spring
periods (e.g., 2008) accounts for observed rebounds in GWSS populations.
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Figure 1. Phenology of adult GWSS in organic Eureka lemons. Data are total counts from timed five minute surveys made
every two weeks of 10 mature lemon trees at Ag. Ops. University of California, Riverside.
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Figure 2. Percentage parasitism estimates of GWSS eggs in Eureka lemons. GWSS egg masses are collected from timed
five minute surveys made every two weeks of 10 mature lemon trees at Ag. Ops. University of California, Riverside.
Harvested leaves are returned to the laboratory, the number of eggs per egg mass are counted and parasitoid emergence and
species identity is determined.
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ABSTRACT
To date, we have conducted experiments investigating the egg age preference and competitive ability of clade 1 (Hoddle and
Irvin 2007) and clade 2 (presented here), G. tuberculifemur against G. ashmeadi.  Results strongly suggest that G. ashmeadi
is superior to G. tuberculifemur clades 1 and 2 when parasitizing GWSS eggs in “complex” and “simple” experimental
conditions with short and long exposure times.  The higher rates of parasitism and larger host age range demonstrated by G.
ashmeadi suggest that this species will be more competitive than G. tuberculifemur clades 1 and 2 in the field when
competing for GWSS egg masses and will likely prevent the widespread establishment of G. tuberculifemur clades 1 and 2.
Consequently, it would appear that G. tuberculifemur (clades 1 and 2) will contribute little to the biological control of GWSS
in California.

INTRODUCTION
Gonatocerus tuberculifemur is a sharpshooter parasitoid from Argentina that attacks glassy-winged sharpshooter (GWSS)
egg masses.  This parasitoid is being considered for use as a neo-classical or new association biological control agent for
GWSS in California.  A recent molecular study (de Leόn et al. 2008) has identified two distinct clades within the species
currently considered to be G. tuberculifemur. Populations of G. tuberculifemur collected from San Rafael in Argentina
cluster into clade 2 and the rest of the populations for which DNA was analyzed clustered into clade 1.  There is substantial
uncertainty about the safety of releasing these agents (i.e., unintended spread and non-target impacts) and whether these
neoclassical natural enemies would provide additional control of GWSS in California or disrupt the efficacy of the existing
parasitoid complex which has been constructed with natural enemies that have evolved to exploit GWSS.  The purpose of this
work has been to ascertain in quarantine whether these neoclassical biological control agents from Argentina in clades 1 and
2 can outperform the dominant GWSS parasitoid in California, G. ashmeadi.  To date, we have completed experiments
assessing clade 1 and a summary of these results were presented in the 2007 Pierce’s Disease Symposium Proceedings.  This
report presents experimental results for “G. tuberculifemur” that are representative of populations that compose clade 2.

OBJECTIVES
1. Ascertain oviposition preferences of G. ashmeadi and G. tuberculifemur clade 2 for GWSS egg masses of different ages.
2. Determine the competitiveness of these two parasitoid species simultaneously foraging for GWSS egg masses in

complex and simple environments.

RESULTS
Objectives 1 & 2: Egg age preferences and competitive ability

Experiment 1 - Complex environmental system:
One mated female G. ashmeadi and G. tuberculifemur (~24-36 h of age) was presented simultaneously with one GWSS egg
mass (composed of ~4-8 eggs) camouflaged amongst four other similar sized lemon leaves in a double ventilated vial. This
‘complex system’ was replicated 15 times for GWSS eggs aged one, three and five days of age. After 60 minutes exposure to
foraging parasitoids, leaves with egg masses were placed into individual Petri dishes, labeled and held at 27oC for emergence
of parasitoids and GWSS nymphs. The number of emerged and unemerged males and females of each parasitoid species was
recorded. Fifteen control vials containing one female parasitoid were set up for each species. Percentage parasitism by G.
ashmeadi and G. tuberculifemur was calculated as the percentage of total eggs.

Figure 1 shows percentage parasitism by G. ashmeadi and G. tuberculifemur resulting when GWSS egg masses one, three or
five days of age were exposed to three different treatments: (i) G. ashmeadi control vials consisting of one female G.
ashmeadi; (ii) G. tuberculifemur control vials consisting of one female G. tuberculifemur; and (iii) vials containing one
female of both G. ashmeadi and G. tuberculifemur competing for GWSS eggs. Results from vials containing one egg mass
exposed simultaneously to one G. ashmeadi and G. tuberculifemur showed that parasitism by G. ashmeadi was consistently
53-81% higher than G. tuberculifemur for all three egg ages (one, three and five days of age) tested (Figure 1).  Results from
the control vials (those containing only one female) showed that G. tuberculifemur demonstrated no egg age preference,
parasitizing 7% of eggs one, three and five days of age (Figure 1).  Results for the G. ashmeadi controls showed that GWSS
egg parasitism ranged from 58-82% (Figure 1).  Statistical analyses are currently underway to determine whether egg age
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had a significant effect on parasitism by G. ashmeadi.  The higher rates of parasitism demonstrated by G. ashmeadi suggest
that this species will be more competitive than G. tuberculifemur in the field when attacking GWSS egg masses.

There was no significant difference in overall parasitism of GWSS eggs between vials containing G. ashmeadi only (A) and
vials containing both G. ashmeadi and G. tuberculifemur (AT) for the complex system (Figure 2).  Female G. ashmeadi
dominated the mixed parasitoid system and the contributions to overall parasitism by G. tuberculifemur were negligible.

Experiment 2 - Simple environmental system:
One mated female G. ashmeadi and G. tuberculifemur (~24-36 h) was presented simultaneously to one GWSS egg mass (~4-
8 eggs, 1-2 days of age) on a single leaf in a double ventilated vial.  This ‘simple system’ was replicated 15 times.  Egg
masses were not camouflaged amongst four other similar sized leaves.  Exposure time of GWSS eggs to parasitoids was 15
minutes and each minute the behavior [searching container (SC), searching leaf (SL), searching egg mass (SE), oviposition
(O), resting (R), grooming (G), aggressive chasing (C), antennating conspecific (AC), searching egg mass from top side of
leaf (SETS), ovipositing from top side of leaf (OTS), and feeding on honey (F)] of each female was recorded.  Fifteen
replicates of two types of control vials were also set up for each species.  These contained either one female parasitoid or two
female parasitoids of the same species to account for interaction effects independent of species.
Results from vials containing one egg mass exposed simultaneously to one G. ashmeadi and G. tuberculifemur in a ‘simple
experimental system’ with just one leaf for 15 minutes showed that parasitism by G. ashmeadi was 61% (Figure 3), while G.

Figure 1. Percentage parasitism by G. ashmeadi and G. tuberculifemur resulting when
GWSS egg masses aged one, three, and five days of age were exposed to parasitoids
either alone or in competition with each other.

Figure 2. Overall percentage parasitism of GWSS egg masses exposed to three
treatments in a ‘complex experimental system’ for 1 h.
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tuberculifemur parasitized no GWSS eggs within the 15 minute exposure time (Figure 3).  Behavioral data are currently
being analyzed.

Experiment 3 - Long exposure time: When ~50 GWSS eggs were exposed to one female G. ashmeadi and G. tuberculifemur
for either 24 hours or five days, parasitism by G. ashmeadi was 82-94% higher than G. tuberculifemur for both exposure
times (Figure 4).

CONCLUSIONS
Gonatocerus tuberculifemur is a sharpshooter parasitoid from Argentina that is being considered for release from quarantine
for biological control of GWSS in California.  There is substantial uncertainty about the safety of releasing this agent and
whether it would provide additional control of GWSS in California or disrupt the efficacy of the existing parasitoid complex
which has been constructed with natural enemies that have evolved to exploit GWSS in the home range of this pest (i.e., the
southeast USA and northeast Mexico).  By studying the egg age preference, competitive ability and functional response of G.
ashmeadi and G. tuberculifemur (clades 1 and 2) we sought to determine which of these three parasitoids is likely to be the

Figure 3. Percentage parasitism by G. ashmeadi and G. tuberculifemur resulting when GWSS
egg masses aged 1-2 days of age were exposed to parasitoids either alone or with intraspecific
or interspecific competition (A = vial containing one female G. ashmeadi; AA = vial
containing two female G. ashmeadi; AT = one female G. ashmeadi and G. tuberculifemur, T =
one female G. tuberculifemur; TT = two female G. tuberculifemur).

Figure 4. The mean percentage of G. ashmeadi and G. tuberculifemur offspring emerging
when 50 GWSS eggs were exposed simultaneously to one mated female G. ashmeadi and G.
tuberculifemur for 24 h or five days.
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most efficacious.

Results from experiments involving clade 2 of G. tuberculifemur, as shown here, suggest that G. ashmeadi is superior to G.
tuberculifemur when parasitizing GWSS eggs in “complex” and “simple” experimental conditions with short and long
exposure times.  Results from competition experiments where both parasitoids were presented simultaneously to host eggs
demonstrated that G. ashmeadi outcompeted G. tuberculifemur clade 1. These results suggest that G. ashmeadi may prevent
widespread establishment and proliferation of G. tuberculifemur clade 1 in California.  This result is similar to Hoddle &
Irvin (2007) who showed that G. ashmeadi was superior to G. tuberculifemur clade 2, and to G. triguttatus and G. fasciatus
under similar experimental conditions (Irvin and Hoddle 2005).  Neither G. triguttatus or G. fasciatus have performed well
following mass releases in California where G. ashmeadi is present, which suggests that the results of these competitive lab
experiments may accurately predict field performance.

Our data thus far suggests that the potential impact of releasing G. tuberculifemur clade 2 (and clade 1) in California on the
biological control of GWSS may not out-weigh the cost of mass rearing and releasing of this biological control agent.  When
time and labor costs for large-scale colony maintenance, disruption of existing levels of control achieved with the resident
natural enemy guild (especially G. ashmeadi), and potential invasion by G. tuberculifemur back into the southeast USA
where GWSS originated are all considered, there appears to be no quantifiable benefit to releasing G. tuberculifemur clade 2
in California for the biological control of GWSS.  Similar conclusions have been reached from completed work on G.
tuberculifemur clade 1 (Hoddle and Irvin 2007).
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ABSTRACT
Efficient and precise methods for detection of new colony infestations and for monitoring glassy-winged sharpshooter
(GWSS), Homalodisca vitripennis (Germar) population dynamics on a temporal and spatial basis for IPM related decision-
making are lacking.  This proposal provides an approach that will address the detection and monitoring needs as well as
develop a new strategic approach to management of GWSS.

INTRODUCTION
The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar), as a vector of Xylella fastidiosa (Xf) remains a
threat to grapes, almonds, stone fruit and oleander and impacts citrus and nursery crops throughout much of California.  It
remains an important quarantine pest for the Napa and Sonoma Valleys and other uninfested areas.  Due to the unique
biology and behavior of the xylophagous GWSS which is driven by plant xylem chemistry and nutrition, conventional
detection and monitoring approaches may not provide the necessary statistical precision needed by the regulatory and
producer community for management decisions.  This proposal provides an approach that will address the detection and
monitoring needs as well as develop a new strategic approach to management of GWSS.

OBJECTIVES
Overall:  To determine the most efficient and cost effective trapping system to detect and monitor GWSS population
dynamics and the potential to manage GWSS populations.
1. Evaluate and summarize previous sampling and trapping efforts for GWSS.
2. Trap configuration and number: Determine the potential and optimize the number of traps that are most efficient and cost

effective in detecting and estimating GWSS populations.
3. Determine the effects of host plants in combination with traps: Determine the potential and the optimization of a

combination of GWSS host plants in sentinel plots to detect, estimate and manage GWSS population dynamics.

RESULTS AND DISCUSSION
Since the initiation of the Pierce’s Disease-Glassy-winged Sharpshooter Research Program, a number of investigators have
addressed sampling methodology for estimating population parameters of GWSS.  Here we discuss trap and related sampling
methodology with potential for the development of effective monitoring and detection of GWSS (Figure 1) and summarize
the results to date.  We do not include all of the literature that used traps to sample GWSS or the literature tangentially related
to sampling methodology, such as marking methods for mark-recapture studies.  However, new effective methods have been
developed within the program (Hagler et al. 2005).

Turner and Pollard (1959) first used sticky board traps (size not described) at 3 heights 0.6, 1.8 and 3 m above ground.  Traps
at these three heights captured 23, 37 and 42% of the GWSS captures, respectively.  Ball (1979) used masonite board traps
(27 × 13.5 cm) and screen traps of yellow, white and red covered with either Tack Trap™ or Stickem Special™ in peach
orchards in Monticello, FL to trap GWSS and H. insolita (Wlk).  Traps were placed at 1 and 1.3 m above the ground and data
were collected for three years. Yellow boards captured the highest number of leafhoppers of both species.  Results relative to
brands of stickem were equivalent.  The 1.3 m trap height captured 61% of the GWSS, however, the 0.6 m traps captured
significantly more H. insolita.  GWSS populations began to appear on the traps in late March–early April, peaked in June-
July and disappeared in late September-early October.  Leafhopper populations fluctuated by an order of magnitude from
year to year.

Blua et al. (2002) compared yellow sticky cards, beat-net sampling and timed counts to estimate GWSS nymph and adult
populations in citrus compared to total tree counts of GWSS obtained with knockdown (pyrethrin canister) pesticide
applications.  They also estimated trap efficiency as a function of the number of GWSS already on the traps which addressed
the physical function of the trap.  However, a potential effect on trap attraction due to reduced visual stimulation or trap
active distance was not discussed, but may have been involved.  A significant inverse relationship (Y=6.584-0.0022X-8E-
05X2, R2=0.71, P<0.001) was detected between number of GWSS already present on traps and subsequent trap catch.  No
correlations were observed for nymph or adult GWSS counts between beat-net samples, timed counts or stick card samples.
GWSS adult sticky card samples did not correlate with any other sampling method.  Absolute counts of GWSS nymphs
correlated significantly (P=0.035) with timed counts.  For nymphs, adults and total GWSS, beat-net samples correlated
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significantly (P<0.01) with timed counts.  Blua and Redak (2003) compared trapping methods in small citrus trees versus
large commercial trees.  Adult counts showed significant correlations between all methods tested.  In large commercial trees
about 50% of variation was explained by a regression of GWSS sticky card counts on total counts.  Beat-net and visual
counts were less accurate.  In small trees, beat-net and visual counts of nymphs had a correlation with total counts near to or
greater than 80%.

Blackmer et al. (2002, 2004, 2006) conducted a mark-recapture study using cylindrical traps (40 × 60 cm sheet rolled into a
cylinder of 16 cm dia.) at three heights (ground level , 2-3 m and 6-7 m relative to alfalfa and citrus canopies) to determine
the dispersal rate and distance of GWSS as well as H. liturata.  While trap comparison was not part of the studies, a number
of parameters that could affect GWSS trap capture rates were evaluated.  Pertinent findings included: higher numbers of
GWSS were collected on traps at heights below 3 m, 95% of released GWSS were captured within 90 m of the release point
in alfalfa and within 31-150 m in citrus, GWSS peak flight activity occurred between 1000 and 1400 h and trap capture was
rare at temperatures below 18 0C.  Wind speeds above 3 m/sec decreased flight activity.  No flight activity was observed
between 2200 and 0600 h and this was similar to observations in Florida (Mizell et al. 2008).

Bartels et al. (2002) used Seabright (Seabright Labs, Emeryville, CA) yellow traps (36 cm2 trapping surface) at 2 m in height
to trap GWSS in several types of crop habitats in Kern County, CA. Grape, peach/nectarine, almond and cherry orchards
were sampled at 11 locations using a grid approach where traps were placed in 3 transects 24 m apart on the exterior and
interior of the habitats.  Traps were checked weekly.  GWSS were captured throughout the year.  An early season peak was
observed in citrus but not in the other crops.  From July-October most GWSS captures were found in grape and cherry while
the organic grape location had the most GWSS.  Late in the year GWSS peaked in peach/nectarine.

Hix (2002, 2003) trapped GWSS in wine grape vineyards that were either organically or minimally farmed in Temecula, CA.
Commercially-available yellow traps, and plate and nymph traps (not described) in a number of colors were tested and
compared against visual counts of GWSS life stages.  Adult GWSS trap captures and oviposition in adjacent vegetation (3
sets of 25 vines) were correlated.  Also, the number of nymphs found in July-September was strongly correlated to the
number of captured female GWSS.  The relationship between nymphs and females was described (y=b1(X) –b0)): number of
nymphs per search = 3.4 GWSS females-2.4 (R2 = 0.97, F=379, P =0.003).  Yellow plates captured higher numbers of GWSS
than commercial yellow traps.  Orange plate traps also captured more GWSS than the Seabright trap.  Seabright traps
configured as a cylinder did not capture more GWSS than regularly configured (two-sided) traps. Four trap sizes (125, 249,
499 and 998 cm2) were compared and trap catch increased with size.  However, the trap size of 499 cm2 captured higher
numbers on an area/trap basis.  Two types of sticky material were also tested but without manifesting differences in trap
captures.  GWSS phenology in Temecula grapes was characterized with peak numbers occurring in August-September.
Using trap color comparisons, it was demonstrated that GWSS were behaviorally attracted to both yellow and orange.

Blua and Morgan (2003) used Pherocon AM/NB (18 × 25 cm, two sides) (Trece', Salinas, CA) to sample GWSS for 21
months in grape-growing areas of southern California.  Their methods consisted of trapping the areas between citrus and
grape plantings and 0-40 m into the vineyard interiors along with surrounding vegetation consisting of natural coastal sage
scrub and riparian areas.  They also investigated the effect of trap height on GWSS capture rate.  They reported that >97% of
GWSS trap captures occurred at trap heights at or below 5 m.  Citrus harbored higher numbers of GWSS than the other
vegetation types, especially during winter months, but unlike most native leafhopper vectors in CA, GWSS were detected far
into the interior of the vineyards.  Peak GWSS trap captures were observed in August-September in all vegetation types with
citrus exhibiting an additional peak in December.

Castle and Naranjo (2008) compared yellow sticky trap captures of GWSS using four sampling methods: D-Vac, A-Vac,
pole-bucket and beat-net for their ability to estimate relative densities of GWSS in citrus.  Similar estimates of GWSS
distribution and phenology were produced by each of the methods, however, precision, accuracy and relative cost differed
between methods.  While a male bias was indicated in the sampling method data, female counts correlated well (R2 =0.95)
with yellow sticky trap captures.  The pole bucket was judged using precision and costs as the criteria to be the best overall
sampling method for both nymph and adult GWSS.

CONCLUSIONS
With the notable exception of the results reported for citrus by Blua and Redak (2003) and  Castle and Naranjo (2008) that
compared four sampling methods useful to estimate GWSS population parameters in citrus groves, trapping methods for
GWSS remain ill defined with respect to relative cost, accuracy and precision for both regulatory and management purposes.
Yellow sticky traps available commercially from either Seabright or Trece' remain the primary method for detection and
monitoring GWSS.  However, “homemade” or non-commercial traps of various sizes, including dinner plates (Hix 2003),
painted a bright hue of yellow or orange have been shown to be behaviorally attractive to and equally effective for the
leafhoppers vectors.

The quantification of sampling efficiency and efficacy remains incomplete for crops and habits other than citrus.  In grape,
Hix (2003) did report significant correlations between trap captures of nymphs and adults at specific times of the season as
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well as correlations of GWSS numbers in the vineyard with those captured on exterior vegetation.  Investigations from a
number of perspectives with the objective of trap improvement are ongoing.  Unlike many other insect pests, GWSS
behaviors involved in mating and host plant selection do not appear to be predominantly mediated by olfactory cues.  Patt
and Sétamou (2007) investigated the response of GWSS nymphs and adults to visual and olfactory cues in the laboratory.
They reported that host odors changed the orientation behavior of both nymphs and adults and likely functions as stimulant
for enhanced visual attraction to hosts.  Potential exploitations of these findings remain to be elucidated.  Unfortunately,
GWSS is a strong flyer capable of long range dispersal whose nutritional requirements force it to use different host plants
over its long lifetime (Mizell et al. 2008).  It has demonstrated the ability to spread and establish in non-native habitats in CA
and in other parts of the world.  Therefore, efficient methods for detection and monitoring remain important tools that need
further development to facilitate suppression of this leafhopper vector of Xf-caused diseases.  A number of behavioral,
biological and ecological factors conceptualized in Figure 1 may perhaps be exploited to further address the problem and
these are being investigated.
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Figure 1. A conceptual "mind map" model of the parameters and potential relationships involved in detection and
monitoring of the glassy-winged sharpshooter, Homalodisca vitripennis.
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ABSTRACT
Riverside County has two general areas where citrus groves interface with vineyards, the Coachella and Temecula Valleys.
The Coachella Valley with 10,438 acres of table grapes in proximity to 12,000 acres of citrus and the Temecula Valley with
2,000 acres of wine grapes in proximity to 1,600 acres of citrus are vulnerable to Pierce’s disease (PD), caused by the
bacterial pathogen Xylella fastidiosa. The grapes in the Coachella and Temecula areas of Riverside County are in jeopardy
because of the glassy-winged sharpshooter (GWSS; Homalodisca vitripennis), the vector of the PD bacterium, build up in
adjacent citrus groves.  Citrus is an important year around reproductive host of GWSS in Riverside County, but also one that
concentrates GWSS populations over the winter months during the time that grapes and many ornamental hosts are dormant.
GWSS weekly monitoring in citrus in grapes began in March 2000 in Temecula Valley and 2003 in Coachella Valley by
trapping and visual inspections.  Temecula valley GWSS populations in 2008 reached levels not seen prior to the initiation of
the area wide GWSS program in 2000.  Coachella Valley GWSS populations have decreased dramatically since the treatment
program was initiated in 2003.

INTRODUCTION
The glassy-winged sharpshooter (GWSS) vectors a bacterium that causes Pierce’s disease (PD).  This insect and bacterium
are a severe threat to California’s 830,000 acres of vineyards and $30 billion industry.  An area-wide GWSS management
program was initiated in Temecula in 2000 to prevent this vector’s spread into other California grape-growing regions.  In
Temecula Valley itself, the wine grape industry and its connecting tourist industry generate $100 million of revenue for the
economy of the area.  GWSS/PD caused a 30% vineyard loss and almost destroyed the connecting tourist industry.  The area
wide GWSS management program initiated in the spring of 2000 saved the industry from a 100% loss.  Only a continuation
of an area-wide GWSS management program will keep the vineyards viable in Temecula.  The table grape industry in the
Coachella Valley is represented by 10,465 acres of producing vines, which generate fresh market grapes valued at an average
of $110 plus million annually.  The GWSS was identified in the Coachella Valley in the early 1990’s.  Population increases
of this insect in Coachella Valley in the last three years have increased the danger of PD occurrence in this area, as has
occurred in similar situations in the Temecula and San Joaquin Valleys.  In July 2002, the occurrence of Xylella fastidiosa,
the PD bacterium, was found in 13 vines from two adjacent vineyards in the southeastern part of Coachella Valley.  With this
discovery, and the increasing GWSS populations, there was and is a real need to continue an area-wide GWSS/PD
management program, to prevent an economic disaster to the work forces and connecting small businesses of Mecca,
Thermal, Coachella, Indio, etc. that depend upon the vineyards for a big portion of their incomes.  Only a continuation of an
area-wide GWSS/PD management program will keep the vineyards viable in Coachella.  At present, there are no apparent
biological or climatological factors that will limit the spread of GWSS or PD. GWSS has the potential to develop high
population densities in citrus.  Insecticide treatments in citrus groves preceded and followed by trapping and visual
inspections to determine the effectiveness of these treatments are needed to manage this devastating insect vector and
bacterium.  A total of 106 acres of citrus in Riverside County were treated for the GWSS in February through September,
2008 between a cooperative agreement with USDA-APHIS and the Riverside Agricultural Commissioner’s Office under the
“Area-Wide Management of the Glassy-Winged Sharpshooter in the Coachella and Temecula Valleys”.

OBJECTIVES
1. Delineate the areas to be targeted for follow-up treatments to suppress GWSS populations in the Temecula and

Coachella Valleys for 2009.
2. Determine the impact of the GWSS area-wide treatments to suppress GWSS populations in citrus groves and adjacent

vineyards.
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METHODS, RESULTS AND CONCLUSIONS
The programs in Coachella and Temecula were dependent upon grower, pest management consultants, citrus and vineyard
manager’s participation.  The areas encompass approximately 28,000 acres.  Representatives of various agencies were
involved in the program, they were as follows: USDA-ARS, USDA-APHIS, CDFA, Riverside County Agricultural
Commissioner, UC Riverside, UC Cooperative Extension, and grower consultants.  Representatives of these agencies meet to
review the program.  Newsletters are sent to growers, managers, wineries, and agencies with information on GWSS
populations and insecticide treatments via e-mail.  The information from Temecula is sent weekly, while information from
Coachella goes to the various parties monthly.

The GWSS/PD citrus groves and vineyards within the GWSS/PD management areas were monitored weekly to determine the
need and effect of insecticide treatments on GWSS populations.  In August, because of the lack of GWSS trap catches in
Coachella Valley, a bi-weekly schedule was initiated.  Yellow sticky traps (7 x 9 inches) were used to help determine GWSS
population densities and dispersal/movement within groves and into vineyards (Figures 1 & 2).  Approximately 1,400
GWSS yellow sticky traps are monitored weekly.  Based on trap counts and visual inspection, only 106 acres of citrus were
treated in Temecula valley for GWSS.  No insecticide treatments were needed in Coachella Valley for the management of
GWSS in 2008.  In Temecula Valley, treatments for GWSS in citrus were initiated when at least 1-2 GWSS adults were
found at the same trap location for two consecutive weeks.  In Temecula Valley, only the citrus where the GWSS was found
were treated.  Because of various reasons, some citrus acreage in Temecula should have be treated that was not.  These
additional acres were not treated because of one of the following three reasons:  uncooperative citrus growers, close
proximity to homes and the late time of the season that the GWSS appeared.  In Temecula Valley, 93 acres of the 106 citrus
acres were treated with Admire Pro (imidacloprid) at the rate of 14 oz./acre.  In June, 37 of the 93 acres were treated with
Lorsban 4E (chlorpyrifos) at the rate of 7 pts./acre.  Thirteen acres were treated with PyGanic 5.0 (1.4% Pyerthrins) at 18
oz./acre. PyGanic was used to treat organically grow citrus. On the 13 citrus acres where PyGanic was used to manage
GWSS, a follow-up treatments of PyGanic was applied a month after the first application for two consecutive months.
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Figure 1. In 2008, high numbers of adult GWSS were caught on the yellow sticky traps in Temecula, with populations
peaking in July reaching a total of approximately 2,400 trapped.
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Total Coachella GWSS Catch per Week for 2008
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Figure 2. GWSS populations in Coachella Valley peaked in July with a high of 100 trapped.
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ABSTRACT
Three insecticide programs were evaluated in two vineyards in North Carolina from 2006 to 2008 for managing leafhopper
vectors of Xylella fastidiosa (Xf), the bacterium that causes Pierce’s disease in grapes.  In 2006, the treatments consisted of
applications of Assail®, Danitol®, Provado®, or Venom®, in different sequences and frequencies during the growing
season.  The same insecticides were used in 2007, except Provado®, whereas Admire-Pro®, Belay® and all insecticides used
in 2007 were used in 2008.  Most insecticides were applied as a foliar spray except Venom which was applied to the foliage
and soil and Admire-Pro and Belay which were only applied to the soil.  Soil applications were made along the base of the
vines.  Leafhoppers were monitored in each plot with yellow sticky traps which were changed every two weeks.
Graphocephala versuta was the most abundant and ubiquitous leafhopper that was trapped in the test plots.  Five other
species of sharpshooters were identified: Cuerna costalis, Paraulacizes irrorata, Oncometopia orbona, Homalodisca
insolita, and H. vitripennis. However, the latter was only detected in 2007 and 2008.  All insecticide treatments significantly
reduced the number of leafhoppers trapped compared with the control during the three seasons.

INTRODUCTION
Several species of leafhopper vectors of Xylella fastidiosa (Xf), the causal agent of Pierce’s disease (PD), are abundant in
vinifera vineyards in North Carolina (Myers et al. 2007).  PD severely affects vinifera grapes debilitating the plants, reducing
the productivity life span of vines and increasing costs in vineyards (Purcell and Hopkins 1996).  This disease is a limiting
factor for the development of the vinifera industry in North Carolina and has been detected in many of the grape growing
regions in the eastern two-thirds of the state (Anas et al. 2008).  In this paper we report preliminary results of insecticide tests
for managing leafhoppers conducted between 2006 and 2008.  These tests were conducted in two vineyards located in Wake
and Alamance counties.  Insecticide classes and rates used are presented in Table 1.  In 2006, the treatments consisted of
single applications of Assail®, Danitol®, Provado®, or Venom®, in different sequences and frequencies during the growing
season (Table 2a).  All insecticides used in 2006 were used in 2007, except Provado® (Table 2b), whereas Admire-Pro®,
Belay® and all insecticides used in 2007 were used in 2008 (Table 2c).  Venom was applied to the foliage and soil, whereas
Admire-Pro, and Belay were only used as soil applications, and the remainder of insecticides were applied to the foliage.
Leafhoppers were monitored with yellow sticky traps placed in the middle row of each plot and replaced every two weeks.
All vines in the middle rows of each plot were tested for the presence of Xf using an ELISA test kit (Agdia Inc., Elkhart, IN).

OBJECTIVES
1. To evaluate the effectiveness of insecticide programs on populations of leafhoppers in vineyards of North Carolina.
2. Develop an IPM program for leafhoppers for vinifera vineyards in North Carolina.

RESULTS AND DISCUSSION
During peak population periods, and throughout most of the growing season, fewer leafhoppers were found in the insecticide
treatments than the control in 2006, 2007, and 2008, (Figures 1 and 2). Graphocephala versuta was the most abundant and
ubiquitous leafhopper trapped during the three growing seasons.  Significantly more G. versuta (P < 0.05) were found in the
control compared to all the insecticide treatments in 2006, 2007, and 2008 (Figures 1a, 1b, 1c, and 3a).  A similar trend was
observed for all sharpshooters though there was no significant difference among treatments in 2008 (Figures 2a, 2b, 2c, and
3b).  Five species of sharpshooters were found in the traps: Cuerna costalis, Homalodisca insolita, H. vitripennis,
Oncometopia orbona, and Paraulacizes irrorata.  The most abundant were H. insolita and O. orbona.  The glassy-winged
sharpshooter H. vitripennis was only found in 2007 and 2008 in the Wake Co. vineyard.  The peak population of O. orbona
occurred from mid-June to the first week of July whereas, H. vitripennis peaked between mid-July and mid-August.  Peak
numbers of G. versuta were delayed by ~3 weeks in 2007 compared with 2006 (Figures 1a and 1b) which may be due to a
hard freeze from 6 to 10 April 2007.  Similarly, a severe late freeze between 13 and 16 April 2008 may have decreased
leafhopper numbers in 2008 compared to the two previous years (Figures 1, 2 and 3).  These two freeze events may also
have affected the survival of Xf because the incidence PD in the Alamance Co. vineyard was reduced in 2007 and 2008
(Table 3).  The Wake Co. grower removed the vines in August 2008 and no PD evaluation was possible.  There were no
significant treatment effects on PD incidence as measured by ELISA.
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Table 1. Insecticide classes and rates.
Type Insecticide (Trade name) Rate/Ha
Neonicotinoid acetamiprid (Assail 30 SG ) 77.0 g

“ imidacloprid (Provado 1.6 F*) 274.1 ml
“ (Admire Pro▲♦ ) 1024.8 ml
“ dinotefuran (Venom insecticide) 210.0 g

(Venom insecticide♦) 420.1 g
clothianidin (Belay▲♦) 878.4 ml

Pyrethroid fenpropathrin (Danitol 2.4 EC) 1460.5 ml
(*) Provado was used only in 2006 and (▲) Admire Pro and Belay were used only in 2008. (♦) Indicates soil application.  In
all other cases insecticides were applied to the foliage, unless indicated.

Table 2. Insecticide application schedule for (a) 2006, (b) 2007, and (c) 2008.

(a) 2006
Treat. 15-Apr 3-May 17-May 1-Jun 15-Jun
T1 Danitol Assail Danitol Assail Venom
T2 Danitol Provado Danitol Provado Venom
T3 Venom♦ - Venom Danitol Assail
Control - - - - -

(b) 2007
Treat. 27-Mar 12-Apr 26-Apr 9-May

Venom Danitol
23-May
Assail

5-Jun 19-Jun 3-Jul
-

17-Jul
-T1 Venom♦ - Danitol Assail

T2 - Venom♦ - Venom Danitol Assail Danitol Assail -
T3 - Venom♦ - Venom Danitol - Assail Danitol Assail

Control - - - - - - - - -

(c) 2008
Treat. 2-Apr

Venom♦
15-Apr

-
29-Apr
Venom

12-May 27-May
Assail

10-Jun
Danitol

24-Jun
Assail

8-Jul
-

22-Jul
-T1 Danitol

T2 - Venom♦ - Venom Danitol Assail Danitol Assail -
T3
Control

-
-

Venom♦
-

-
-

AdmirePro♦
- -

Belay♦
-

-
-

Danitol
-

Danitol
-

Table 3. Percentages of PD in middle row plants (Wake: n=96, Alamance: n=142).  The grower removed all plants in the
Wake Co. vineyard in 2008.  The Alamance Co. grower replaced vines killed by PD in the spring of 2008.  If these vines are
considered, the percentage vines affected would be 13.1% for 2008.

Year County Location
Wake* Alamance

2006 24.5% 73.1%
2007 72.2% 11.8%

2008* n/a 4.2%
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CONCLUSIONS
All the insecticide management programs we studied reduced the numbers of total sharpshooters and G. versuta in the treated
plots compared with the control.  In addition, in most cases, the insecticide treatments also reduced the numbers of other
leafhopper species (data not shown) during the three-year study. Graphocephala coccinea, Ponana puncticollis,
Paraphlepsius irroratus, Texananus scultus, Norvellina seminude, Gyponana, Draecucephala sp., Scaphoideus titanus,
Scaphytopius, and Agalliota sp. were some of the species collected in this study and may be potential vectors Xf. Some of
these species had been reported as carriers of Xf (Purcell 1979, Myers et al. 2007) but have not been shown to transmit Xf.
Based on our tests, North Carolina vinifera grape growers have several options that will suppress populations of leafhoppers.
However, the program still needs to be refined to be more cost effective.  Additionally, the effect of these programs on
reducing vines infected with Xf needs further evaluation.  Although we did not see any differences in the incidence of PD
between treated and non-treated vines in our small test plots, we have some evidence from a vineyard trial that insecticide
applications will reduce the incidence of PD.  In 2008, we initiated a test in a newly planted vineyard to assess the
effectiveness of one of our programs (T3, 2008) compared to the grower’s program.  When our program was used in a
vineyard planted in 2008 (n=592), PD symptoms were observed in only 4.4% of vines in late September whereas in an
adjacent vineyard with replanted vines (n=74) where our program was not used, 44 plants (59.4%) had PD symptoms.  Only
one vine in each plot tested positive for Xf using ELISA.  Visible symptoms (marginal leaf scorch) occurred late in the season
consequently the titer of Xf may have been too low to detect using ELISA.  This test will be continued to evaluate the long-
term effectiveness of the program.
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ABSTRACT
The interactions between the economically important plant pathogenic bacterium Xylella fastidiosa (Xf) and its leafhopper
vectors have been poorly characterized.  We used different approaches to determine how Xf cells interact with the cuticular
surface of the foregut of vectors.  We demonstrate that Xf binds to different polysaccharides with variable affinities, and that
these interactions are mediated by cell surface carbohydrate-binding proteins.  In addition, competition assays showed that N-
acetylglucosamine inhibited bacterial adhesion to vector foregut extracts and intact wings, demonstrating that attachment to
leafhopper surfaces can be affected in the presence of specific polysaccharides. In vitro experiments with several Xf
knockout mutants indicated that hemagglutinin-like proteins were associated with cell adhesion to polysaccharides.  These
results were confirmed with biological experiments, when hemagglutinin-like proteins mutants were transmitted to plants at
lower rates when compared to the wild type.  Furthermore, although these mutants were defective in adhesion to the cuticle
of vectors, their growth rate once attached to leafhoppers was similar to the wild type, suggesting that these proteins are
important for Xf initial adhesion to leafhoppers.  We propose that Xf colonization of leafhopper vectors is a complex,
stepwise process, similar to the formation of biofilms on surfaces.  Results presented here and in the 2007 report have been
combined and submitted to publication.

INTRODUCTION
The interaction of Xylella fastidiosa (Xf) with the foregut cuticle differ from other xylem-limited bacteria such as Leifsonia
xyli which can be acquired from plants but are not transmitted by insects (Barbehenn and Purcell 1993).  Only two studies
with Xf knockout mutants have addressed aspects of vector transmission (Chatterjee et al. 2008, Newman et al. 2004).
However, both studies focused on Xf’s cell-cell signaling system, which regulates cascades of genes and pathways, thus
allowing the identification of target genes, but not identifying specific interactions between vector and pathogen.  The rpfF
gene (Regulation of Pathogenicity Factors F) encodes an enzyme that synthesizes the signaling molecule DSF (diffusible
signaling factor), whereas rpfC is part of a hybrid two-component DSF sensor (Chatterjee et al. 2008).  An rpfF- mutant is
not transmissible by insects because it does not colonize the foregut of vectors (Newman et al. 2004), while rpfC- colonizes
insect’s foregut but is transmitted at lower rates compared to the wild type (Chatterjee et al. 2008).  In vitro adhesion assays
indicated that rpfF- did not form biofilms, while rpfC- adhered to surfaces more strongly than did the wild type.  Targeted
gene expression analyses of Xf adhesins indicated that hemagglutinin-like proteins (afimbrial adhesins) and type I pili were
associated with adhesion and transmission of these knockout strains, but type IV pili were not (Killiny and Almeida
submitted).  Thus, indirect evidence allowed us to hypothesize that some adhesins are important for Xf attachment to and
colonization of vectors, and subsequent inoculation into susceptible hosts, while other adhesins are putatively of little or no
role in this process.  In this study we sought to determine the nature of Xf-vector interactions using biochemical, molecular
and biological assays.

OBJECTIVES
1. Determine the nature of the Xf-vector interactions.
2. Identify Xf surface proteins involved in the transmission process.
3. Develop an artificial diet system to study Xf transmission.
4. Identify molecules that disrupt Xf adhesion to vectors.

Here we report on the first two objectives mentioned above.

RESULTS AND DISCUSSION
N-acetylglucosamine blocks Xf adhesion to insect surfaces.
To determine the affinity of Xf cells to different sugars we used a competition assay based on the concept that
polysaccharide-binding proteins on the surface of Xf can be saturated by exogenous molecules, reducing overall cell
attachment to leafhopper foregut extracts.  D(+)-galactose did not interfere with the binding of Xf to foregut extracts while
D(+)-mannose had a small effect (Figure 1A).  However the monomeric moiety of chitin, N-acteylglucosamine, as well as its
dimmer chitobiose and its trimer chitotriose, as well as its core molecule glucose, blocked cell adhesion to leafhopper foregut
extracts (Figure 1A).  Thus, specific carbohydrates inhibit Xf adhesion to extracts from leafhopper vectors.  The affinity of Xf
carbohydrate-binding proteins to sugars was also tested using synthetic copolymers as described by (Chadli et al. 1992).  Our
goal was to eliminate potential sources of error on the competition assays, as the previous experiment was performed using
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leafhopper extracts mimicking in vivo conditions that could have other factors affecting the tests.  We also used GFP (green
fluorescent protein)-labeled Xf (Newman et al. 2003) to limit sample processing.  We determined that cells specifically bound
to the glucosyl ligand “poly (O-α-D-glucopyranosylacrylamide) copolymer”.  A negligible interaction was obtained with the
galactosyl ligand, while binding of Xf to the mannosylated copolymer was detected half way through the dilution series used
(Figure 1B).

In order to compare our in vitro observations to in vivo cell adhesion to leafhoppers we used the hindwings of insect vectors
to mimic the cuticular surface of the foregut canal that Xf colonizes.  The entire exoskeleton of insects is generally assumed
to have similar chemical composition, although details are lacking for this specific system.  We used N-acetylglucosamine as
competitor molecule in assays testing for GFP-labeled Xf cell attachment to hindwings. Attachment diminished as N-
acetylglucosamine concentration increased in the dilution series (Figure 1C).  These results indicate that Xf binding to
polysaccharides in vitro is similar in its characteristics to its binding to the cuticle of leafhoppers.  Lastly, in order to test the
specificity of bacterial adhesion to leafhopper hindwings, we tested if other GFP-labeled bacteria, including the plant
pathogens Pseudomonas syringae, Xanthomonas campestris, and Erwinia herbicola, and Escherichia coli attached to that
surface (Figure 1D).  Interestingly, only Xf cells attached to the wings.  Thus, Xf cells have surface proteins with affinity to

Figure 1. Carbohydrate-mediated inhibition of Xf cell attachment to surfaces.  A) Carbohydrate inhibition
of Xf attachment to leafhopper foregut extracts spotted on nitrocellulose membrane, indicating that cell
surface adhesins can be saturated if incubated with certain molecules (GlcNac - N-acetylglucosamine).  B)
Adhesion of GFP-labeled Xf to carbohydrate-acrylamide copolymers (O-glycosylacrylamides) dilution
series.  C) Dilution series of N-acetylglucosamine inhibition of GFP-labeled Xf attachment to leafhopper
hindwings.  D) Specific adhesion of Xf to insect hindwings compared to other plant pathogenic bacteria
and Escherichia coli.
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polysaccharides on the surface of insects wings and glucosylated molecules, which can be saturated by N-acetylglucosamine
and similar molecules.

Transmission of hxfA- and hxfB- mutants.
In previous reports, we presented biochemical results indicating that the hemagglutinin-like proteins (HxfA and HxfB) were
associated to cell adhesion to insect surfaces and polysaccharides in vitro.  Thus, we conducted two experiments to determine
the role of hxfA and hxfB in Xf transmission by sharpshooters to plants.  In the first experiment, we confined non-infected G.
atropunctata on plants mechanically inoculated with the wild type, hxfA- and hxfB- cells, after which groups of two
individuals were moved to healthy plants for four days as an inoculation access period.  Transmission occurred in all
treatments, with hxfA- and hxfB- being transmitted less than the wild type (70, 80 and 100%, respectively), albeit not with any
statistical difference (X2 test, P = 0.1864).  In a second experiment we used individuals instead of pairs to more precisely
estimate single insect transmission efficiency.  With this more discriminating approach we found that hxfA- and hxfB-
mutants were transmitted at lower rates than the wild type (36, 46 and 88%, respectively X2 test, df = 1, P <0.001).  Because
Xf transmission rates are correlated with bacterial population in plants, we quantified the infection level in plants used in
these tests.  Plants infected with hxfA- and hxfB- mutants used for the transmission tests had populations ~10-fold higher than
the wild type (data not shown, results similar to Guilhabert and Kirkpatrick 2005), suggesting that hxfA- and hxfB- mutants
were transmitted less than the wild type because of their impaired interactions with insects rather than because of lower
populations in source plants.

We hypothesized that the reduced transmission rate of hxfA- and hxfB- mutants was due to limited colonization of vectors
early in biofilm formation.  In order to test this hypothesis we conducted another experiment and quantified the number of Xf
cells in the head of vectors over time after a 12-hour pathogen acquisition access period.  Overall, 80% of insects that fed on
grapevines infected with the wild type were positive for Xf, whereas only 38% and 42% of those fed on hxfA- and hxfB-
mutants were infected, respectively (X2 test, df = 2, P <0.001).  We quantified the number of cells of these strains within
vectors (positive samples only).  There were significant effects of strain (F2,54=23.229, P<0.0001), time (F1,54=803.341,
P<0.0001), and an strain by time interaction (F2,54=5.362, P=0.0075).  Populations of the two mutants soon after leafhopper
access to infected plants were similar to each other but statistically different from the wild-type (Figure 2B).  Twelve hours
after acquisition we found insects fed on the wild type averaged 415 detectable cells, whereas average of 96 and 120 cells
were detected in leafhoppers fed on hxfA- and hxfB- plants respectively.  However, after 96 hours the bacterial populations of
all three strains were similar to each other (Figure 2B).  It was interesting to find that the slopes for the 2 mutants were
similar (Figure 2B), suggesting that hxfA and hxfB may have redundant roles in relation to vector transmission and that,
importantly, the knockouts were impaired in early attachment to insects, but after they attached, their patterns of foregut
colonization (i.e. population growth) were similar to the wild type (slope of regressions).  Testing of a hxfA-/hxfB- double
mutant is necessary to determine if these proteins have redundant roles on cell attachment to vectors as our data suggest.
However until recently, there were no protocols available for complementation studies with Xf, or to generate double
mutants, prohibiting this test here (Reddy et al. 2007).

Figure 2. A) Transmission of X. fastidiosa by
leafhopper vectors.  Both experiments show that
hxfA- and hxfB- were transmitted less often than
the wild type, but results from larger experiment
using individuals instead of groups were
statistically significant. Different letters on bars
indicate statistically difference (P<0.05). B)
Bacterial populations within leafhopper vectors
over time after a 12-hour pathogen acquisition
access period.  Wild type (solid regression line),
hxfA- (dotted regression line) and hxfB- (dashed
regression lines).  Note values immediately after
acquisition (12-hour period) and 4 days
afterwards.  Fewer hxfA- and hxfB- cells adhered
to vectors, but after a few days populations were
of equal size.
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CONCLUSIONS
We propose that Xf colonization in vectors is similar to the formation of biofilms on surfaces.  Scanning electron microscopy
observations we have made support this hypothesis (Almeida and Purcell 2006).  We hypothesize that cells initially adhere
laterally to the foregut cuticle via carbohydrate-binding proteins, such as HxfA and HxfB (Figure below A and B).  As these
proteins are assumed to occur throughout cells, adhering laterally increases the cell surface area in contact with the substrate
and streamline the bacteria to the flow of xylem sap ingested by the insect vector.  After initial adhesion, cells may produce
large quantities of EPS that can result in the concentration of resources and DSF in microcolonies.  As the colony size
increases, cells at the center of the biofilm became polarly attached (step C, below), potentially through polar short type I pili,
increasing surface area for nutrient absorption.  Lastly, a typical mature Xf biofilm within vectors is formed, with all cells
polarly attached (step D).  At this stage, newly divided cells are not anchored on the cuticle of insects and may be
occasionally detached from vectors and inoculated into plants.  This hypothesis may be useful to guide future studies on this
system by providing testable questions, as up until know no data on these interactions, with the exception of microscopy
observations, were available.
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ABSTRACT
The goals of this objective are to quantitatively and qualitatively determine how and when Xylella fastidiosa (Xf) loses
pathogenicity and potentially vector transmissibility, after serial passages in vitro.  We replicated Xf in vitro for one year (80
passages on solid rich medium), creating parallel populations that have phenotypes in vitro that differ from the ancestral
isolate.  We are now studying host plant colonization and insect transmission for selected populations (several passages were
frozen at -80oC for 10 lineages).  Once phenotypes of interest are identified (reduced pathogenicity or transmissibility, results
pending), we will compare these Xf populations with the original isolate and search for other phenotypic and molecular
differences. We will also be able to quantify the rate of genetic change in these populations, providing a molecular calibration
data for researchers interested in Xf evolution, diversity and ecology.

INTRODUCTION
Hopkins (2005) demonstrated the potential of avirulent Xylella fastidiosa (Xf) as a tool to control Pierce’s disease (PD).  He
also illustrated the challenges of such an approach.  For example, not all weakly virulent or avirulent isolates resulted in
similar degree of control, and in most cases plants eventually become symptomatic.  Understanding the biology of avirulent
isolates and by which mechanisms they may reduce disease symptoms is of importance if this approach is to be widely
adopted.  This project tackles those questions by comparing evolved avirulent isolates with a parent pathogenic isolate.
Being able to retrospectively compare these isolates using high resolution tools and biological assays will allow us to
determine when, and how, Xf loses avirulence.  We will also shed light on the mechanism how avirulent isolates suppress
pathogenic ones.  This proposal seeks to understand the evolution of avirulent Xf through serial passages in vitro.  Such
isolates have recently been shown to have potential to biologically control PD. We are studying how avirulent isolates
evolve, biologically and genetically, and will test their potential as control agents of pathogenic Xf.

We have different Xf populations in the laboratory maintained under a selection protocol to obtain lineages that are avirulent
in plants.  This process is finished and now we are characterizing the phenotype of four out of 10 lineages we have created.
We are comparing the evolved populations with the original one to determine if they have different phenotypes.

OBJECTIVES
Original objectives in the proposal submitted in 2007 were:
1. Generation of in vitro evolved populations.
2. Phenotypical characterization of populations.
3. Molecular characterization of populations.
4. To test avirulent populations as biological control agents.

Here we report on the first two objectives mentioned above.  This project was funded for one year.

RESULTS AND DISCUSSION
We have started to work on Objectives 2-4.  Objective 1 has been finished.  For every 10 passages of the populations in rich
medium (PWG), we stored a sample in a -80oC freezer.  We have recovered some of those for phenotypical and molecular
characterizations.  We have a total of 80 passages in this experiment, totaling eight frozen populations per lineage.  We are
using four randomly selected lineages and passages 0, 10, 20, 40 and 80 for our characterization studies.  The general
protocol is illustrated in the Figure below:
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Although we do not have final data on the phenotype of these populations, we have noticed that on solid medium they are
growing approximately twice as fast as the original population from which they derived, suggesting fast adaptation to new
environmental conditions under selective pressure.  One indirect measurement of growth on PWG medium is a change of pH
to basic conditions, indicated by a pink color.  Below, populations from selected passages were plated at the same time on
PWG, illustrating the change in pH for later passages (40 and 80) that have been subject to the selection process longer than
passages 10 and 20.  Other factors may be increasing the pH on these plates, although we have not started to investigate this
process at this point.  To measure the growth rate of different passages we have tested different liquid medium-based
approaches.  However, we noted that cell attachment to surfaces and clumping varies significantly among these populations.
Therefore, we are testing alternative protocols to determine the growth rate of representative populations.  Ongoing
experiments for phenotypic characterization of lineages include: growth rate, adhesion, biofilm formation, gum and protein
production.

Passage 10 Passage 20 Passage 40 Passage 80

We have also inoculated these lineages/passages into plants (final results pending).  Passages 0, 10, 20, 40 and 80 40d 80
from four parallel lineages were inoculated into almond plants.  We will determine movement and multiplication of these
populations by culturing from samples two and four months after inoculation (15 cm above inoculation site).  From our two-
month samples, we have determined that early passages were recovered in higher frequency than later passages.  The
proportion of infected plants for each passage (different lineages combined) 2 months after inoculation were: passage (P) 0 -
25%, P10 – 9.4%, P20 – 12.5%, P40- 0%, P80- 3%.  We interpret these preliminary results as a gradual loss of pathogenicity
by evolved populations, here interpreted as reduced movement and multiplication compared to ancestral population.  We note
that additional sampling will be performed on this experiment and we will repeat these assays next Spring.

Because we have noticed dramatic changes in growth rate of the lineages on rich solid media, we are also looking into
potential protocols for identifying mutations in these clones if some of them are not pathogenic to plants.  This would
possibly identify spontaneous mutations and new pathogenicity factors in Xf, which could be used as targets for disease
control.  Lastly, we are conducting a multilocus sequence typing study to determine how fast these loci vary over time and to
confirm the identity of the isolate we started our experiments with.
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ABSTRACT
Multiple subspecies of Xylella fastidiosa (Xf) exist which are differentially pathogenic.  Previously, DNA sequence analysis
of the mopB and gyrB gene has been used to separate Xf strains into their subspecies groups.  The TonB gene family can be
used to confirm this genetic diversity between Xf strains and regions within these genes can be used to separate strains
beyond subspecies due to increased variability. TonB protein is a cytoplasmic outer membrane protein that can be found on
gram negative bacteria, such as Xf. The protein functions as an energy transducer to support a variety of transport events
across the outer membrane and interacts with outer membrane receptor proteins which carry out high-affinity binding and
energy-dependant uptake of specific substrates into periplasmic space. In this study, five different TonB genes (TonB-a
through TonB-e) were used to differentiate between three Xf strains (grape, ragweed, and oleander).  The results of this study
were consistent with genotype differentiation using conserved mopB and gyrB genes.  Additionally, sequencing of another
gene, analogous to the zonula occludens toxin (ZOT) gene, was used to separate groups below the strain level. The discovery
of new variable genes provides another genomic location to be exploited for the improvement of diagnostics to aid in the
management of Pierce’s disease.

INTRODUCTION
Xylella fastidiosa (Xf) is a fastidious, xylem-limited, Gram negative bacterium that resides in the xylem tissue of many plants.
This bacterium, which contains multiple subspecies can disease in multiple plants taxa, such as Pierce’s disease (PD) on
grapevine, oleander leaf scorch (OLS), and citrus leaf chlorosis (CVC) (Schaad 2004). One unique structure to Gram-
negative bacteria is the outer membrane. This membrane has distinctive permeabiality process and possesses active transport
system called TonB-dependent transport system. This system has high affinity and specificity for binding and transporting
scarce nutrient across the outer membrane (Cadieux and Kadner 2003). TonB is an outer membrane protein that localized in
the cytoplasmic membrane by its uncleaved amino-terminal signal sequence, with the bulk of the protein extending into the
periplasmic membrane (Skare and Postle 1991).  The function of this protein is as an energy transducer to couple cytoplasmic
protonmotive force to active transport of nutrients and metabolic products across the outer membrane. TonB-dependent
transport system consists of high affinity membrane receptor, a periplasmic binding protein, and a cytoplasmic membrane
transporter homologous to other traffic ATPases (Skare 1993). TonB genes, which encodes for TonB, can be used to
differentiate different Xf strains due to multiple singe base pair
alterations. A search of the Xf genome determined that multiple
TonB genes were present in the genome.

The zonula occludens toxin has been suggested as a new
potential virulence factor in the CVC system (da Silva 2004).
This protein is similar to one found in Vibrio cholerae which has
been linked to disruption of tight junctions (Johnson 1993).
DNA sequence variation in this gene may be useful in separating
strains from one another and potentially separating populations
with in a strain group.

MATERIALS AND METHODS
Extracted DNA from grape and ragweed strains of Xf were
received from Lisa Morano. DNA from oleander strain was
cultured Hercules, CA), 6.4-µl auctoclaved nanopure water, 0.8
µl forward and reverse primers, and 2-µl of DNA template. PCR
was conducted using initial denaturing step of 3 min at 94°C, the
reaction was cycled 35 times under the following parameters:
94°C for 60 s, 65°C for 90 sec, 72°C for 150 s and followed with
another extension at 72°C for 7 min. A non-template control
(NTC) was also run with each assay as a negative control. The
presence of the desired amplicon was determined by agarose
DNA gel electrophoresis that was run at 75V for 60 minutes.

Figure 1.  Location of multiple TonB genes in the
X. fastidiosa genome.
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The positive samples PCR products were purified using QIAquick PCR purification kit (Qiagen, Valencia, CA), using the
manufacturer’s protocol.  DNA sequencing reaction was performed in a I CyclerTM Thermal Cycler (Bio-Rad Laboratories,
Hercules, CA). The reaction was carried out in a10-µL reaction contained 4 µL DTCS Quick Start Master Mix (Beckman and
Coulter, Fullerton, CA), 2 µL of either forward or reverse primer, 2 µL autoclaved nanopure water, and 2 µL DNA template.
The reaction was cycled 30 times under the following parameters: 95°C for 20 s, 50°C for 20 sec, and 60°C for 4 min,
followed by holding at 4°C. DNA samples were precipitated using ethanol precipitation process according to Beckman and
Coulter’s protocol.  DNA pellets were resuspended with 40 µL of sample loading solution (Beckman and Coulter, Fullerton,
CA) and transferred to the appropriate wells of a sample plate and loaded into a CEQTM 8000 Genetic Analysis System
(Beckman and Coulter, Fullerton, CA) for DNA sequencing. Sequences were retrieved and analyzed in BioEdit and
compared to GenBank database (http://www.ncbi.nlm.nih.gov/).

Sequence data is currently being collected for nearly 2,000bp of the ZOT gene for these strains. The same procedures apply.

RESULTS AND DISCUSSION
BLAST search shows alignment of grape, ragweed, and oleander strains with Xf Temecula and Xf 9a5c.  Alignment of grape,
ragweed, and oleander strains using BioEdit software shows multiple single base pair alterations between grape, ragweed,
and oleander strains. From these multiple base pair alterations, oleander strain shows partial alignment to both grape and
oleander strain (Figure 2 and 3).

Figure 2.  Alignment of TonB sequences from multiple Xf strains from Texas.

Figure 3.  Alignment of gyrB sequences from multiple Xf strains from Texas (also analogous to mopB).
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The multiple single-base alterations in oleander strain and single base alteration in ragweed strain result in different polarity
and acid-base properties of amino acids to be translated. For instance, single base alteration in ragweed strain causes neutral-
polar amino acid (serine)  to be translated instead of neutral-non-polar amino acid (proline). The multiple single-base
alterations in oleander strain cause basic-polar (histidine), neutral-polar (serine and alanine), and neutral-non-polar (proline)
amino acids to be translated instead of  neutral-polar (serine and threonine), and basic-polar (arginine) amino acids. These
will have an effect on absorption properties, different reactions with other amino groups, and different functionality since
different proteins will be produced.

We are currently working through the ZOT gene for all of our strains. Within this gene, we have found a conserved domain
(most likely a beta barrel associated with attachment to the Xf membrane) and another domain that appears to be
hypervariable. Analysis of this preliminary sequence data indicates that the conserved domain follows the same separation as
gyrB, mopB, and tonB (i.e. separation by strain). However, the hypervariable region may be useful for separation beyond
strain.

CONCLUSIONS
Sequencing using TonB genes and the ZOT gene highlights genetic variability between three different strains of Xf (grape,
ragweed, and oleander strains). The results of this study are consistent with genotype differentiation using conserved mopB
and gyrB genes. The discovery of this variable gene provides another genomic location to be exploited for the improvement
of diagnostics to aid in the management of PD.
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ABSTRACT
We have determined that type I and type IV pili of Xylella fastidiosa (Xf) play essential roles in biofilm development,
based on their individual contributions to cell adhesion and motility.  Our recent studies with grape xylem sap indicate
that it triggers the development of a more robust and structured biofilm than caused when the bacterium is grown in
PD2 medium.  Cell viability in the Xf cell matrix showed the interior of biofilms to contain a high level of dead cells
whereas the outer periphery consists of mainly live cells. We also found that the signal molecule DSF inhibits
twitching motility as does the chemical stressor EDTA.

INTRODUCTION
Biofilm formation is recognized as a major virulence factor of Xf, being essential for bacterial survival in planta and
disease development (Newman et al., 2004; Koide et al., 2004; Li et al., 2007).  Maintaining Xf in axenic culture over
several passages gradually changes the expression of pathogenicity factors and leads to loss of virulence (de Souza et
al., 2003).  It has been shown previously that when Xf is grown in media that are intended to mimic xylem fluid
chemistry growth, biofilm formation and aggregation are affected.  (Andersen et al., 2007).  Here we show that
culturing Xf in xylem sap is more suitable for biofilm studies than standard culture media broadly used, such as PD2
and PW, given it enhances the adhesive characteristic of the bacterium and induces a more realistic in planta
phenotype.

We have demonstrated that two distinct classes of Xf pili are associated with the cell’s ability to move in grapevine
xylem (via twitching motility) and to form biofilms and cellular aggregates (Meng, et al., 2005; Burr and Hoch 2006,
Li et al., 2007). Whereas wild-type Xf is able to move against the transpiration stream within grape to colonize vines,
mutants without type IV pili were unable to move (Meng et al., 2005).  Mutants lacking shorter, type I pili, moved
faster than the wild-type indicating that type I pili serve to anchor and slow movement (De La Fuente et al., 2007b).
This scenario is supported by the fact that mutants with only type I pili form biofilms that have a more spreading
phenotype on surfaces as compared to the wild-type and to mutant strains that have only type IV pili (Burr and Hoch
2006, Li et al., 2007).  Biofilms formed by the wild-type have a denser-appearing phenotype  and therefore we
hypothesize that type IV pili function in secondary structure.  Mutants that do not produce type I pili form biofilms that
are sparse but appear to be made of dense clusters of cells again suggesting a role for type IV pili in cell-cell attachment
and secondary structure of biofilms.

The signal molecule DSF (Diffusible Signal Factor) produced by Xf has been recently identified and shown to be
required for insect colonization and to reduce its virulence to grape (Simionato et al., 2007; Chatterjee et al., 2008).

OBJECTIVES
1. Assess and understand the biology and role of Xf biofilms in Pierce’s disease.  For this objective, we will be

particularly interested in:
a. Understanding the developmental stages and architecture of biofilm formation.
b. Determine how the presence of type I and type IV pili affect biofilm morphology and integrity.
c. Assess the viability of Xf cells temporally and spatially in biofilms.
d. Determine whether Xf secretes DNA into the extracellular environment and how it affects biofilm morphology

and integrity.
e. Evaluate effect of DSF on motility and biofilm regulation.

2. Determine how the stage of biofilm development and structure (dependent on pili) influence Xf sensitivity to
chemical and environmental stresses.
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3. Determine the role of type IV pili in Xf uptake of extracellular DNA (natural transformation).

RESULTS
Developmental stages and architecture of biofilm formation.
Whether or not Xf forms a structured community with specialized cell functions or if it is merely a consequence of cell
to cell aggregation has been a point of interest of our group. We recently started growing Xf in pure grape sap, allowing
a more “natural” environment for growth.  This was done by initially transferring the cells growing in PD2 medium to a
mixture containing 50% sap and then gradually increasing the sap concentration in each passage.  The supplementation
with sap not only induced faster growth (Hoch and Burr et al., 2008), but also increased the attachment of cells to glass
surfaces, as assessed in test tubes and on microscope slides (Hoch and Burr et al., 2008). Besides the greater biomass
visible in both assays, the biofilm formed in tubes containing 100% sap or sap:PD2 mixes were denser and difficult to
disrupt by vortexing (Hoch and Burr et al., 2008).  We are quantifying this by crystal violet staining and
spectrophotometry.

To study spatial-temporal biofilm development we are
using microscope slides fixed inside 500mL jars that
receive 20mL of culture media.  The jars are shaken at
100 rpm and the biofilm is formed on the slide
surfaces at the air-media interface.  Biofilm
development and architecture were found to be greatly
influenced by medium i.e. PD2 or grape sap.
Preliminary results using light and laser scanning
microscopy indicate that aggregates up to 20µm in
height were observed in PD2 whereas in a mixture of
sap and PD2 (90% sap, 10% PD2) aggregates of
100µm in height were commonly seen.  This might be
related to a quicker aggregation of cells that appears to
occur in sap.  Whether in PD2 or sap, Xf
characteristically forms small aggregates that retain
mobility and eventually merge together.  We observed
that such aggregates are retained even when the
extracellular matrix accumulates in later
developmental stages.  These denser cell aggregates
consist mainly of live cells and are surrounded mostly
by dead cells within the large aggregates (Figure 1).
At the substrate surface level, there is a higher
proportion of live cells at the periphery of the biofilm.

Another distinctive feature of biofilm formation in sap
is what appears as “fluid channels” throughout the
matrix.  They might function in increasing exchange
rates of nutrients and toxic by-products of metabolism,
enabling biofilms to develop as a functional unit.
Initial investigations reveal what appears to channel
formation in biofilms formed in microfluidic
chambers and on surfaces of microscope slides (Hoch
and Burr et al., 2008).

Further studies will use the fluorescence-tagged strain
KLN59.2 (Newman et al., 2003) to study biofilm
architecture in different types of devices and in planta.
This strain displays attachment and motility on
surfaces similar to wild-type Temecula.

Influence of type I and type IV pili on biofilm morphology and integrity.
We have been conducting studies to investigate how the type of pili (I and IV) affect biofilm development and
structure.  Mutant cells lacking either type I (fimA) or type IV pili (pilB) showed reduced biofilm formation, consistent
with reduced adherence to surfaces among fimA- cells; probably due to the lack of the strong anchoring character
conferred by type I pili (De La Fuente et al., 2007a; 2007b).  Mutant cells deficient for both type I and IV pili (fimA,
pilQ) did not form a biofilm on the glass surface (Li et al., 2007), and as a result generally remained in a planktonic
state.  Our results suggest that the type of pili affects cell clustering and biofilm morphology.  We are also studying a
chemosensory system of Xf involved in motility and biofilm formation (Burr and Hoch, 2008).

Figure 1. Cell viability within biofilm formed by
Xylella fastidiosa. Cells were stained with SYTO-9
(green) and propidium iodide (red), equivalent to a “live
and dead assay” (Boulos et al., 1999).  The figure shows
a portion of a mature biofilm formed after 7 days in PD2
medium. Small compact cellular aggregates can be seen
embedded in and outside the biofilm matrix.  The yellow
and magenta lines indicate cross-sections in the Z-plane,
shown on the bottom and right side of center image.
The green lines on border images indicate the position of
the plane shown on the center image.  Obtained with
confocal imaging.
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Effect of DSF on motility and biofilm regulation.
The effect of Diffusable Signal Factor (DSF) (Newman et al., 2004) on Xf twitching motility is being studied by our group in
collaboration with Steve Lindow (UC, Berkeley).  Purified DSF produced by Xf was obtained from the Lindow laboratory
and re-suspended in 60% methanol.  The DSF suspension (approximately 1 unit/µl) was used to supplement culture media.
The effect of DSF on Xf movement has been observed using three different approaches:

(i) Agar plates diffusion assays: a 5mm-diameter well was made in the center of each plate and filled with the DSF solution
referred above (10, 20, 30, 40, 50 and 60µl) (Figure 2). Bacterial colonies of Xf WT and a fimA mutant (Meng et al., 2007)
were spotted at two different distances (8 and 15mm) from the center of the plate
(Figure 2).

We observed an absence of peripheral fringe in WT colonies spotted closest to the DSF
(8mm distance) and specifically the colony edge facing the DSF-containing well.
Normal colony fringe was observed on the edge of the colony opposite to the center
(15mm).

(ii) Microfluidic chambers: addition of DSF to culture media: Dual channeled
microfluidic chambers (De La Fuente et al., 2007a) were used to microscopically
observe the direct effect of DSF on twitching movement.  The feeding syringes were
interchanged every 1-2 days, thus exchanging between fresh and supplemented media.
Whenever DSF was introduced in the chambers, the twitching movement was greatly
reduced after 8-12h.  We observe only a few cells moving short distances in the
presence of DSF.  Control cells in PD2 supplemented with methanol, showed normal
twitching activity.

iii) Twitching movement of DSF non-producing mutant: A mutant deficient in the
production of DSF (rpfF-DIF2) was obtained from the Lindow lab.  Preliminary
observations on solid media (Figure 3) and
in microfludic chambers showed that the
speed of twitching movement of the rpfF
mutant is slightly higher than the WT.  The
speed was calculated as 0.98µm/min (as
compared to the reported 0.86µm/min for
the WT strain) (De La Fuente et al., 2007b).

The characterization of this mutant is still
ongoing in our laboratory.  Other
observations indicate that aggregation of the
rpfF-DIF2 mutant in chambers resembles
the phenotype of mutants reduced in biofilm
formation, such as fimA- (see above).  These results suggest that the presence of DSF reduces movement in Xf. We are
continuing to investigate the effect of DSF on biofilm formation.

Effect of chemical and environmental stresses on movement and biofilms.
Previous studies with other microorganisms have shown the importance of biofilm in increasing resistance to detergents,
toxins and environmental stresses like salinity, acidity and low humidity (Xavier et al., 2005).  The protectiveness conferred
by the biofilm can be studied by comparing cell viability between planktonic cells to those within biofilms after exposure to
the stresses.

We have found that a chelating agent, such as EDTA has an effect on WT Xf cell movement.  Whenever EDTA was added to
the cells (8, 6, 4, and 2 mm) they slowly reduced movement and eventually stopped their displacement.  Nevertheless, the
presence of the chelating agent did not affect cell division or growth.  We are now investigating the effect of EDTA on Xf cell
aggregates.  Based on the fact that movement affects morphology of cell clusters, we expect to see an effect of EDTA on
biofilm formation.
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ABSTRACT
Understanding regulatory pathways controlling microbial pathogenesis can lead to a better understanding of virulence factors
as potential targets for disease control strategies.  Preliminary research has shown that citrus is tolerant or resistant to Pierce’s
disease (PD) strains of Xylella fastidiosa (Xf) but may serve as a reservoir for the bacterium.  Commercial citrus (lemon,
orange and grapefruit) orchards in proximity to vineyards in Temecula Valley were selected to determine the effect of xylem
fluid on Xf. Current results revealed that pure xylem fluid of grapefruit, orange, and lemon caused the bacterial cells to form
aggregations of large whitish clumps, whereas the xylem fluid of grape caused them to form a visible thick biofilm.
Macroarray analysis was conducted with 111 genes, predicted by the Xf genome sequence to have roles in virulence, as well
as nucleic acid and protein metabolism, cellular transport and stress tolerance.  There were 28 genes with greater expression
in xylem fluid of grape, vs. that of citrus.  The virulence regulator xrvA, transcriptional regulators algU, agmR, gcvR, two-
component regulators gacA and colS, and posttranscriptional regulator hsq, were expressed at higher levels in grape xylem
fluid.  Other genes that were over expressed in grape xylem included hsf, xadA, fimT, pilI, pilT, pilU,and pilY1, related to
attachment, biofilm formation, and twitching motility of Xf within xylem.  The data indicated that grape xylem fluid
stimulates the expression of virulence genes, likely contributing to PD in grapevine. Xf may use gene regulatory mechanisms
to respond to changing environments in the xylem of plants, and host range may in part be determined by differential
regulation of virulence genes in different host xylem conditions.

INTRODUCTION
Xylella fastidiosa (Xf) is mainly vectored by the glassy-winged sharpshooter (GWSS) in southern California (Raju et al,
1983; Sorensen and Gill, 1996).  Previous studies in California have identified 94 plant species in more than 28 plant families
as hosts of Xf (Costa et al., 2004).  Most of them are symptomless but may serve as inoculum sources for vector acquisition
of Xf. Studies in the Temecula Valley showed that the proximity of citrus groves to vineyards influenced the incidence and
severity of Pierce’s disease (PD) in grapevine (Perring et al., 2001).  PD infection is most severe when the grapevines are
adjacent to citrus, and the damage declines as one moves away from citrus.  Although the GWSS feeds on and moves back
and forth between citrus and grape plants, there is no Xf-caused disease symptom in citrus in the area.  This implies that citrus
plants are resistant or tolerant to Xf but may be a reservoir, harboring the pathogen for GWSS acquisition while grape plants
are susceptible (Bi et al., 2007b).  Transmission of PD by leafhoppers from citrus to grapevines has indeed been documented
(Hopkins et al., 1978).  Little is known about the biochemical mechanisms involved in host plant resistance/susceptibility to
Xf in this citrus and grape system.

It was recently reported that certain amino acids are essential for Xf growth, and that glucose stimulates growth, while
fructose and sucrose have an inhibitory effect (Leite et al., 2004).  Our preliminary data indicated that there were large
differences in xylem fluid amino acid and sugar contents between grapes and citrus currently growing in the Temecula Valley
(Bi et al., 2007a).  Xylem fluid of citrus significantly inhibits biofilm formation by PD strains of Xf compared to xylem fluid
of grape (Bi et al., 2007b).  However, the xylem fluid chemical components in citrus and grape, and their role in Xf gene
expression and host plant resistance and susceptibility to Xf, are not well known.  Further research is needed to determine the
effect of host plant xylem fluid on expression of Xf virulence factors and to elucidate the mechanisms that are involved.  Host
plant resistance has been recognized as the most cost effective and environmentally safe method for controlling many major
microbial pathogens of economic plants.  Understanding the biochemical mechanisms involved may lead to the development
of resistant varieties or anti-Xf chemicals for existing grapevines.

OBJECTIVES
1. Investigate the effect of host plant xylem fluid on Xf aggregation, biofilm formation, and gene expression in vitro.
2. Determine the role of specific chemical components in citrus xylem fluid in Xf resistance.

RESULTS AND DISCUSSION
Bacteria cell aggregation in xylem fluid. Aggregation and attachment of Xf was observed after culturing a PD strain in pure
xylem fluid of grapefruit, orange, lemon, and grape.  The bacterial cells aggregated to form large clumps in grapefruit,
orange, and lemon fluid (Figure 1).  This may cause the bacteria to remain in only a few xylem vessels after introduction to
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the citrus by a sharpshooter, without much mobility within the xylem of citrus.  In contrast, the bacterium formed less
aggregation in grape fluid, consistent with the known ability of PD strains to move easily within the xylem of grapevines.

Figure 1. A fresh Xf Temecula A05 culture (Costa et al., 2004) was inoculated into xylem fluid of grape, grapefruit, orange,
and lemon at OD600=0.02 in borosilicate glass culture tubes on a rotary shaker at room temperature (around 24°C). All tubes
were covered with a black box to prevent the xylem fluid from light during the shaking culture. Photographs were taken after
10-12 weeks. The red arrow indicates the aggregated cells in xylem fluid.

DNA macroarray analysis of gene expression in citrus and grape xylem fluid. DNA macroarray membranes were
prepared with 111 selected genes with putative roles in virulence, as well as others involved in nucleic acid and protein
metabolism, cellular transport and stress tolerance, based on the genome sequences of Xf 9a5c (a CVC strain) (Simpson, et al,
2000) and Temecula1 (a PD strain) (Van Sluys, et al., 2003).  Total RNAs were extracted from Xf Temecula1 cultured in the
pure xylem fluid of grapefruit, orange, lemon and grape using a Quiagen RNAeasy mini kit (Quiage, CA).  The purified
mRNA was separated from total RNA using an mRNA-ONLY™ Prokaryotic mRNA Isolation Kit according to the
manufacturer’s protocol (Epicentre, WI), and used for synthesizing cDNA probes for array hybridization by reverse
transcription (RT).  DNA macroarray nylon membranes were hybridized with DIG-labeled cDNA probes following the
manufacturer instructions (Roche, Molecular Biochemical, Indianapolis, IN).  The signal intensities of spots on the
membranes were analyzed using the Quantity one® software (Biorad).  Thirty genes were differentially expressed in grape
fluid compared to citrus fluid (Table 1).

Validation of macroarray data. Several potential virulence-related genes were chosen to validate the differential expression
levels of genes in xylem fluid of grape and citrus using RT-PCR (Figure 2).  rRNA was detectable in all xylem fluid in this
RT-PCR condition.  No RNA was detectable in a water control.  Expression of the genes xrvA, hsq, gacA, algU, PD0062,
pilI, pilU, PD0312, hsf, pcp, secG, hspA, clpP, msrA and tapB RNA was increased in grape fluid, and pglA and PD0143 RNA
were increased in grapefruit, orange and lemon fluids (Figure 2).  Genes predicted to be involved in virulence regulation,
such as the virulence regulator xrvA, transcriptional regulators algU, agmR, gcvR, two-component regulators gacA and colS,
and posttranscriptional regulator hsq, were expressed at higher levels in grape fluid.  Inside the plant’s xylem, Xf is exposed
to a range of variable stress factors, such as changes in osmolarity, availability of nutrients, and agents generating reactive
oxygen intermediates (Alves et al., 2004).  To ensure survival, Xf may respond to these stress situations via regulatory
mechanisms involving specific regulatory genes.  The regulatory genes algU (Shi et al, 2007) and gacA (Cooksey, 2007)
were previously shown to have roles in regulating many potential virulence factors in Xf. Hfq, an abundant RNA-binding
protein, may indirectly affect biofilm formation in Xf through a complex hfq/rsmB/rsmA-mediated system (Shi et al, 2007).
Genes involved in surface structures and attachment components, such as PD0312, hsf, and xadA, were expressed more
highly in grape fluid than citrus. hsf (PD0744) has a high similarity to the hsf adhesin gene of Haemophilus influenza (St
Geme et al., 1996), and xadA encodes a putative afimbrial outer membrane protein adhesion (Simpson et al., 2000).  The
expression of hsf and XadA was increased in grape fluid, likely contributing to an enhanced ability to adhere to xylem cell
walls.  It was reported that hsq and hspA were regulated by algU (Shi et al, 2007) and xadA and hsf were regulated by gacA
(Cooksey, 2007).  Genes involved in the biogenesis and twitching motility of type I pili and type IV pili in Xf, such as
PD0062, fimT, pilI, pilT, pilU, pilY1 (Simpson et al., 2000), were shown to have higher expression in grape fluid.  It is
reported that type I pili function in cell-cell aggregation and biofilm formation, and type IV pili are involved in twitching
motility within the xylem of host plants (Meng et al., 2005).  The expression of genes encoding type I and type IV pili was
increased in grape fluid, likely contributing to an enhanced ability to aggregate, form biofilm, and move within the xylem,
contributing to PD symptoms in grapevines.  Since the expression of secD and secG was increased in grape fluid, the
secretion of proteins by the type II, sec-dependent secretion system may enhance bacterial survival in grape.  Genes involved
in physiological metabolism under stress, such as heat shock protein genes hspA and cplP, and sulfoxide reductase gene
msrA, cation tolerance protein cutA, and hypothetical protein PD0008, PD1741 and PD2031, were also more highly
expressed in grape fluid.  In contrast, the polygalacturonase gene, pglA, and hemolysin, had increased expression in citrus
fluid.  The data indicate that the chemical compounds or elements in xylem fluid of different plants differentially affect the
regulation of virulence and the survival of Xf within xylem.
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Table 1.  Differential expressed genes of Xf in grape fluid comparing to citrus fluid

Gene IDa NAME HYPOTHETICAL FUNCTION Grape/Citrusb ,c P Valued Expression
in Grape

PD1905 xrvA Virulence regulator 1.8 1.2E-03 Higher
PD2040 acvB Virulence protein  1.9 3.4E-03 Higher
PD0066 hsq RNA-binding protein 2.7 1.5E-03 Higher
PD2068 gacA Two-component regulator 1.8 3.0E-04 Higher
PD1276 algU Transcriptional regulator  1.6 1.5E-03 Higher
PD0268 agmR Transcriptional regulator (luxr/uhpa family)  1.9 5.2E-03 Higher
PD1738 gcvR Transcriptional regulator  1.6 2.4E-03 Higher
PD1920 colS Two-component system, sensor protein  1.6 1.4E-03 Higher
PD0019 fimT Pre-pilin like leader sequence  2.0 1.8E-03 Higher
PD0062 - Fimbrial subunit precursor 2.6 1.1E-03 Higher
PD0846 pilI Pilus biogenesis protein  1.8 4.5E-03 Higher
PD1147 pilT Twitching motility protein 1.6 3.2E-03 Higher
PD1148 pilU Twitching motility protein  1.8 1.5E-03 Higher
PD1611 pilY1 Fimbrial assembly protein  2.3 2.1E-04 Higher
PD0312 - Outer membrane protein precursor 2.5 1.2E-03 Higher
PD0731 xadA Outer membrane protein 2.3 4.5E-03 Higher
PD0744 hsf Surface protein  1.7 3.4E-03 Higher
PD0757 pcp Peptidoglycan-associated outer membrane 1.6 1.7E-03 Higher

lipoprotein precursor
PD0182 secD Protein-export membrane protein  2.1 1.4E-03 Higher
PD0246 secG Protein-export membrane protein  2.4 1.2E-03 Higher
PD1280 hspA Low molecular weight heat shock protein  2.3 1.8E-03 Higher
PD0472 clpP ATP-dependent Clp protease proteolytic subunit 1.6 1.1E-03 Higher
PD0859 msrA Peptide methionine sulfoxide reductase  1.6 2.1E-03 Higher
PD1536 cutA Periplasmic divalent cation tolerance protein  1.8 1.6E-03 Higher
PD1475 ccmA Heme ABC transporter ATP-binding protein  1.8 4.1E-03 Higher
PD2031 - Hypothetical protein 2.5 1.2E-03 Higher
PD0008 - Hypothetical protein 1.8 1.2E-03 Higher
PD1741 - Hypothetical protein 2.0 1.7E-04 Higher
PD1485 pglA Polygalacturonase precursor -1.7 1.8E-03 Lower
PD0143 - Hemolysin III protein -1.6 1.7E-03 Lower

aGenes were determined on the basis of Xf Temecula1 genomic sequences at the NCBI website (Simpson et al. 2000). bThe
hybridization signal intensity (mean of three hybridization replicates) obtained with grape was divided by that obtained with
citrus to obtain grape/citrus ratio. cThe normalized hybridization signals for those genes between grape and citrus are
significantly different as analyzed by Student’s t test (P < 0.05). dGenes having >1.5 or <0.66 final grape/citrus ratios were
designated as having higher or lower expression in grape, respectively.

Figure 2.  Reverse transcription polymerase chain reaction (RT-PCR) of differentially expressed genes of Xf in xylem fluid
of citrus and grape.  Water was the control.
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CONCLUSIONS
Aggregation and biofilm formation of Xf were differentially influenced by the xylem fluid of citrus vs. grape.  Grape fluid
stimulated the expression of genes predicted to be involved in virulence, attachment, biofilm formation, and twitching
motility of Xf within xylem, likely contributing to PD in grapevine. Citrus may be resistant or tolerant to the PD strain of Xf,
in part, because citrus xylem fluid does not support the induction of a number of virulence genes, or has substances that
repress expression.  Identification of specific chemical components of citrus xylem fluid which influence expression of
virulence genes in Xf is being assessed.
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ABSTRACT
In previous work, we discovered that: 1) tolC was absolutely required not only for pathogenicity, but also for survival of
Xylella fastidiosa (Xf) strain Temecula in Vitis vinifera grapevines; 2) that the loss of multi-drug resistance (MDR) efflux
through the Type I secretion system was the primary reason that tolC– Temecula could not survive in grapevines; and 3) that
gene knockouts of Type I system components associated with offensive Type I effector secretion also resulted in significant
loss of pathogenicity.  Both hemolysins and colicin V effectors are found in the Temecula genome.  Surprisingly, knockout
mutations of both 1) the Type I components associated with colicin secretion and 2) the three colicin V effectors in Temecula
resulted in a significant loss of pathogenicity of the mutants, raising the possibilities that colonization and pathogenicity of
grapevines by Xf involves the exclusion of other bacteria from the xylem niche and/or that these colicins might directly affect
plant cells.

INTRODUCTION
In Gram-negative bacteria, multidrug resistance (MDR) efflux pumps are composed of three protein components, two of
which are localized in the inner membrane, and one, TolC, that traverses both the periplasm and outer membrane (Koronakis
et al. 2004).  The process of MDR efflux is energy dependant and utilizes either ATP or the transmembrane electrochemical
gradient.  At least five characterized families of MDR efflux pumps exist in bacteria: the ATP-binding cassette (ABC) family
(Davidson and Chen 2004), the major facilitator (MF) family (Pao et al. 1998), the small multidrug resistance (SMR) family
(Paulsen et al 1997), the resistance-nodulation-cell division (RND) family (Tseng et al. 1999), and the multidrug and toxic
compound extrusion (MATE) family (Brown et al. 1999).  All utilize TolC as a common periplasm/outer membrane protein
component (Figure 1).

In addition to (defensive) MDR efflux, TolC is also essential for type-I dependent secretion of a variety of degradative
enzymes and offensive effectors, some of which are antibiotic and others involved in plant or animal pathogenicity.  These
include a variety of hydrolases (proteases, phosphatases, esterases, nucleases and glucanases) and protein toxins, including
hemolysins and bacteriocins (Koronakis et al. 2004).  Orthologs of tolC are highly conserved among diverse Gram-negative
pathogenic bacteria, and strains typically carry multiple homologues per strain (Sharff et al. 2001), including all sequenced
strains of Xanthomonas, Pseudomonas and Ralstonia.

Xylella fastidiosa (Xf) is a xylem-inhabiting Gram-negative bacterium that causes serious diseases in a wide range of plant
species (Purcell and Hopkins, 1996).  Two of the most serious of these are Pierce’s disease (PD) of grape and Citrus
Variegated Chlorosis (CVC).  Analyses of the CVC and PD published genomes showed that there was no type III secretion
(hrp) system, but there were at least two complete type I secretion systems present,  together with multiple genes encoding
type I effectors in the RTX (repeats in toxin) family of protein toxins, including bacteriocins and hemolysins.

There are two main purposes for Type I secretion (refer Figure 1):  multi-drug resistance or MDR efflux (in this case,
defense against presumably anti-microbial chemicals in the xylem sap of grape), and effector secretion (offensive, to either
promote pathogenicity or secrete antimicrobial peptides).  The outer membrane protein TolC has been shown to be essential
for MDR efflux and pathogenicity in Erwinia chrysanthemi (Barabote et al., 2003) and in Xf (Reddy et al., 2007).  Our
general working hypothesis has been that Xf is a highly opportunistic species and that (at least) many of its strains have a very
wide host range that is limited by at least two factors of unknown weight:  the host range of its insect vectors, and its intrinsic
host range factors that may or may not elicit obvious pathogenic symptoms.  This working hypothesis was based on several
observations.  First, Freitag (1951) identified 75 asymptomatic host species for PD out of 100 plant species tested.  In support
of these older published test results, it is now clear that at least some PD, CVC and coffee leaf scorch strains of Xf can grow
well in coffee, tobacco and periwinkle.  These results all strongly indicate that some strains are capable of using the xylem
sap of many plant species as growth medium, and may be restricted primarily by the lack of vectors to take them to other
plant species.

Second, PD strains inoculated on grape both grow and elicit leaf scorch symptoms, but on tobacco cultivar Samsun, PD
strains grow, but elicit no symptoms (Harakava Ph.D. thesis); on citrus, PD strains neither grow nor elicit symptoms
(Hopkins, 1977).  Similarly, the coffee strain does not grow or cause symptoms in citrus, but the CVC strain causes limited
symptoms in coffee and mainly chlorosis in tobacco (Harakava, personal communication).  These results indicate: 1) that
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symptoms are host specific and induced only in a subset of host species; and 2) that the host specific symptom induction
depends on the Xf strain as well as the plant species infected.

PD strains produce a host-specific elicitor of PD involving programmed cell death (PCD).  Symptoms of leaf scorch in PD
are not expected of a pathogen that merely blocks xylem vessels. Vascular wilts, such as periwinkle wilt, are more typical of
xylem vessel blockage.  Leaf scorch must be caused by another factor, long ago proposed to be a toxin (Raju and Wells,
1986).  However, the limited evidence provided to support the toxin theory at the time was found to be an artifact caused by
components of the culture medium (Goodwin et al., 1988) and the matter seemed settled (Hopkins, 1989) until very recently.
At the 2007 Pierce’s Disease Research Symposium, Gilchrist and colleagues reported evidence that Xf PD strains elicited PD
and programmed cell death (PCD) or apoptosis in V. vinifera, but not V. california grapes, and that anti-apoptotic genes
cloned from grape variety Chardonnay and retransformed into plants using a strong (CaMV) promoter strongly suppressed
symptoms of PD and PCD (Gilchrist & Lincoln, 2007 Pierce’s Disease Research Symposium Proceedings, pp 252-5). In
recent years, a large and growing number of bacterial protein toxins have been discovered that behave as virulence factors,
and many of these bacterial toxins induce apoptosis (Schiavo,G.; van der Goot, F.G. 2001).  One emerging theme from
studies of these bacterial toxins is that they frequently interfere with host pathways, thereby eliciting programmed cell death
(for a review see Weinrauch and Zychlinsky, 1999).  Since symptoms of PD are suppressed by anti-apoptotic gene
expression, it becomes likely that the pathogen is producing a PCD elicitor, or “toxin”.  This “toxin” or elicitor has yet to be
identified.

Elicitation of symptoms of PD and PCD enhances Xf growth in hosts.  A major question has always been whether or not the
symptoms of leaf scorch on grape contribute to pathogen growth or spread on grape or are merely gratuitous.  Gilchrist’s lab
discovered that the anti-apoptosis genes both strongly suppressed symptoms of PD and in addition, limited the bacterial titer
(at six months post inoculation) to that which is usually seen on the asymptomatic host, V. californica (ie., to ca. 104 cfu/gram
stem tissue instead of 108 cfu/gram stem tissue observed at point of death of V. vinifera ; refer Table 2 of the PowerPoint
presentation by Gilchrist, Lincoln, Ward and Cook, 2007 Pierce’s Disease Research Symposium, available online; confirmed
by Dave Gilchrist in personal communication).  This data indicates that elicitation of programmed cell death (PCD) can
contribute to additional Xf growth in hosts, but is not required for opportunistic (parasitic) growth of Xf, at least not in some
hosts.

Of course, the early work of Freitag (1951) mentioned above demonstrated that PD symptom elicitation is not required for
growth of PD strains in a variety of hosts.  The converse is also true; several non-PD Xf strains are known to be capable of
asymptomatic growth in V. vinifera (Hopkins, 2005).  Indeed, Xf strain EB92-1, isolated from elderberry, has been found to
be highly effective as a biological control agent against PD in the field for 12-18 months, and “only strains that were able to
multiply and systemically colonize without producing significant symptoms were able to protect against virulent strains”
(Hopkins, 2005).  An important series of questions regarding host specific symptoms and host range now may be quantitative
in nature:  how much additional growth is provided by ability to elicit PCD and/or PD symptoms?  Are multiple elicitors
involved?  How host-specific are these elicitors?  Is some low level of PCD, below the level required to elicit symptoms,
required for host range?  The anti-apoptosis genes in Gilchrist’s study suppressed, but presumably did not eliminate,
programmed cell death (PCD) in the host, thereby resulting in suppression of symptoms and limiting bacterial growth.  What
if PCD were eliminated?  Would all or most Xf growth also then be eliminated, and the plant be a nonhost?

A related question is whether or not ability to elicit PCD ultimately restricts ability to infect plants that might otherwise be
hosts, such as PD strains inoculated on citrus.  In other words, since PD strains do not grow in all plants, is (are) the PCD
elicitors (all) host specific?  Are there additional factors, aside from insect transmission and symptom elicitation that may
limit host range?  As described in some detail below, recent work from our lab indicates that the answer to the host range
question indicates that there are likely dditional factors aside from elicitors that may limit host range.  These factors may
involve colicins used for competitive exclusion of other bacteria that may colonize the same ecological niche.  Our general
working hypothesis regarding the very wide host range of the entire, highly opportunistic Xf species but more limited range
of individual strains has been expanded to include three factors affecting host range:  1) the host range of its insect vectors
(not examined by our methods); 2) the ability of Xf to elicit PCD with or without leaf scorch symptoms on V. vinifera; and 3)
ability of Xf to competitively exclude other bacteria from its xylem vessel niche.  If the primary factor(s) that determine host
range can be identified, then additional targets for chemical, biological and/or transgenic controls would be made available.
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OBJECTIVES
Two specific Type I toxin secretion systems are found in both CVC strain 9a5c and PD strain Temecula.  These are an alpha-
hemolysin-like system [in Temecula, it utilizes TolC (outer membrane, PD1964) and HlyB/D (inner membrane,
PD1412/periplasm, PD1413)], and a colicin V-like system [in Temecula, it utilizes TolC (outer membrane, PD1964) and
CvaA/B (inner membrane, PD0496/periplasm, PD0499)].  These Type I systems are also found together with multiple genes
encoding type I effectors of the RTX (repeats in toxin) family of protein toxins (Lally et al., 1999).

Critically, all sequenced Xf strains carry only a single tolC gene; therefore, a knockout of this single gene in Temecula
eliminated all Type I secretion, both offensive and defensive (Reddy et al. 2007).  Unfortunately, the loss of MDR efflux in
Temecula resulted in the strain being undetectable even a few minutes after inoculation of the tolC– mutation; therefore, the
loss of pathogenicity reflected the loss of the strain itself and any offensive role of Type I secretion in pathogenicity, due to
loss of secretion of either hemolysin and/or colicins could not be tested.

Type I secreted effectors found in the sequenced CVC and PD strains were a bacteriocin (XF2407 in CVC and ortholog
PD1427 in PD) that resembles a Rhizobium host range factor (Oresnik et al., 1999), three hemolysins (XF0175, XF0984 and
XF1280) in CVC and orthologs PD0413, PD0282 and PD0536, respectively, in PD), calcium binding hemolysin-type
proteins (XF0668, XF1011, XF2759 in CVC and orthologs PD1506, PD0305, PD2094, respectively, plus an additional
calcium binding protein PD2097), and three colicin V precursors (XF0262, XF0263 in CVC and orthologs PD0215, PD0216
and PD0217 in PD).  The discovery of such a large group of RTX toxins is likely significant because both genomes carry
representatives of both major RTX toxin types: the alpha-hemolysin group that are toxic to a very wide range of eukaryotic
cell types (Lally et al., 1999), and the colicin V group, which is not known to us to affect eukaryotic cells.  Among the
symptoms elicited by CVC strains on citrus are brown, necrotic and slightly gummy lesions on the undersides of leaves that
are suggestive of toxin activity.  The earliest symptom caused by PD strains on grape is leaf scorch, which is also strongly
suggestive of toxin activity.

RESULTS
Rather than attempt knockouts of multiple and potentially redundant effectors, initial experiments focused on knockouts of
three apparently separate components of Type I secretion:  1) MDR efflux only: acrD (PD1404) and acrF (PD0783); 2) Type
I hemolysin secretion only: the periplasmic component hlyB (PD1412) and the inner membrane component hlyD (PD1413);
and 3) colicin V secretion only:  the inner membrane component cvaA (PD0496) and the periplasmic component cvaB
(PD0499).  Surprisingly, knockouts of any of the three Type I system strongly reduced pathogenicity (Figure 2).

The colicin V precursors (PD0215, PD0216 and PD0217) are clustered in the Temecula genome, allowing the simultaneous
knockouts of all three colicins in a single recombination event by marker exchange, which was accomplished and
documented as described (Reddy et al. 2006).  Plant inoculation assays using the colicin V knockout mutant were performed
in collaboration with Dr. Don Hopkins, at the Mid-Florida Research and Education Center, Apopka, Florida. Grape plants
(var. Carnignae) were inoculated with the wild-type Xf Temecula strain and the mutant Δ (PD0215, PD0216 and
PD0217)::nptII strain (labeled “colicins” in Figure 2). The plants were maintained under green-house conditions and were
evaluated for PD symptoms at 60 and 90 days after inoculation. All plants inoculated with the wild-type Temecula strain
exhibited typical PD (not shown).

Again to our surprise, pathogenicity was strongly reduced by eliminating just the colicin effectors (Figure  2).
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Figure 1: Type I machine for MDR (“Drug) efflux in X. fastidiosa utilize tolC and acrF/A or acrC/D (left).  Type
I machine for protein export or secretion in X. fastidiosa utilize tolC and cvaA/B or hlyB/D (right).  Figures from
Koronakis et. al. (2004).
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Figure 2.  Grape var. Carignane inoculated with marker exchanged mutants of acrF (PD0783), acrD
(PD1404), hlyBD; PD1412-1413), cvaA (PD0496) and cvaB (PD0499), and the three colicin V precursors
PD0215, PD0216 and PD0217 (labeled “colicins”) and assessed for % diseased leaves at 40 and 88 days
post inoculation.

Note that genes considered to be dedicated to both hemolysin (hlyBD) and colicin (cvaAB) secretion exhibited greatly
reduced symptoms, and not just delayed symptoms.  The acrF (MDR efflux) mutant, but not hlyBD (hemolysin secretion)
was sensitive to berberine chloride (Gabriel, 2007 Pierce’s Disease Research Symposium Proceedings, p190-3), as expected.
These results strongly support a role of both colicins and hemolysins in pathogenicity.  In this regard, it is important to note
that hemolysins are known to behave as apoptotic toxins in insects and animal pathogens (Vigneux et al., 2007).  Therefore
hemolysins may have a direct role in PD pathogenicity.  Some colicins have a structural domain similar to Bcl-2 like proteins
that are involved in apoptosis of animal cells (Boya et al. 2001), and can inhibit proliferation of cancer cells.  Therefore the
colicins may have a direct role in PD pathogenicity as well; alternatively or additionally, they may have a role in suppressing
growth of bacteria that may compete for colonization of the xylem niche.  These potential roles are currently under
investigation.

CONCLUSIONS
This work demonstrates that not only is multidrug efflux critical to survival of Xf in grape, but also that Type I secretion is
needed for full pathogenicity, including the putative Type I effectors annotated as “colicin V precursors”.  Both multidrug
efflux and Type I secretion depend upon a single tolC gene present in the Xf genome.  Since TolC is exposed to the outer
surfaces of bacteria, these combined results make TolC a vulnerable and specific target for both chemical and transgenic
approaches to control PD.  Additionally, since colicin-like effectors appear to be important in conditioning pathogenicity,
they represent additional targets for chemical, biological and/or transgenic disease control strategies.
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Figure 1.  ‘Rafts’ of Xf cells actively
migrate outward from colony margins
(upper).  Migration is through extension
and retraction of type IV pili at one pole of
the cell.  Immunostaining of similar rafts
with an antibody (Agdia) reveals the
common polar site of both type I and type
IV pili and the cell alignment that allows
raft migration.  Bars, 10μm.
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ABSTRACT
Investigations reported herein focused on aggregation and ‘raft’ development by Xylella fastidiosa (Xf) cells.  This study was
particularly directed toward elucidating how Xf cells aggregate, to cause Pierce’s disease symptoms.  It was shown that 100%
grape xylem sap, for the first time, could be routinely used to culture Xf. Furthermore, the biofilm formed in sap was
significantly different than biofilms formed in the more commonly used nutrient rich PD2 media.  Additionally, we were able
to visualize using immunocytochemical approaches, type I and type IV pili by light microscopy.

INTRODUCTION
Colonization of grapevine xylem by Xylella fastidiosa (Xf) develops over an
extended period of time before symptoms of Pierce’s disease are recognized.
Such colonization, initially as individual cells, then as aggregates of a few
cells, and finally as very large multicellular aggregates, coalesce to from a
biofilm.  From a disease standpoint such aggregates and biofilms are
important for several reasons, including possible direct blockage of sap flow
through xylem vessels or indirect blockage through initiation of tylose
formation.  Cell aggregates may also facilitate pathogen spread from vessel
element to vessel element via enzyme digested pit membranes (Newman et
al., 2004) — individual cells likely lack sufficient ‘enzymatic power’ to
breach pit membranes, but a compact aggregate of cells would be much
more effective in this regard.  Furthermore, enzyme production may not be
expressed in individual cells, but be regulated in aggregates associated with
quorum sensing.  From the standpoint of the pathogen, cell aggregates and
biofilms likely facilitate nutrient adsorption, protection from environmental
stresses, and phytochemicals.

Ascertaining how Xf inhabits the xylem environment and how it blocks the
transpiration stream through the production of biofilms and bacterial cell
masses is deemed informative toward facilitating development of novel
control approaches.  Furthermore, insight into the selective acquisition,
retention, and transmission of Xf by leafhopper vectors represents a priority
area of interest.  Earlier, we demonstrated several unique and important
features of Xf biology not previously recognized, including the observation
that the bacteria posses functional type IV pili that allow the cells to migrate
via twitching motility upstream against the transpirational flow in grape
xylem elements (http://www.nysaes.cornell.edu/pp/faculty/hoch/movies/;
Meng et al., 2005; Figure 1), that they possess type I pili that function in
adhering the cells to xylem (De La Fuente et al., 2007a; 2007b; Li et al.,
2007), and more recently that, at some as yet undefined time or condition,
individual bacteria that are separated by relatively great distances
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Figure 2. Aggregation of Xf WT cells on PD2
medium and in a 50:50 mixture of grape
(Chardonnay) sap and PD2 after 7-8 days of
growth.

‘autoaggregate’ into large masses (De La Fuente et al., 2008).  In our in vitro studies, this occurred after six or more days of
growth (initiated from only a few cells) in PD2 media.  Aside from a slow population build up of cells in xylem vessels at or
near sites of sap flow constrictions (pits, element end-wall openings) which we consider cell aggregates, it is possible that
many individual cells normally distributed throughout xylem elements are able to quickly autoaggregate into large cell
masses contributing to vessel blockage.  This phenomenon may explain, in part, why Pierce’s disease symptom development
(reddening and drying of leaf margins) occasionally occurs within a short time span.

OBJECTIVE
Understanding the relationship of Xf cells within the confines of the xylem environment is our long term goal.  To that end,
this project centers on the development and importance of bacterial cell aggregates and biofilms, and their involvement in
expression of Pierce’s disease. We previously reported that Xf cells ‘autoaggregate’ as the cell population matures in PD2
media within microfluidic devices (De La Fuente et al., 2008).  That observation has led us to examine the biological and
genetic mechanism associated with this phenomenon by generating aggregation and autoaggregation-defective mutants.
Such mutants were examined for their activities within microfabricated ‘artificial’ xylem vessels (which provide superior
observation opportunities) as well as in bona fide xylem vessels, for disease development, and for vector transmission.  More
recently we have directed our attention toward similar aggregation phenomena and biofilm development in these artificial
xylem vessels using grape xylem sap in addition to the nutrient rich PD2 medium.

Specific objectives are to:
1. Identify genes associated with aggregation and autoaggregation of Xf cells.
2. Assess spatially and temporally aggregation and autoaggregation activities as they occur in planta and in microfluidic

‘artificial’ xylem vessels.
3. Assess selected aggregation and autoaggregation-defective mutants in planta for disease development and movement

within the plant.
4. Assess aggregation mutants generated in the first objective, and related attachment mutants already in hand, for

acquisition, retention, and transmission by sharpshooter vectors.

We reported previously many aspects of the results of our studies toward these objectives (in 2005, 2006, 2007 Pierce’s
Disease Research Symposium Proceedings, as well as in several publications—De La Fuente et al., 2007a; 2007b; 2008).
This report summarizes our most recent observations pertaining to aspects of the objectives which remained to be
investigated, as well as reporting coincidental observations made during the course of our studies.

RESULTS
Mutants, aggregation, rafts.  Numerous Xf mutants, including pilB, pilO, fimA, pilY1, hecA, xadA, double mutants fimA-
pilO, etc, were generated and screened for deficiencies in the ability to form cell aggregates when suspended in a fluid
environment.  Thus far, only the xadA mutant from Lindow’s group exhibited such a deficiency; all other mutants formed
aggregates.  Furthermore, mutants deficient in either type I or type IV pili, or both (e.g., fimA-pilO), aggregated from cell
suspensions.  This indicates that cell aggregation is not entirely dependent upon pilus-related adhesins, but more likely on cell
surface adhesins.  In addition, raft formation in vitro on firm surfaces (agar, cellophane, etc.), a phenomenon we relate to
aggregation in liquid environments (xylem sap, PD2, etc.) occurred in fimA mutants, indicating that type I pili were not
necessary for this phenotype and that the sole presence of type IV pili was sufficient for rafts to form.  Rafts do not form in
mutants deficient for type IV pili, e.g., pilB, because they cannot twitch-migrate (Meng et al., 2005).  The side-to-side
arrangement of Xf cells in rafts is likely reliant upon cell surface adhesins, in addition to the presence of type IV pili (for
movement and alignment).  We were not able to relate the surface
adhesin of xadA to raft development since this mutant was either
developed from a twitch-deficient parent or this characteristic was lost in
to course of the mutation.  Our next goal will be to site direct a xadA
mutation into an existing fimA mutant to test this possibility.

Xf aggregation and biofilm development in PD2 and xylem sap.
Until now all our studies with cell motility, aggregation and biofilm
development were in PD2 broth—in both microfluidic devices and in
culture flasks (Meng et al., 2005; De La Fuente et al., 2008).  This was
because we were not able to culture Xf in grape xylem sap, even though
that is where the organism lives in planta.  Either collected sap was
oxidized and became inhospitable to Xf, or possibly Xf lost its ability to
grow in sap after being continually cultured in a nutrient rich media such
as PD2.  We were able to grow Xf in summer grape xylem sap
(Chardonnay, provided by Hong Lin, USDA, Parlier, CA) following initial growth in PD2, and gradually increasing the
percentage of sap over several days.  Subsequently, we used spring sap obtained from Chardonnay as well as from Vitis
riparia and Vitis labrusca grapes grown in Geneva, NY and noted no difference in Xf growth. Xf grown in side-by-side
microfluidic channels, one with PD2 and one with a mixture of 50:50 (PD2:Chardonnay sap) exhibited different growth
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Figure 4. Biofilm formation and
growth of Xf in mixtures of PD2 and
grape xylem sap. Xf biofilms were
most robust and greatest in 80-90%
sap following 7 days growth (upper).
Similarly, growth of Xf was greatest in
sap:PD2 mixtures (lower).

Figure 3.  Sequential development of WT Xf
biofilm over 6 days in a mixture of 10:90
PD2:Chardonnay sap in microfluidic channels.

habits; grown in PD2, Xf developed cell aggregates by seven days as
observed previously (De La Fuente et al., 2008), while in the
PD2:sap mixture Xf growth occurred as a ‘lawn’ of cells (biofilm)
(Figure 2).  Best growth occurred in mixtures of 20:80 (PD2:sap),
although continual growth and biofilm formation also occurred in
90 and 100% sap in microfluidic devices (Figure 3).  Also, while
not quantitatively assessed, it appeared that Xf cell type IV pili
motility was significantly greater in sap and sap mixtures than in
PD2 alone.  Being able to grow Xf in grape sap provides a more
natural environment in the microfluidic devices to assess other
aspects of Xf biology.  Since culturing of Xf in sap in microfluidic
devices, we have now been able to grow it in tubes and flasks
containing sap, again by increasing sap concentrations gradually to
100%.  Also, we are now able to store Xf at -80 C in 100% sap, and
retrieve viable cells, shortening the time interval for sap media
culture.  Notable is the observation that not only is biofilm
formation in 80-90% sap significantly more robust and greater than
in PD2, but cell growth is also greater in higher percentage mixtures
of sap and PD2 (Figure 4).

Production of antibodies against Xf.  Characterization of Xf pili
and other cell surface characteristics, e.g., adhesins, is important to
understanding the biology of the pathogen.  One means of
approaching this is to use antibodies and specifically monoclonal
antibodies (MAb’s) to visualize localization of these properties.  In
addition, such antibodies may be useful in inhibition of migration
and colonization of Xf in vitro, and possibly in planta.  We have
thus produced MAb’s in mice toward various surface proteins of Xf.
A number of cell surface localizations are visualized using these
antibodies (Figure 5).  In addition, blood serum (polyclonal antibodies) from immunized mice exhibited excellent
recognition of Xf cell surface antigens including both type I and type IV pili (Figure 5).

Presentation of antibodies, ligands, dispersion chemicals, etc. to Xf cells.
One of our goals is to examine temporally, activities of Xf cells when
presented with various chemicals that may affect cell motility, aggregation,
and biofilm development.  We wish to do this in a way that excess non-bound
chemical can be removed from the cell environment, and at the same time
observe cell behavior.  To accomplish this, we developed microfluidic
devices with valves that can be activated open or closed have been devised in
which the environment around treated cells can be flushed, and the treated
cells moved to an adjacent chamber for observation (Figure 6).  We will next
expose cells to fluorescent protein stains such as CY3 to observe activities of
the type IV pili under different environmental conditions, as well as to
treatments that may influence cell activities.
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Figure 6.  ‘Valved’ microfluidic
device (upper) and schematic of
components (lower).  Five
pneumatic independently
operated valves (gray
components) control flow and
exposure of Xf cells to various
treatments.

CONCLUSIONS
Observations from this period demonstrate the pronounced role that pili have in Xf attachment, aggregation, and biofilm
formation.  We have demonstrated that microfluidic devices can effectively serve as ‘artificial xylem vessels’ to gain
valuable information about the biology of Xf, and to infer roles for these phenomena in planta.  To our knowledge, this is the
first time that Xf has been reported to be cultured in 100% grape xylem sap, and advancement that should provide better
insight into Xf cell colonization and biofilm development.
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Figure 5. Immunocytochemical localization of cell surface components of
WT Xf with MAb’s reveals predominately one cell pole (left top), the site of
type I pili, and outer surface proteins (left middle, left bottom).  Polyclonal
mouse serum localizes several cell surface features, including cell surface,
type IV pili, and type I pili as a bright pole (right), and individual type I pili
(right inset).
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Figure 1.  Model for chemosensory regulation of twitching
motility in X. fastidiosa.  PilJ, the single polar methyl-
accepting chemotaxis protein senses environmental signal(s).
PilL phosphorylates , PilG, PilH and ChpB.  ChpC and PilI
couples PilL to PilJ.  ChpB mediates adaptation to a constant
chemical concentration by adjusting the methylation level of
the receptor.  Some aspects still unknown are, for example,
the nature of the signal(s) and whether they diffuse or are
actively transported across the outer membrane. For
schematic purposes not all pili components are shown. (from
Burr et al. 2007)
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ABSTRACT
Here we provide evidence that twitching motility (TM) in Xylella fastidiosa (Xf) is dependent on a cluster of signal
transduction pathway proteins (tonB, pilG, pilI, pilJ, pilL, chpB and chpC), which is related to the system that controls
flagella movement in Escherichia coli, and highly similar to chemosensory system controlling TM in Pseudomonas
aeruginosa.  The gene pilL, coding for a putative kinase, is shown to be essential for TM as an insertional mutation in this
gene resulted in a twitching –minus phenotype in agar and inside microfluid chambers, and reduced biofilm formation.  We
constructed a new site-directed mutant on pilL (called pilL2), which confirms the minus phenotype observed for this gene.
This second mutation on pilL affects biofilm formation as well.  We demonstrate that pilG-chpC region is organized as an
operon.  In addition, we showed that tonB gene is also required for TM and complementation experiments restore the TM
phenotype of tonB mutant.  TEM revealed that type IV (and type I) pili are present on all mutants in the cluster, indicating
that none of the chemosensory-related genes affects the pili production and instead are likely to be involved in the sensory
regulation of TM.  We also report our advances on the heterologous complementation of swarming motility phenotype in E.
coli methyl-accepting chemotaxis protein (MCP) mutant using the Xf chemoreceptor, pilJ.

INTRODUCTION
Bacteria sense and respond to changes in their
environment, integrating the signals to produce a
balanced response. Xf is non-flagellated xylem-restricted
gram-negative bacterium that moves inside of grapevines
via TM that employs type I and type IV pili (Meng et al.
2005).  Movement controlled by a chemosensory system
was first reported in E. coli where a group of che genes
regulated the rotation movement of its flagella.  These
proteins work by means of a phosphorylation cascade to
ultimately control the direction of flagella rotation
(Blair,1995). In P. aeruginosa the chemosensory
regulation of type IV pili is controlled by genes in the
clusters pilGHIJK and chpABCDE (Whitchurch, 2006).
We previously described the new cluster of genes
involved in TM likely to be responsible for the
chemosensory regulation of type IV pili in Xf. (Figure 1).
Herein, we further characterize this cluster reproducing
mutations in pilL and describing a new gene tonB as part
of this cluster.

OBJECTIVES
1. Complete characterization of the single chemosensory regulatory system of Xf and its function in Pierce’s disease and, in

particular, we will focus on its role in mediating bacterial movement and biofilm formation.  Toward this we will:
a. Obtain Xf mutants in the pilJ gene that encodes the single methyl-accepting chemotaxis protein in Xf.
b. Assess virulence and motility of pilJ mutants in grapevines, as well as previously created mutants deficient in

related chemosensory genes, pilL.
2. Identify environmental signals that bind PilJ and activate chemosensory regulation.  Toward this we will:
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a. Express PilJ or a chimeric form of PilJ in a strain of E. coli previously deleted of all methyl-accepting chemotaxis
protein genes.

b. Subsequently, candidate signals will be screened using the above E. coli system for activation of motility.

RESULTS
Construction of null mutants strains of Xf for the chemosensory cluster.  The construction of an allelic exchange mutant
for pilL gene in Xf was performed according to Chatterjee et al. 2008 with slight modifications.  The disruption of the pilL
locus in marker-exchange mutants was confirmed by sequencing and PCR.  The mutation occurred in the codon 968.  The
pilL mutant was designated as pilL2.  The construction of a null mutant for the pilJ gene is underway.

Growth, biofilm, and pilus formation. We previously described a tonB mutant (Burr et al. 2007) and here we show that
complementation analysis of the tonB mutant was accomplished by cloning the gene in pBBR1MCS-5 followed by
transformation.  No significant differences in growth rates between the mutant and complemented mutant were observed
when compared to wild-type (Figure 2).  Therefore, the lack of twitching observed in mutants was not correlated with
growth.  The development of biofilms by wild-type, pilL, pilL2, tonB mutant, and complemented tonB are shown in Figure 3.
The tonB mutant formed significantly less biofilm than the wild-type strain, and biofilm formed by complemented tonB was
similar to the wild-type (not shown).  Similarly, the pilL and pilL2, mutants formed less biofilm than the wild-type.  Electron
microscopy revealed that pilL, pilL2, and tonB mutants as well as the complemented tonB possess type I and type IV pili
confirming that these genes are not involved in pili biogenesis.  The twitching phenotype by tonB mutant therefore is due to
the absence of a functional TonB protein, which is predicted to be accessory to the type IV pilus machinery contributing to
the release of pili subunits.  Similarly, we predict the abolishment of twitching in the pilL mutant is due to lack of histidine
kinase binding to the chemoreceptor.

Twitching motility. Examination of pilL, pilL2, and tonB mutants on PW agar surfaces revealed colony morphologies with
smooth margins consistent with loss of twitching function (Figures 4a and 4c).  Complementation tonB (C) showed the
restored fringe phenotype similarly observed in the wild-type (Figures 4b
and 4d)

We measured the speed of movement of Xf wild-type, pilL and tonB mutant
and tonB-complemented on PW agar surface.  The complemented mutant
shows a slight reduction in the speed of movement when compared to the
wild-type, but TM phenotype was restored (Figure 5).

Transcriptional analysis of the chemosensory cluster.  We also
investigated the effect of the transposon insertion in pilL on the
transcription of neighboring coding sequences by semi-quantitative RT-
PCR.  This analysis showed not only that wild-type expression levels are
retained in the mutant (in this case pilL) but also that pilG -chpC comprise
an operon (Figure 6).  Transcriptional analysis of tonB and tonB-
complemented are underway.

Figure 2. Growth curves of Xf wild-type, tonB mutant
and complemented mutant from a 10-day period (4-day
data shown). Experiments were repeated at least three
times using five replicates each.

Figure 3. Biofilm formation by Xf grown for 10 days in
culture flasks. The tonB, pilL and pilL2 mutant biofilm
layers were significantly smaller than Xf wild-type.

Figure 4. Colony morphology of tonB mutant
(a, c) and tonB-complemented (b, d) grow on
PW agar surface (a, b) and on cellophane
overlaid on agar (c, d) for 4 days.  TM fringe
is pronounced in b and d.
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Virulence and movement on grapevines. The pilL, pilL2, and tonB,
mutants were inoculated into grapevines in September 2008.  The
virulence and movement will be assessed in about 12 weeks. pilJ and
tonB-complemented will be assayed in the Spring of 2009.

Complementation of Xf chemoreceptor in E. coli. The putative Xf
chemoreceptor, pilJ, was cloned and expressed in an E. coli strain lacking
all chemoreceptors and methylating proteins, UU1535 (Bibikov, et al.
2004). SDS-PAGE analysis of whole cell lysates suggested that limited
PilJ protein was produced, presumably due to differences in codon usage
between the two organisms (not shown).  We are currently working
towards eliminating this problem.

Construction of a chimeric chemoreceptor. A chimeric chemoreceptor was constructed that contains the periplasmic ligand
binding domain of the Xf putative chemoreceptor PilJ fused to the cytoplasmic signaling domain of E. coli chemoreceptor
Tsr. The construct was expressed in an E. coli strain UU1535 (Bibikov et al. 2004), and Western blot analysis, using
antibodies to the E. coli chemoreceptor portion (Ames and Parkinson. 1994), suggested that the chimeric chemoreceptor was
produced, although at lower levels than wild-type E. coli chemoreceptor.  Again differences in codon usage were suspected to
be affecting protein production.  Over-expression of the chimera protein revealed its ability to activate the chemotaxis kinase
as measured by pseudotaxis (Wolfe and Berg, 1989; Ames and Parkinson, 1996), an assay measuring expansion of the colony
on a soft agar plate (Figure 7). We are currently examining if the chimera supports chemotaxis.

CONCLUSIONS
Our results with the complementation of tonB and a construction of a second mutation in pilL, pilL2 , show these genes are
required for twitching motility in Xf. They also play a role in biofim formation i.e. the mutation reduces the amount of
biofilm and may play a role in virulence.  Initial studies with the chemoreceptor suggest that both the Xf chemoreceptor, pilJ,
and chimeric protein express in E. coli and that the chimeric protein successfully interacts with the chemotaxis kinase. This
project is in initial stages and over the next nine months we will finish investigating pilL and the roles of pilJ.  We will also
be able to begin exploring the signals that trigger the chemosensory regulation in Xf.

Figure 7. Expansion of colonies (pseudotaxis) in mm on
soft agar plates indicates activation of the chemotaxis
kinase. E. coli chemoreceptor optimal induction at 100μM
IPTG while chimeric protein required ten-fold more
induction. Chemoreceptors were expressed in an E. coli
strain lacking chemoreceptors and methylating proteins,
and grown on tryptone soft agar plates incubated for 22.5
hours at 30 C.

Figure 5. Speed of twitching movement of X.
fastidiosa wild-type, tonB mutant, and
complemented tonB mutant cells on PW agar.
Values shown are means of at least 15 cells.

Figure  6. RT-PCR showing operon structure of pil-chp
cluster. Total RNA treated with DNAse was used to amplify
fragments indicated by black arrows in the top diagram. (1)
pilG-pilI; (2) pilI-pilJ; (3) pilJ-pilL; (4) pilL-chpB; (5) chpB-
chpC; (6) pilG-pilI with no reverse transcriptase but with
DNA polymerase; (7) pilG-pilI fragment amplified from
genomic DNA.
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ABSTRACT
Autotransporters are multi-domain proteins that are responsible for secreting a single specific polypeptide (passenger
domain) across the outer membrane of Gram-negative bacteria. Based on genomic analysis, there are six members of the
AT-1 autotransporter family in Xylella fastidiosa (Xf) Temecula 1 (Xf-PD).  Most of our work during the period under review
has focused on PD0528 and PD1379, the AT-1 autotransporters whose passenger domains contain tandem repeats of a 50-60
amino acid motif that is only found in Xf species.  These studies indicated that both PD0528 and PD1379 have a major
impact on autoaggregation and biofilm formation in vitro.  Furthermore, grapevines infected with a strain carrying a mutation
in PD0528 do not develop Pierce’s disease.  We have also initiated experiments to characterize PD0218, PD0313, and
PD0950, the three autotransporters predicted to have proteolytic activity.  We have generated strains containing single
mutations and a strain containing mutations in both PD0218 and PD0950.  Experiments are currently underway to generate a
strain carrying mutations in all three genes.  Characterization of the triple mutant should provide insight into the role of the
secreted serine proteases in the Xf infection cycle.

INTRODUCTION
Xylella fastidiosa (Xf) is a Gram-negative, xylem-limited bacterium and is the causative agent of Pierce’s disease (PD), a
devastating disease of grapevines (for a recent review, see (Chatterjee et al. 2008)).  The ability of Xf to colonize grapevines
and to incite disease is dependent upon the capacity of this bacterium to produce a diverse set of virulence factors.  Many of
these virulence factors are proteins that must be secreted to the bacterial cell surface or released into the external environment
before they can contribute to pathogenicity.  In Gram-negative bacteria, this secretion occurs through one of seven major
pathways, Types I to VI and the chaperone-usher pathways (Henderson et al. 2004, Hodak and Jacob-Dubuisson 2007,
Cascales 2008).  These pathways are highly conserved and exhibit functionally distinct mechanisms of protein secretion.

One of the simplest secretion mechanisms is exhibited by the AT-1 autotransporters, a subcategory of Type V secretion
systems (Henderson et al. 2004, Hodak and Jacob-Dubuisson 2007). AT-1 systems are dedicated to the secretion of a single
specific polypeptide called the passenger domain across the outer membrane.  Virulence functions associated with passenger
domains include proteolytic activity, adherence, biofilm formation, intracellular motility, cytotoxic activity, or maturation of
another virulence determinant.  Based on genomic analysis, there are six members of the AT-1 autotransporter family in
Xf-PD.  Functional sequence predictions of these genes indicate that three of these secreted proteins have proteolytic activity
(PD218, PD0313, PD0950), one protein has lipase/esterase activity (PD1879), and two of the proteins encode tandem repeats
of a 50-60 amino acid motif that is only found in Xf species (PD0528, PD1379).  Establishing the role of these secreted
proteins in Xf cell physiology and virulence will provide new targets for researchers to use in generating tactics that disrupt
the ability of Xf to colonize plant tissue and to initiate the PD disease cycle in susceptible grapevines.

OBJECTIVES
The primary goal of this project is to determine the role of the six Xf-PD autotransporter proteins and their passenger domains
in Xf cellular physiology and virulence.  Given the importance of AT-1 proteins in the virulence of other Gram-negative
pathogens, it is highly likely that most of the Xf-PD AT-1 proteins will play an important role in Xf virulence.
1. Generate a mutation in each of the six AT-1 genes and determine their impact on Xf cell physiology and virulence.  The

construction of strains carrying double and triple mutations in the various autotransporters is also part of this objective.
2. Examine the biochemical properties and location of the six AT-1 passenger domains.  Priority will be given to any gene

identified in Specific Aim 1.

RESULTS AND DISCUSSION
We have successfully generated mutations in five of the six AT-1 genes by the gene replacement method (Feil et al. 2003).
This procedure involved generating plasmids, which contain an antibiotic resistance marker flanked on each side by ~750
base pairs of the appropriate chromosomal sequence.  To facilitate the construction of double and triple mutants, one of four
different antibiotic resistance markers was used:  chloramphenicol (CmR), erythromycin (EmR), gentamicin (GmR), or
kanamycin (KnR).  The resulting plasmids were then introduced into Xf by electroporation. Xf cells containing the desired
mutations were identified by plating the cells onto antibiotic-containing PD3 plates.  Polymerase chain reaction (PCR) was
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then used to confirm that a double crossover event had occurred between the disrupted gene carried on the plasmid and the
wild-type gene on the Xf chromosome.

To date, this series of experiments has resulted in the construction of five strains carrying a mutation in one of the AT-1
autotransporters.  We have also generated a strain, which carries a mutation in PD0794.  Although PD0794 is not predicted to
encode an AT-1 autotransporter or to be localized to the outer member, it is classified as a paralog of PD0528 and PD1379
based on its similarity to their passenger domains.  Since PD0794 might be secreted to the cell surface by a different type of
secretion system, we decided to include it in our characterization of the PD0528 and PD1379 passenger domains.

Characterization of the AT-1 autotransporters with Xf-species specific passenger domains:
The passenger domains of PD0528 and PD1379 contain tandem repeats of a 50-60 amino acid motif.  PD0528 contains six
copies of this repeat, whereas PD1379 contains three copies.  Their paralog PD0794 contains four copies.  To investigate the
role of this Xf-species specific motif in cell physiology and virulence, we first generated strains that carried a single mutation
in each of the genes: TAM103 (PD0528::CmR), TAM127 (PD1379::GmR), and TAM145 (PD0794::EmR).  We then began to
construct strains containing mutations in multiple genes.  To date, two of these strains have been generated:  the double
mutant TAM128 (PD0528::CmR, PD1379::GmR) and the triple mutant TAM140 (PD0528::CmR, PD1379::Gm R,
PD0794::EmR).

Table 1. Properties of strains carrying mutations in genes having the Xf-
species specific motif.

Strain Mutations Doubling
Time (hr)

Clumping in
Liquid

Biofilm
formation

Temecula Wild-type 13.8 ++ 0.55 ± 0.13

TAM103 RPD0528::Cm 13.5 + 0.34 ± 0.14
TAM127 RPD1379::Gm 13.9 + 0.42 ± 0.13
TAM145 PD0794::EmR 13.4 + 0.29 ± 0.04
TAM128 RPD0528::Cm 13.7 + 0.23 ± 0.07

RPD1379::Gm
TAM140 RPD0528::Cm 13.5 + 0.23 ± 0.11

RPD1379::Gm
PD0794::EmR

The next step was to investigate the impact of these mutations on Xf cell physiology.  As shown in Table 1, the growth rate
of Xf is not affected by the elimination of genes carrying the Xf-species specific passenger domain.  However, even single
mutations had an impact on the ability of Xf to form clumps in liquid and a biofilm on a glass surface.  This would suggest
that all three genes contribute to the ability of Xf to autoaggregate and to form a biofilm on a solid surface.

Another method for determining the contribution of the individual Xf-species specific passenger domains to cell physiology
and virulence is to express the protein in a heterologous system.  This strategy has been used to generate E. coli strains that
display the passenger domain of heterologous autotransporter proteins on their cell surface.  These recombinant strains have
been employed for binding assays, for developing antibody specificity tests, and for exposing antigenic determinants for
vaccine development (Yang et al. 2004).  In last year’s Symposium Report (Igo 2007), we described our successful use of
this strategy for analyzing the PD0528 passenger domain.  Specifically, we introduced the plasmid pAM61, which carries the
gene encoding PD0528 into the E. coli strain UT5600.  UT5600, which has been used to express other autotransporter
proteins, is deficient in the outer membrane proteases OmpT and OmpP.  The presence of the PD0528 gene in UT5600
(UT5600/pAM61) results in autoaggregation and the formation of a biofilm, properties not normally demonstrated by the
parental E. coli strain.  Thus, expression of PD0528 in E. coli establishes that PD0528 plays a direct role in autoregulation
and biofilm formation in this heterologous system and by inference, in Xf.

During the period under review, we performed a more detailed analysis of the E. coli strain containing the PD0528 gene.  To
facilitate this analysis, we generated an antibody to the PD0528 passenger domain and then used it to perform Western
analysis on UT5600 and UT5600/pAM61.  As expected, the antibody did not hybridize to any proteins in UT5600 and
recognized a single band in UT5600/pAM61 that corresponds to the predicted size of the PD0528 protein.  We next
examined the location of PD0528 in E. coli.  Using a protease accessibility assay (Yen et al. 2007), we established that
PD0528 is present on the E. coli cell surface.  The PD0528 antibody was also used to perform immunofluorescence
microscopy. Together, these results indicated that PD0528 is localized to the E. coli surface and suggest that the components
necessary for secreting autotransporters like PD0258 to the cell surface are conserved between E. coli and Xf.
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We also performed Western analysis on a number of Xf strains.  In one study, we examined the specificity of the PD0528
antibody by comparing the hybridization pattern obtained for three Xf strains: Temecula, TAM103 (PD0528::CmR), and
TAM127 (PD1379::GmR).  This study revealed that antibody made with the PD0528 passenger domain does not hybridize to
the PD1379 protein.  Given the fact that there is only ~50% identity between the two proteins, this is not surprising.  Based
on this result, we plan to use the PD0528 antibody to examine the localization of PD0528 to the Xf cell surface using the
protease accessibility assay and immunofluorescence microscopy.

Finally, we examined the impact of the absence of PD0528 on Xf virulence in planta. In this experiment, grapevines were
infected by pinprick using the protocol provided by our cooperator Dr. Bruce Kirkpatrick (Guilhabert and Kirkpatrick 2005).
Briefly, Xf-Temecula and TAM103 were grown at 28◦C on PD3 plates.  The cells were harvested after 7-10 days and the
suspension was adjusted to a concentration of 109cells/ml. Then, 20 µl of the adjusted suspension was used to inoculate three
Thompson seedless grapevines by the standard pinprick method.  The parental Temecula wild strain served as a positive
control, whereas a water inoculation served as a negative control. The vines were then monitored for symptom development.

Figure 1. PD0528 impacts Xf virulence in planta. An Xf suspension of Temecula or
TAM103 was used to inoculate Thompson seedless grapevines using the standard
pinprick method.  These photographs show a representative vine 16 weeks after infection.

As shown in Figure 1, the vine inoculated with TAM103 does not exhibit the symptoms associated with Pierce’s disease,
suggesting that PD0528 plays an important role in Xf virulence.  As expected, symptoms were observed in the grapevines
inoculated with Xf-PD Temecula and were not observed in the grapevines inoculated with water. To confirm the presence of
Xf in both the Temecula-infected and TAM103-infected vines, petiole tissues from each vine were harvested one inch and six
inches above the inoculation sites.  The samples were then processed using published protocols (Guilhabert and Kirkpatrick
2005).  Serial dilutions of the samples were made and plated onto PD3.  The plates were then incubated at 28◦C for 7-10 days
and the numbers of Xf colonies were compared. Xf colonies were observed on both sets of PD3 plates, confirming the
presence of Xf in the Temecula-infected and TAM103-infected vines.  Interestingly, the TAM103-infected vines appeared to
have approximately 10-fold fewer Xf cells.  However, further experiments are needed to determine whether or not this 10-
fold difference is significant.

Characterization of the AT-1 autotransporters with subtilisin-like serine protease passenger domains:
The passenger domains of three AT-1 autotransporter proteins (PD0218, PD0313, and PD0950) are predicted to encode
subtilisin-like serine proteases (Bateman et al. 2004).  Extracellular subtilisin-like serine proteases have been implicated in
defense, growth on proteinaceous compounds, and the proteolytic maturation of virulence factors (Henderson et al. 2004).  In
order to investigate the role of these genes in Xf pathogenicity, we first generated null mutations in each of these genes and
then examined their impact on Xf cell physiology.  As summarized in Table 2, the mutation in PD0218 affects clumping in
liquid and biofilm formation, whereas the mutation in PD0950 only affects clumping in liquid.  In contrast, the mutation in
PD0313 does not appear to affect clumping in liquid, but may result in increased biofilm formation.  Although still
preliminary, these results suggest that the proteolytic activities of the PD0218, PD0313, and PD0950 passenger domains may
make different contributions to Xf-PD physiology and virulence.

TAM103 waterTemecula
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Table 2. Properties of strains carrying mutations in genes having a serine
protease passenger domain.

Strain Mutations Single Colonies In Liquid Formation
Temecula Wild-type 6-8 days ++ 0.55 ± 0.13
TAM148 RPD0218::Cm 6-8 days + 0.34 ± 0.09
TAM100 ΔPD0313::KmR 6-8 days ++ 0.79 ± 0.11
TAM147
TAM149

PD0950::EmR

RPD0218::Cm
PD0950::EmR

6-8 days
6-8 days

+

+

0.50 ± 0.03
0.44 ± 0.07

Appearance of Clumping Biofilm
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ABSTRACT
Purified cell-wall constituents or grape xylem sap added to media affected Xylella fastidiosa (Xf) in vitro growth, biofilm
formation, cell aggregation and gene expression.  Media containing xylem sap from Pierce’s disease (PD)-susceptible plants
provided better support for bacterial growth and biofilm formation than media supplemented with xylem sap from PD-
resistant plants.  Culturing Xf on media containing various purified cell-wall constituents demonstrated that CM-cellulose,
xylan, β-D-glucan, k-carrageenan, cello-oligosaccharide and laminarin promoted bacterial growth whereas lichenan strongly
suppressed growth.  However, only laminarin, xylan, and k-carrageenan promoted biofilm formation in vitro. Lichenan,
oligosaccharide, k-carrageenan, laminarin, xylan and β-D-glucan all significantly decreased bacterial cell aggregation in
vitro.  Quantitative real-time PCR assays revealed that expression of genes encoding extracellular endoglucanase, endo-1,4-
beta-glucanase, and periplasm protease were differentially regulated in response to amendment of media with xylem sap from
PD-resistant and PD-susceptible grapevines.  This study indicates that composition of xylem sap and cell walls may influence
the interaction of Xf with grape hosts in planta and may account for differences in pathogenesis of Xf on PD-resistant and –
susceptible grapevines.

INTRODUCTION
Xylella fastidiosa (Xf) is a Gram negative, xylem-limited bacterium causing Pierce’s disease (PD) of grapevine (1). Xf is
transmitted by xylem-feeding insects, including the polyphagous and invasive glassy-winged sharpshooter, Homalodisca
vitripennis (Germar) (2).  However, the mechanisms of Xf pathogenicity in host plants are not fully understood.  The
currently accepted explanation for development of PD in grapevine is water stress resulting from occlusion of xylem vessels
by bacterial biofilm and/or accumulation of extracellular polysaccharides and subsequent blockage of xylem vessels with
pectins, tyloses and gums produced by the plant host in response to Xf infection (2).  There also is a functional relationship
between xylem chemistry and Xf planktonic growth, aggregation and biofilm formation within Vitis germplasm (3, 4).  We
hypothesize that cell wall degradation products may affect Xf cell growth, aggregation, biofilm formation, and movement
within xylem vessels either directly as a source of nutrients and/or indirectly by induction or repression of Xf genes.

OBJECTIVES
1. Determine the comparative effects of xylem sap from PD-resistant and PD-susceptible grapes on growth, biofilm

formation, and cell aggregation in vitro;
2. Determine the effects of a variety of cell-wall constituents on Xf growth, biofilm formation, and cell aggregation in vitro;

and
3. Analyze the effects of xylem saps from PD-resistant and PD-susceptible grapes pre-inoculated with or without Xf on the

cell-wall degrading enzyme-related gene expression in vitro.

RESULTS
Effects of xylem sap from PD-resistant and PD-susceptible grapevines and other cell-wall constituents on bacterial
planktonic growth: After one day of culture in liquid PW (-BSA) medium amended with 1X PW medlum (minus BSA) –
containing xylem sap from PD-resistant or -susceptible plants, no significant differences (p<0.4873) in Xf growth was
observed.  However, after three or seven days, growth of Xf in liquid PW (-BSA) medium amended with xylem sap from PD-
susceptible plants was significantly greater than growth in the same medium amended with xylem sap from PD-resistant
plants (p<0.0282 and p<0.0177, respectively) (Figure 1A).  Inclusion of BSA in the growth medium at half the normal
concentration (1/2X BSA) resulted in more rapid growth of Xf (Figure 1B) than in PW (-BSA) medium (Figure 1A).
Nonetheless, Xf growth after three days was significantly greater (p<0.0071) when cultured in PW (1/2X BSA) medium
amended with xylem sap from susceptible plants relative to growth in the same medium  amended with xylem sap from PD-
resistant plants (Figure 1B).  To confirm this result, Xf cells grown in liquid PW (-BSA) medium amended with xylem sap
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for seven days were plated onto complete solid PW medium (Figure 1C).  The number of viable cells recovered from growth
medium amended with xylem sap from PD-susceptible plants averaged 2.24-fold more than the number of viable cells
recovered from medium supplemented with xylem sap from PD-resistant plants (number of Xf colonies: 431±7 for xylem sap
from PD-susceptible plants versus 192±89 for xylem sap from PD-resistant plants, with n = 3, p < 0.01).  In addition, we
determined the effects of cell-wall components on Xf growth.  Most cell-wall components had positive effects on bacterial
growth in vitro, among these, cellulose had the most promoting effect for all time points examined (p<0.0001 at Day 1,
p<0.0001 at Day 3 and p<0.0014 at Day 7), followed by laminarin (p<0.0550 at Day 1, p<0.0111 at Day 3 and p<0.0014 at
Day 7), xylan (p<0.1163 at Day 1, p<0.0228 at Day 3 and p<0.0182 at Day 7), glucan (p<0.8569 at Day 1, p<0.0126 at Day 3
and p<0.0244 at Day 7), and carragerran (p<0.0476 at Day 1, p<0.0009 at Day 3 and p<0.9496 at Day 7); oligosaccharides
promoted Xf growth only at one day (p<0.0120 at Day 1, p<0.8030 at Day 3 and p<0.1636 at Day 7).  In contrast, lichenan
inhibited bacterial growth on the third and seventh days (p<0.2126 at Day 1, p<0.0004 at Day 3 and p<0.0001 at Day 7) of
culture (Figure 1D).

Effects of in vitro growth medium amendment with xylem sap from resistant or susceptible grapevines and cell wall
components on bacterial biofilm formation and aggregation: As shown in Figure 2A, xylem sap from PD-susceptible
grapevine significantly increased Xf biofilm formation in vitro (1.57 times higher than in unamended control, p<0.0162; 1.60
times higher than resistant xylem sap, p<0.0082).  In contrast, xylem sap from both PD-susceptible and -resistant grapevines
significantly decreased Xf cellular aggregation in vitro by factors of 3.28 (p<0.0074) and 2.20 (p<0.0333) times lower than
the unamended control (Figure 2B).  Laminarin and k-carrageenan significantly enhanced Xf biofilm formation (2.48 fold
greater than control, p<0.0006 for laminarin; 1.59 fold greater than unamended control, p<0.0055 for k-carrageenan).
Laminarin and k-carrageenan also significantly decreased Xf cellular aggregation 5.25- fold (p<0.0397) and 4.2 fold
(p<0.0178), respectively, compared to that in unamended control medium (Figure 2B).  Lichenan and cello-oligosaccharide
decreased the Xf cellular aggregation very significantly (3.00 fold less than control, p<0.0090) and significant (4.67 fold less
than unamended control, p<0.0137) levels, respectively, but did not affect Xf biofilm formation (Figures 2A and 2B).  In
contrast, Xf biofilm formation and cellular aggregation were not significantly different in medium supplemented with xylan
and β-D-glucan from that in unamended medium controls.

Effects of xylem sap from resistant and susceptible grapevines on bacterial cell-wall degrading-related gene expression:
Expression of endo-1,4-β-glucanase gene was significantly increased (2.83 fold greater, p<0.05) in PW medium  amended
with plant xylem sap from PD-resistant grapevine pre-infected with Xf, but increased only slightly in medium  amended with
susceptible plant xylem sap from PD- susceptible grapevine pre-infected with Xf (Figure 3A).  The Xf periplasm protease
gene was significantly down-regulated (1.67 fold less, p<0.01) in medium amended with xylem sap from PD-resistant
grapevines pre-infected with Xf. In contrast, the periplasm protease gene expression was significantly up-regulated (2.21 fold
greater, p<0.01) in medium amended with xylem sap from PD-susceptible grapevines pre-infected with Xf (Figure 3B).

Total protein content and composition changes in PD-resistant and PD-susceptible grape plant xylem sap in response to Xf
infection: As shown in Figure 4, the majority of Xf-induced host proteins in PD-resistant plants are of low molecular weight
(15 – 35 Kd) with high pI values (pI 7 – 10), although a small group of proteins with lower pI values (pI 3.5 - 4) were also
induced (Figures 4A and 4B).  In contrast, only a few host proteins with the similar range of molecular weights and pI
values were induced by Xf in PD- susceptible plants (Figures 4C and 4D).  Some Xf-induced xylem sap proteins were
genotype specific, whereas others were specific to Xf infection.

DISCUSSION
Genetic differentiation of xylem sap from PD-resistant and PD-susceptible grapevines
Highly PD-resistant and -susceptible Vitis’ species were used in this study.  Differential host responses to Xf infection
between the two lines are controlled by a single major locus (the dominant resistance allele is PdR1) (7).  Host plant response
to Xf infection differs between resistant and susceptible genotypes at both molecular and physiological levels and also varies
with plant organ, as stem and leaf tissues of the same plant respond differently (5,10).  Given that Xf is limited to xylem
vessels, we hypothesized that xylem cell wall properties and chemical composition of xylem fluid may significantly affect Xf
pathogenesis.  Although the biochemical properties of xylem sap from these two grapevines have not been determined in
detail, our bioassay and protein analysis indicated that xylem sap from PD-resistant and PD-susceptible grapevines differed
in protein composition, especially following Xf infection (Figure 4).

Roles of cell-wall constituents in bacterial growth, biofilm formation and cellular aggregation of Xf
Within xylem, Xf is confined to a poor nutritive environment (8, 9). Upon degradation of xylem cell-walls, xylem fluid in
PD-resistant and -susceptible grapevines likely differ both qualitatively and quantitatively with respect to the chemical
composition of cell wall degradation products.  Our results suggest that different cell-wall constituents have different effects
on growth, biofilm formation and cellular aggregation of Xf at least in vitro (Figures 1 and 2).  Several cell-wall constituents
(cellulose, xylan, glucan, laminarin, carragerran and oligosaccharides) enhanced Xf growth in vitro.  Some cell-wall
constituents (laminarin, k-carrageenan, cellulose, lichenan and oligosaccharides) inhibited Xf cellular aggregation.  Only
laminarin and k-carrageenan significantly enhanced biofilm formation, and only cellulose significantly enhanced cellular
aggregation in vitro.  It seems clear that different cell-wall constituents are required and actively involved in the different
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processes of bacterial growth, biofilm formation and cell aggregation, of which algae and seaweed laminarin- and k-
carrageenan-related cell wall components significantly enhanced both bacterial growth and biofilm formation in vitro,
whereas only cellulose significantly enhanced  bacterial growth and aggregation, and most other cell-wall ingredients tested
inhibited  cell aggregation in vitro.  Aggregation may result from clumping of cells facilitated by extracellular
polysaccharides and may be the initial step of biofilm formation (11, 12).  Cellular aggregation of Xf in response to xylem sap
from PD- resistant and -susceptible grapevine plants, and to different cell-wall constituents, did not mirror responses in
planktonic growth and biofilm formation to the same treatment.  It is not clear whether cellular aggregation process in vitro is
different from that in planta.

Cell-wall degrading enzymes potentially involved in the early stage of pathogenicity through interaction of Xf with xylem sap
of host plants
Pathogenicity of Xf likely requires biofilm formation leading to xylem vessel blockage and subsequent water stress (12, 13).
Regulatory pathways are responsible for the transition from planktonic growth to biofilm formation (14, 15).  Gene
expression during the early stage of biofilm formation with planktonic bacteria exposed to plant xylem sap resulted in
expression of endo-β-1,4-glucanase and periplasm protease genes in the xylem sap from PD-susceptible grapevines pre-
infected was elevated.  Increased expression of these genes by Xf in PD-susceptible grapevines presumably would result in
more efficient degradation of cell-walls and release more free cell-wall constituents available to support bacterial growth
(Figures 3A and 3B).  This conclusion is supported by recent studies showing plant pathogenic bacteria are able to lyse and
grow on viable host cells by producing a variety of cell-wall degrading enzymes, including endo-β-1,3-glucanases, proteases,
β-1,6-glucanases, mannanases, and chitinases (16).

CONCLUSIONS
Our observations support the hypothesis that Xf-grapevine host- pathogen interactions are mediated by xylem sap
constituents, as opposed to a direct connection between bacteria and metabolically active host cells.  Therefore, xylem vessels
may serve as a unique niche for host plants to recognize and interact with Xf in xylem sap in planta.  If this is the case,
identification of components of xylem sap that differ among PD-resistant and -susceptible grapevines may facilitate
elucidation of mechanisms through which Xf- host plant interactions result in resistance or susceptibility.  Xylem sap could
be used to screen grapevines for PD resistance breeding.
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Figure 2.  Effects of amendment of
liquid PW medium with xylem sap from
PD-resistant (9821-67) and PD-
susceptible (9621-94) grape plants or
cell wall components on Xf biofilm
formation (A) or cell aggregation (B).
Asterisk (*) indicates ANOVA-test
results of significance at P < 0.05;
double asterisk (**) indicates
significance at P < 0.01.

Figure 1. Effects of amendment of liquid PW medium with
xylem sap from PD-resistant (9821-67) and PD-susceptible
(9621-94) grape plants (A-C) or cell wall components (D)
on Xylella fastidiosa (Xf) growth in vitro.  Asterisk (*)
indicates ANOVA-test results of significance at P < 0.05;
double asterisk (**) indicates significance at P < 0.01.  A. Xf
growth in PW medium containing 1/10 X BSA and
amended with xylem sap.  Bacterial growth was measured
after 1, 3 and 7 days of culture in amended media. B. Xf
growth in PW medium containing 1/2 X BSA and amended
with xylem sap.  Bacterial growth was measured after 1.5
and 3 days of culture.  C. Xf colony formation on agar-
solidified PW medium (1X BSA) following culture for 7
days in liquid PW (1/10 X BSA) amended with xylem sap
from PD-resistant or PD-susceptible plants.  D. Effects of
cell-wall components on Xf growth.  Bacterial growth was
measured after 1 (1D), 3 (3D), and 7 days (7D) of culture in
liquid PW medium  (1/10 X BSA) amended with purified
cell-wall polymers.  Control cultures were grown under the
same conditions without amendment with cell-wall
polymers.
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Figure 3. Effect of grape xylem saps on Xf
gene expression in vitro. PW represents PW
liquid medium, PW+RC indicates PW liquid
medium plus xylem sap from uninoculated PD-
resistant plants, PW+RT indicates PW liquid
medium plus xylem sap from PD- resistant
plants  pre-infected with Xf, PW+SC indicates
PW liquid medium plus xylem sap from
uninoculated PD- susceptible plants, and
PW+ST indicates PW liquid medium plus
xylem sap from PD- susceptible plants pre-
infected with Xf. Bacterial cultures were
subsequently collected for RNA isolation and
gene expression analyses.

Figure 4. 2D- PAGE analyses of proteins in
xylem sap from PD-resistant (9621-67) and
PD-susceptible (9621-94) grape plants in
response to Xf infection. A. 9621-67
uninoculated control; B. 9621-67 Xf- infected;
C. 9621-94 uninoculated control; D. 9621-94
Xf- infected. The pI range is shown on the top,
molecular weight standards and sizes are
shown on the left. The Xf-induced protein
zones are boxed, constitutively expressed
proteins are circled with solid lines or dashed
lines to highlight the different display patterns
of protein spots on the gels. Only qualitative
analysis was performed to show the presence
and variation of major visible protein spots
between different xylem sap samples.
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ABSTRACT
We have followed the movement and population size of a green fluorescent protein (gfp)-marked strain of Xylella fastidiosa
(Xf), simultaneously in both the stems and petioles of Cabernet Sauvignon, Chenin Blanc, Roucaneuf and Tampa grape
varieties which differ in susceptibility to Pierce’s disease (PD).  Very low populations of Xf and less frequent occurrence in
xylem vessels in the stem were observed in the resistant varieties compared to more susceptible varieties.  There was no
simple relationship between the population size of Xf in the stem and the proportion of vessels colonized when considered
over the several varieties; a much higher population size of Xf was observed than expected, even after accounting for the
higher number of infected vessels, in susceptible varieties.  To better understand the distribution of the Xf population,
particularly in the stem vascular system, we distinguished between high moderate and low levels of cell numbers in a given
infested vessel.  The higher populations in susceptible genotype stems are achieved because of both higher numbers of
infected vessels and particularly due to the much higher extent of colonization of those vessels that become infested with Xf.
Lower populations in resistant genotype stems are achieved because of both lower numbers of infected vessels and also
because of a  lower number of cells in the vessels that are colonized.  This suggests that in resistant genotypes the movement
and multiplication of Xf in the stem are both impaired and are co-dependent phenomena.  In contrast, similarly high
percentages of vessels in petioles of susceptible and resistant plants were colonized, and similar population sizes were
attained, suggesting that Xf is unrestricted in movement and growth within the petiole.  These results indicate that resistance
to PD is not due to inhibitory compounds that circulate through the xylem or to host defenses since they might be expected to
operate similarly in all tissues.  Also, large-scale cell agglomeration in a single vessel is not required for Xf to move laterally
in the stem to adjacent vessels as the majority of vessels were categorized as having few cells in the vessels in all the
genotypes.  These results are consistent with earlier work done on Cabernet petioles.  In the resistant genotype Roucaneuf we
found only low numbers of cells in any vessel, although Xf was able to move a distance greater then the average vessel length
from the point of inoculation.

Work is continuing using mixtures of isogenic strains of Xf to examine the apparent bottlenecks that occur when cells move
from one infected vessel into other adjacent uninfected vessel.  The efficiency with which cells move from one vessel to
another is expected to be related directly to overall susceptibility to PD and should be manifest as a rate of spatial segregation
in the plant of the two strains that is inversely related to susceptibility to disease.

INTRODUCTION
Nearly all studies of Xf colonization of grapes have focused on the petioles, with little examination of Xf movement and
distribution in the stems has been made.  Importantly, the work from the Walker lab has noted that the mechanism of
resistance to Xf is localized within the stem xylem and not fully functional or absent in the xylem of petioles and leaf blades.
This was based on the observation that there was little difference in the colonization of the petioles and leaf blades, as
opposed to the stems.  They speculate that a more constitutive resistance mechanism is present in the stem xylem based on
nutritional or structural differences between resistant and susceptible types.  Our study was designed to examine differences
in the colonization process of the stem of different grape genotypes to identify resistance mechanisms.

In an effort to better understand the process of colonization of grapevines by Xf, and develop a method of screening for
resistant plant genotypes, we are investigating the spatial segregation of Xf cells within the xylem vessel systems of different
grape varieties.  Single Xf strains or an equal mixture of two different isogenic Xf strains, are being co-inoculatied in different
varieties and their movement is being  followed closely by culturing and epifuorescence microscopy, with time and distance
from the point of inoculation to determine how rapidly spatial segregation of the cells might occur, presumably due to
stochastic proceses occurring by transfer of only a few cells from one infected vessel to other uninfected vessels.  Before
initiating studies of the segregation of differentially marked strains of Xf in various grape varieties, we explored the process
of colonization of Xf in stems of Cabernet Sauvignon to establish control data and optimize sampling schemes for the Xf
strain mixtures.  We set out to determine how quickly Xf moves within stems throughout the plant, the fraction of the xylem
vessels colonized as a function of time and distance from the point of inoculation, and the relative likelihood of finding Xf in
xylem vessels as compared to tracheal elements.  We specifically considered the longitudinal movement of Xf in the xylem
vessels in the internodal stem locations and the rate at which segregation of the two strains occurs.
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OBJECTIVES
1. Study the process of movement of Xf cells between xylem vessels and through plant by determining the changes in

proportion of genetically distinct strains of the pathogen initially inoculated into plants at an equal proportion with
distance and time from point of inoculation

2. Determine if bottlenecks in movement of cells of Xf from xylem vessel to xylem vessel is more extreme in resistant
plants than in susceptible plants and whether this phenomenon can be exploited as a tool to screen germplasm for
resistance to Xf.

RESULTS
Objective 1:
We initiated our investigation by co-inoculating Cabernet Sauvignon stems with a mixture containing an equal amount of
wild-type and gfp-marked (KLN59.3) Xf strains.  This was designed specifically so that the segregation of the two strains
could be tracked and correlated to resistance characteristics of the plant variety. The population size of the gfp-marked strain
of Xf was somewhat smaller at a given location and time after inoculation than the wild-type strain.  It was known that this
strain caused disease symptoms slightly slower than the wild-type strain, and this difference thus appears to be due to a
slower growth in the plant.  Given that future experiments will emphasize the spatial segregation of this gfp-marked strain
and a similar cyan fluorescent protein (cfp)-marked strain which is expected to have a similar growth rate as the gfp-marked
strain we do not expect that this lower growth compared to the wild-type strain will complicate our measurements of ratios of
these two strains in up-coming experiments.  To best test our model of stochastic processes influencing spatial segregation, it
is important that two isogenic bacterial strains used in such studies have nearly identical behavior in the plant.  We thus have
tested other such strain pairs for suitability for this study.  It was found that an rpfB mutant of Xf was more virulent to grape
and moved and multiplied somewhat better in Cabernet than the wild type Xf. This was unexpected given that when
inoculated singly they each had yielded similar disease severity and progression in the plant.  Studies are underway with
other isogenic strain pairs of Xf. These strain pairs include Xf harboring different marker genes introduced into the same
intergenic region in Xf by the Igo lab, as well as random Tn5 mutants of Xf generated by the Kirkpatrick lab that exhibited
similar virulence as the wild type strains.

Objective 2:
Colonization of susceptible Cabernet Sauvignon and resistant genotypes like Tampa and Roucaneuf  by Xf was examined by
sequential culturing and epifuorescence microscopy. Roucaneuf is a complex hybrid that includes Vitis. cinerea and V.
berlandieri and has been described as “fully-resistant” in field conditions to PD.  Tampa also is a PD resistant genotype.
Microscopy did not reveal any obvious differences in anatomy of the stem and petiole tissues of the resistant and susceptible
varieties. Cabernet Savignon, Roucaneuf and Tampa plants were inoculated with a gfp-marked Xf strain.  We followed
population growth by culturing and also visually by microscopy (Figure 1).  Culture sampling was done at weeks two, three,
four, six, and 11 following inoculation. A total of six plants at each time point, two from each resistant genotype and two
from the susceptible genotype were evaluated.  Each plant was sampled at the petiole near the point of inoculation and at six
internodal locations 10, 20, 30, 60, 80, and 120 cm away.  The sample sites were examined the same day by epifruorescence
microscopy.  Petioles and portions of the stems were sectioned and prepared for microscopy.  An average of nine sections
was prepared for each stem location and photos were taken from each sample.

It was clear from our observations that a very low proportion of the stem vessels at sites away from the point of inoculation
of Roucaneuf and Tampa were colonized by any cells of Xf compared to that of Cabernet. There was also a higher viable
population sizes of Xf in Cabernet in the stem tissue compared to that of Roucaneuf and Tampa.  However, there was no
simple relationship between the population size of Xf in the stem and the proportion of vessels colonized when considered

Figure 1: Visualization of colonization of
Cabernet Sauvignon stems wth a gfp-marked
strain of X. fastidiosa.  The plant was sectioned
11 weeks after inoculation and this section was
taken from the stem at 30 cm from the point of
inoculation.  This image is typical of stem tissue
from susceptible grape varieties in that a
relatively high proportion of vessels harbor at
least some cells of Xf while most vessels harbor
relatively few cells of the pathogen.
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over the several varieties; a much higher population size of Xf was observed than expected, even after accounting for the
higher number of infected vessels, in susceptible varieties (Figure 2).  This raised the question as to whether cells in the
resistant varieties may die as they age, or whether there was a large difference in the extent of colonization of those vessels
that become infested with Xf.
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In contrast to the stem tissue, visualization of cells of Xf in petioles of Cabernet, Roucaneuf and Tampa reveal that petioles of
these plants were both equally well colonized by the gfp-tagged cells of Xf . This is in contrast with the stems of these two
varieties where very few vessels of Roucaneuf were colonized but a large percentage of vessels of Cabernet were colonized
It was evident that there was no significant difference in bacteria population between the resistant and susceptible genotypes
in the petioles (Table 1) which is consistent with the work of the Walker lab. In addition, The proportion of the total stem
xylem vessels that are colonized by Xf appears to be much less than that of the xylem vessels in the petiole for a given
variety.  Thus the petiole seems to offer little resistant to movement and or multiplication of Xf compared to stem tissue.

Figure 2: Relationship between
incidence of colonization of stem
vessels of different grape
varieties by Xf as determined by a
microscopic detection of gfp-
tagged Xf strain (Y-axis) and the
population size of Xf determined
by culturing of small samples of
tissue near the site of
examination (X-axis).
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Table 1. Xf populations in petioles of different grape varieties determined
by dilution plating at a given time after inoculation.

X f C on c e n tra tio n , lo g [(c fu /g + 1 )]
P e tio le

C ab e rn e t
w e e k R o u ca n e u f T a m p a S a u v ig n o n

3 7 .7 7 4 .8 6 7 .6 0
4 7 .7 1 5 .5 5 7 .4 3
6 7 .1 8 5 .2 2 6 .2 6

11 6 .1 2 8 .4 6

To investigate the model that not only does Xf move into more vessels of susceptible varieties than resistant varieties, but it
also multiplies more extensively in those vessels into which it moves we performed a more robust examination of
colonization of the varieties Tampa, Roucaneuf, Cabernet, as well as Chenin Blanc, a susceptible variety with a slightly more
resistance to PD than Cabernet.  In addition, to counting number of stem vessels that were colonized by any number of Xf
cells, we distinguished between those having high levels of colonization (which we estimated to be about 100,000 cells/
vessel (labeled “full” in the figures, those having moderate levels of colonization (about 1000 cells/vessel) (labeled
“medium” in the figures) or those having minor colonization (less than 10 cells/vessel) (labeled “few” in the figures).  The
colonization was assessed in the stem for each variety at several different times and distances from the point of inoculation.
At each sampling location and time, 12 stem sections were examined under the fluorescence microscope to obtain robust
estimates of both incidence and intensity of colonization of vessels.  More then 10,000 plant vessels were observed at each
sampling.  It was clear that the incidence of infestation of stem xylem vessels by Xf was related directly to the resistance of
these varieties to PD; The highest incidence of colonization of vessels was observed in the highly susceptible Cabernet
sauvignon with the lowest in the most resistant variety, Roucaneuf (Figure 3).  The varieties with intermediate
susceptibilities exhibited intermediate levels of colonization incidence.  It is evident that near the point of inoculation the
proportion of vessels that harbor any number of cells of Xf are higher than at more distal sites.  With increasing time, the
number of vessels colonized also increase.  The reduced number of colonized vessels, particularly at distal sites suggests that
in resistant genotypes the lateral movement to adjacent vessels is what it is impaired.  More importantly, a large difference in
the extent of colonization of vessels was observed between varieties.  In all varieties, the large majority of vessels harbored
relatively few cells of Xf (Figures 4 and 5).  Vessels that harbored very large numbers of Xf were only observed in the most
susceptible variety Cabernet sauvignon (Figures 4 and 5).  Likewise, the more susceptible varieties Cabernet Sauvignon and
Chenin Blanc both had higher numbers of vessels that harbored intermediate extents of colonization by Xf (Figures 4 and 5).
These differences in extent of colonization were highly statistically different between varieties in most cases (Table 4).  At
increasing distances from the point of inoculation, the resistant genotypes respond more like each other and become more
statistical divergent from Cabernet and Chenin Blanc varieties, having lower colonized vessels.
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Figure 3. Percentages of infected vessels determined by microscopy (12 stem cross sections each of 28 µm thickness
examined per location) sampled at different times and distances from the point of inoculation for four grape varieties.
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Table  2:LSD test for mean number of  colonized vessels

Few cells colonization
10 cm 60 cm 120 cm

Cabernet Sauvignon 68.2a 75.7b 8.1a
Tampa 25.5b 13.3a 38c
Chenin Blanc 60.9c 46.9c 4.1ab
Roucaneuf 8d 4.7a 0b

Medium vessels colonization
10 cm 60 cm 120 cm

Cabernet Sauvignon 5.7b 8.3b 0a
Tampa 3.4a 0.41a 0a
Chenin Blanc 3.2a 1.41a 0a
Roucaneuf 0c 0a 0a

Full vessel colonization
10 cm 60 cm 120 cm

Cabernet Sauvignon 0.9b 0a 0a
Tampa 0a 0a 0a
Chenin Blanc 0a 0a 0a
Roucaneuf 0a 0a 0a
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Figure 4. Proportion of colonized vessels having different extents of colonization by Xf in Cabernet (left) and Chenin Blanc
(right).

Table 3 :LSD test for mean number of  colonized vessels

Few cells colonization
10 cm 60 cm 120 cm

Cabernet Sauvignon 68.2a 75.7b 8.1a
Tampa 25.5b 13.3a 38c
Chenin Blanc 60.9c 46.9c 4.1ab
Roucaneuf 8d 4.7a 0b

Medium vessels colonization
10 cm 60 cm 120 cm

Cabernet Sauvignon 5.7b 8.3b 0a
Tampa 3.4a 0.41a 0a
Chenin Blanc 3.2a 1.41a 0a
Roucaneuf 0c 0a 0a

Full vessel colonization
10 cm 60 cm 120 cm

Cabernet Sauvignon 0.9b 0a 0a
Tampa 0a 0a 0a
Chenin Blanc 0a 0a 0a
Roucaneuf 0a 0a 0a

Table 3: Differences in extent of colonization
of stem xylem vessels in different grape
varieties determined by microscopic detection
of a gfp-marked strain of Xf at different
distances from the point of inoculation.  The
results of an LSD test performed on the mean
number of colonized vessels 11 weeks post-
infection are shown.  Means followed by the
same letter within a column do not differ
(P<0.05).  Vessels having large numbers
100,000 cells/vessel (full), moderate numbers
(1000) of cells/vessel (medium) or few (<10)
cells/vessel were differentiated.

Table 2: Differences in extent of colonization
of stem xylem vessels in different grape
varieties determined by microscopic detection
of a gfp-marked strains of Xf at different
distances from the point of inoculation.  The
results of an LSD test performed on the mean
number of colonized vessels 11 weeks post-
infection are shown.  Means followed by the
same letter within a column do not differ
(P<0.05).  Vessels having large numbers
100,000 cells/vessel (full), moderate numbers
(1000) of cells/vessel (medium) or few (<10)
cells/vessel were differentiated.
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Figure 5. Proportion of colonized vessels having different extents of colonization in Tampa (left) and Roucaneuf (right).

Table 4:  LSD test for proportion mean of vessels colonization

 Few cells colonization
10 cm 60 cm 120 cm

Cabernet Sauvignon 0.91a 0.88b 1a
Tampa 0.93a 0.97a 0.99a
Chenin 0.9a 0.92c 1a
Roucaneuf 0.96a 0.98a 0b
Medium vessels colonization

10 cm 60 cm 120 cm
Cabernet Sauvignon 0.07a 0.07a 0a
Tampa 0.06a 0.16b 0a
Chenin 0.09a 0.07a 0a
Roucaneuf 0b 0c 0a
Full vessel colonization

10 cm 60 cm 120 cm
Cabernet Sauvignon 0.01b 0.01b 0a
Tampa 0a 0.01a 0a
Chenin 0.03c 0.07c 0a
Roucaneuf 0a 0a 0a

Since we had made independent measures of both the incidence and extent of colonization of stem xylem vessels by Xf by
microscopy as well as direct measures of viable population sizes of Xf by culturing of the adjacent tissue, we tested the model
that cells of Xf had similar frequencies of viability in different grape varieties.  We estimated population sizes from
microscopy measurements by multiplying the number of infected vessels by the number of cells enclosed in a given vessel
and with knowledge of the amount of plant material that had been examined (28 um/section examined).  In locations more
proximal to point of infection (POI), the total populations estimated by microscopy were very similar to that of the culturable
population, suggesting that most of the cells were viable, irrespective of grape variety (Figure 6).  At the most distal sites
from the point of inoculation, the numbers of Xf estimated by microscopy were somewhat lower than the culturable
populations; we believe this is due to sampling issues since the relatively few vessels that were colonized by Xf at such
distances (Table 3) made accurate estimates of incidence and extent of colonization difficult and subject to underestimation.
Given that the numbers of Xf in stems of resistant varieties such as Roucaneuf are low and apparently spatial variable, at a
given sampling time, not all visualized stem segments (28 um/section  x 12sections/sample) include detectable cells of Xf.

Table 4. Differences in the proportion of vessels
from different grape varieties that had been
colonized by any cells of Xf that exhibited varying
extents of colonization.  Microscopic detection of a
gfp-marked strain of Xf at different distances from
the point of inoculation was determined.  The
results of an LSD test performed on the mean
number of colonized vessels 11 weeks post-
infection are shown.  Means followed by the same
letter within a column do not differ (P<0.05).
Vessels having large numbers 100,000 cells/vessel
(full), moderate numbers (1000) of cells/vessel
(medium) or few (<10) cells/vessel were
differentiated. (Data of Table 3 expressed as a
proportion of the total colonized vessels).
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CONCLUSIONS
Resistance to movement of Xf in different grape varieties appears to be restricted to the stem tissue and is due to structural
differences in the vessels of the resistant varieties and is associated with a limitation of the number of vessels into which Xf
can spread and thus in which they can grow.  It is apparent that the relatively high populations in susceptible genotype stems
are achieved because of higher numbers of infected vessels and also due to more extensive colonization of the vessels into
which it moves.  Since Xf was frequently detected in petioles, even in resistant varieties and at some distance from the point
of inoculation, it appears that Xf follows a sinuous path up the vessels in the stem, never colonizing a large number of vessels,
but when it enters the petiole it can multiply to high numbers.  The similar populations, estimated by microscopy or plating
suggest that most cells in the stem appear to be alive.  This suggests that in resistant genotypes in-stem tissue movement and
multiplication are impaired as separate or co-dependent phenomena, which doesn’t seem to be the case in petioles.
Presumably the process of movement of Xf from one infected vessel to other adjacent vessels involves the degradation of pit
membrane.  This degraded plant material is apparently a source of considerable nutrition to Xf. That is, those grape varieties
that are most easily digested by Xf will be both more easily invaded and support more extensive multiplication by Xf.

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board.

Figure 6. Comparison of population sizes of
Xf in in Tampa and Cabernet sauvignon stem
segments at different distances from the point
of inoculation estimated by culturing (blue)
and by microscopy (red) at week 11 post-
infection.
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ABSTRACT
Pierce’s disease (PD) pressure has always been intense along the Texas Gulf Coast, but the disease has been steadily moving
north and west.  Additionally, PD has been discovered in counties thought to be beyond the ecological range of either the
Xylella fastidiosa (Xf) bacterium or the insect.  As part of our genetic analysis we are analyzing conserved genes (such as
gyrB) to distinguish new isolates as either ‘grape,’ ‘ragweed’ or ‘oleander.’  However, base pair changes within conserved
genes are usually too limited to track genetically relatedness within short time periods.  To improve discrimination power, we
are using multi-locus simple sequence repeat markers for genotyping each individual isolate.  Eighteen grape isolates have
been fingerprinted so far.  The most similar isolates are found in the same county, but some counties have multiple,
genetically distinct isolates.  Isolates from new infection areas will be run to determine the relationships with other sources.
Additionally, Xf SSR genotyping profile in Texas will be analyzed and compared with the profile from California isolates.

FUNDING AGENCIES
Funding for this project was provided by the Texas Pierce’s Disease Research and Education Program, and the USDA
Animal and Plant Health Inspection Service.
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Reporting Period: The results reported here are from work conducted April 2007 to October 2008.

ABSTRACT
Ten plant species with potential benefits as groundcovers in and near vineyards at risk for Pierce’s disease were grown in
containers in greenhouse and screenhouse for mechanical inoculation with Xylella fastidiosa isolated from weed, tree, or
grape in Texas.  Isolates were from Ambrosia trifida var. texana, Helianthus annuus, Iva angustifolia, Nerium oleander,
Platanus occidentalis, and Vitis vinifera.  No symptoms developed and evaluations were with ELISA.  Based on mechanical
inoculations, lower risk (susceptible to fewer isolates and no grape isolates, low test mean ELISA OD, low test mean Rx
[proportion OD≥0.300]) species were Coreopsis tinctoria, Verbena rigida, and Lolium multiflorum.  Higher risk species were
Phlox drummondii, Lupinus texensis, Medicago polymorpha, M. polymorpha, Trifolium incarnatum, T. repens, and
Gaillardia pulchella.  Data from plant species interactions with vector species and senescence dates (vs. vector peak
populations) under field conditions may alter our interpretation of risk status.

INTRODUCTION
Pierce’s disease (PD) management suggestions include vegetation management in and near vineyards (Black et al., 2005,
2008), including competition from plants that are poor hosts of Xylella fastidiosa (Xf) and not commonly used by insect
vectors.  Traits of Xf-safe plants may include low cost to establish, re-seed or re-grow from roots/crowns, require minimal
maintenance once established, senesce without mowing or herbicide, provide temporary standing mulch, minimal
competition with grapevines for water and nutrients, fix nitrogen, affect other pests in neutral or beneficial manner, enhance
vector biological control as insectary plants, and/or seasonal tourist appeal.

Our long term approach to ranking species for risk as ground cover includes ELISA testing (positive was OD≥ 0.300,
reaction [Rx] was proportion positive) of a) environmental samples from the vicinity of PD vineyards, b) mechanically
inoculated greenhouse and/or screenhouse container-grown plants (Black et al., 2006), and c) seeded or transplanted small
plots near a PD vineyard.  This report addresses only mechanical inoculations with selected isolates (Table 11) in the absence
of Xf vectors.

OBJECTIVES
Mechanically inoculate diverse Texas Xf isolates into potential ground cover plants and compare PD risk in and near
vineyards.

RESULTS
Candidate species for vineyard and vicinity use represented Polemoniaceae (Table 1), Fabaceae (Tables 2-6), Asteraceae
(Tables 7, 8), Verbeneaceae (Table 9) and Poaceae (Table 10).  Every potential ground cover species was infected with one
or more Texas Xf isolates (Tables 1-10).  Species were ranked using arbitrary criteria (number of grape isolate treatment
means OD≥0.3, test mean OD≥0.7, test mean Rx≥0.6).  Based on mechanical inoculations of container-grown plants, lower
risk species were Coreopsis tinctoria, Verbena rigida, and Lolium multiflorum.  Higher risk species (susceptible to more
isolates and grape isolates, high mean OD, high mean Rx) were Phlox drummondii, Lupinus texensis, Medicago polymorpha,
M. polymorpha, Trifolium incarnatum, T. repens, and Gaillardia pulchella.  Data from plant species interactions with vector
species and senescence dates vs. vector peak populations under field conditions may alter our interpretation of risk status.

CONCLUSIONS
No species was immune to grape and non-grape Xf isolates.  With the criterion of mechanical inoculation in the absence of
insect vectore, three plant species may pose low PD risk if used in and near vineyards.  Seven plant species may pose
significant PD risk if planted or allowed to grow in and near vineyards.  Data from field plants exposed to Xf vectors are
needed to confirm risk status.
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Table 1. Responses of Drummond phlox (Phlox drummondii) to diverse Xf. Test A inoculated 17-25Mar08; evaluated
21May08.  Test B inoculated 7-22Apr08; evaluated 16Jun08.
Test Isolate OD Rx OD Rx
A GILGRA288 Ha 2.53 a 1.00 a

GILGRA286 At 2.04 ab 1.00 a
TRAFLA377 Vv 1.58 bc 1.00 a
GIL007 Po 1.47 bc 0.75 abc
GILBEC625 Vv 1.18 cd 0.83 ab
UVA119 Po 0.68 de 0.58 bc
MEDPRI025 No 0.53 ef 0.50 c Mean 1.26 0.71
SCP Buffer 0.08 f 0.00 d C.V., % 57 48

B GILGRA286 At 2.45 a 1.00 a
TRAFLA377 Vv 1.32 b 1.00 a
GILBEC625 Vv 1.30 b 0.83 ab
GILGRA288 Ha 1.04 b 0.71 bc
UVA119 Po 0.50 c 0.50 cd
GIL007 Po 0.49 c 0.25 de
MEDPRI025 No 0.13 cd 0.08 e Mean 0.90 0.54
SCP Buffer -0.01 d 0.00 e C.V., % 54  60



- 137 -

Table 2. Responses of Texas bluebonnet (Lupinus texensis) to diverse Xf. Test A inoculated 13Apr07; evaluated
2May07.  Test B inoculated 3-6Dec07, 22-25Jan08; evaluated 14Jan-11Mar08, 8Apr08.  Test C inoculated 22-25Jan08;
evaluated 8Apr08.
Test Isolate OD Rx Site OD Rx
A GILGRA286 At 0.37 a 0.53 a Inoculation 0.38 a 0.50 a

TRAFLA302 Vv 0.37 a 0.33 ab Above 0.10 b -0.03 b
GILBEC625 Vv 0.27 ab 0.33 ab
GILBEC532 Vv 0.18 b 0.19 ab
TRAFLA377 Vv 0.16 b 0.08 b Mean 0.27 0.29
SCP Buffer 0.09 b -0.06 b C.V., % 52 107

B UVA119 Po 1.74 a 0.85 ab
GIL007 Po 1.74 a 0.95 a
GILGRA286 At 1.19 b 0.70 b
GILGRA288 Ha 1.16 b 0.90 a
GILBEC625 Vv 1.15 b 0.68 b
TRAFLA377 Vv 1.03 b 0.90 a Mean 1.13 0.72
SCP -0.13 c 0.01 c C.V., % 40 40

C GILGRA286 At 1.99 a 1.56 a Inoculation 0.89 a 0.79 a
GILGRA288 Ha 1.67 b 1.51 a Above 0.77 b 0.70 b
GIL007 Po 0.67 c 0.49 b
UVA119 Po 0.53 c 0.51 b
TRAFLA377 Vv 0.45 c 0.51 b
GILBEC625 Vv 0.43 d 0.66 b Mean 0.83 0.74
SCP 0.07 e -0.03 c C.V., % 32  41

Table 3. Responses of burr medic (Medicago polymorpha 'Armadillo') to diverse Xf. Test A inoculated 17-25Mar08;
evaluated 23Apr08.
Test Isolate OD   Rx      OD   Rx
A GILGRA288 Ha 1.58 a 1.00 a

GIL007 Po 1.36 ab 1.00 a
GILGRA286 At 1.30 ab 0.92 ab
TRAFLA377 Vv 1.23 ab 1.00 a
UVA119 Po 1.18 ab 0.83 ab
GILBEC625 Vv 1.02 bc 1.00 a
MEDPRI025 No 0.68 c 0.75 b Mean 1.06 0.81
SCP Buffer 0.11 d 0.00 c C.V., % 49 29
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Table 4. Responses of small burr medic (Medicago polymorpha 'Devine') to diverse Xf. Test A inoculated 17-
25Mar08; evaluated 28Apr08.  Test B inoculated 7-22Apr08; evaluated 28May08.
Test Isolate OD   Rx    Site OD   Rx
A UVA119 Po 2.71 a 1.00 a Inoculation 1.89 a 0.88 a

GILGRA286 At 2.45 ab 1.00 a Above 1.72 b 0.77 b
GIL007 Po 2.34 b 1.00 a
GILBEC625 Vv 2.22 bc 1.00 a
GILGRA288 Ha 2.17 bc 1.00 a
TRAFLA377 Vv 1.94 c 1.00 a
MEDPRI025 No 0.51 d 0.58 b Mean 1.81 0.82
SCP Buffer 0.11 e 0.00 c C.V., % 23 22

B GILGRA286 At 3.16 a 1.02 a
UVA119 Po 2.92 ab 1.00 a
GILGRA288 Ha 2.90 ab 1.02 a
GIL007 Po 2.47 ab 1.02 a
MEDPRI025 No 1.74 c 1.00 a
GILBEC625 Vv 1.50 cd 0.75 b
TRAFLA377 Vv 1.10 cd 0.75 b Mean 1.86 0.79
SCP Buffer 0.15 e 0.00 c C.V., % 34  31

Table 5. Responses of crimson clover (Trifolium incarnatum) to diverse Xf. Test A inoculated 7-22Apr08; evaluated
14May08.  Test B inoculated 29Apr-5May08; evaluated 3Jun08.
Test Isolate OD Rx OD Rx
A GILGRA286 At 1.37 a 1.00 a

GILBEC625 Vv 1.33 a 1.00 a
UVA119 Po 1.22 ab 0.83 a
GIL007 Po 1.12 ab 0.92 a
GILGRA288 Ha 0.97 abc 1.00 a
MEDPRI025 No 0.83 bc 0.83 a
TRAFLA377 Vv 0.58 cd 0.92 a Mean 0.96 0.83
SCP Buffer 0.26 d 0.17 b C.V., % 56 34

B GILGRA288 Ha 1.86 a 0.92 ab
GILBEC625 Vv 1.77 a 0.92 ab
GILGRA286 At 1.76 a 0.75 ab
TRAFLA377 Vv 1.65 a 1.00 a
MEDPRI025 No 1.53 a 0.83 ab
UVA119 Po 1.49 a 0.67 b
GIL007 Po 1.47 a 0.75 ab Mean 1.45 0.73
SCP Buffer 0.07 b 0.00 c C.V., % 58  46
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Table 6. Responses of white clover (Trifolium repens 'Durana') to diverse Xf. Test A inoculated 1-8Apr08; evaluated
9Jun08.  Test B inoculated 16-23Apr08; evaluated 10Jun08.
Test Isolate OD Rx OD Rx
A TRAFLA377 Vv 1.62 a 1.00 a

MEDPRI025 No 1.52 ab 0.83 ab
GILGRA286 At 1.16 abc 0.67 b
GILBEC625 Vv 1.15 abc 0.83 ab
GILGRA288 Ha 1.09 bc 0.83 ab
GIL007 Po 1.05 bc 0.83 ab
UVA119 Po 0.94 c 0.75 ab Mean 1.07 0.72
SCP Buffer 0.04 d 0.00 c C.V., % 57 47

B MEDPRI025 No 1.59 a 1.00 a
GILGRA286 At 1.19 b 1.00 a
GIL007 Po 1.09 b 0.92 a
GILBEC625 Vv 0.86 bc 0.75 ab
GILGRA288 Ha 0.74 c 0.83 a
UVA119 Po 0.67 cd 0.50 b
TRAFLA377 Vv 0.37 de 0.50 b Mean 0.82 0.69
SCP Buffer 0.03 e 0.00 c C.V., % 52  49

Table 7. Responses of plains coreopsis (Coreopsis tinctoria var. tinctoria) to diverse Xf. Test A inoculated 7-22Apr08;
evaluated 18Jun08. Test B inoculated 29Apr-5May08; evaluated 24Jun08.
Test Isolate OD Rx Site OD Rx
a GILGRA288 Ha 1.19 a 0.92 a

GILGRA286 At 0.96 b 1.00 a
GIL007 Po 0.22 c 0.20 b
UVA119 Po 0.05 c 0.00 c
TRAFLA377 Vv 0.05 c 0.00 c
GILBEC625 Vv 0.03 c 0.00 c
SCP Buffer 0.03 c 0.00 c Mean 0.32 0.27
MEDPRI025 No 0.02 c 0.00 c C.V., % 78 63

B GILGRA286 At 1.14 a 0.83 a Inoculation 0.264 b 0.27
GILGRA288 Ha 0.80 b 0.83 a Above 0.418 a 0.31
UVA119 Po 0.39 c 0.42 b
GIL007 Po 0.20 cd 0.17 bc
MEDPRI025 No 0.06 d 0.08 c
GILBEC625 Vv 0.05 d 0.00 c
TRAFLA377 Vv 0.05 d 0.00 c Mean 0.34 0.29
SCP Buffer 0.04 d 0.00 c C.V., % 98  109
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Table 8. Responses of Indian blanket (Gaillardia pulchella var. pulchella) to diverse Xf. Test A inoculated 1-8Apr08;
evaluated 18Jun08.  Test B inoculated 16-23Apr08; evaluated 23Jun08.
Test Isolate OD Rx OD Rx
A GILGRA286 At 2.53 a 1.00 a

GIL007 Po 2.42 a 1.00 a
UVA119 Po 2.38 a 1.00 a
GILGRA288 Ha 2.34 a 1.00 a
GILBEC625 Vv 2.29 a 1.00 a
TRAFLA377 Vv 1.25 b 0.67 b
MEDPRI025 No 0.19 c 0.17 c Mean 1.68 0.73
SCP Buffer 0.02 c 0.00 c C.V., % 23 31

B GILGRA286 At 2.76 a 1.00 a
GILGRA288 Ha 2.74 a 1.00 a
GIL007 Po 2.24 ab 1.00 a
UVA119 Po 1.91 bc 0.92 ab
TRAFLA377 Vv 1.46 c 0.67 b
GILBEC625 Vv 1.35 c 0.75 ab
MEDPRI025 No 0.26 d 0.33 c Mean 1.60 0.72
SCP Buffer 0.08 d 0.08 c C.V., % 45 44

Table 9. Responses of tuber vervain (Verbena rigida) to diverse Xf. Test A inoculated 17-25Mar08; evaluated 14Jul08.
Test B inoculated 7-22Apr08; evaluated 15Jul08.  Test C inoculated 9-17Jun08; evaluated 13oct08.
Test Isolate OD   Rx    Site OD   Rx

GILGRA286 At 1.08 a 0.79 a Inoculation 0.462 a 0.40 ab
GILGRA288 Ha 0.70 b 0.67 a Above 0.588 a 0.48 a
UVA119 Po 0.44 c 0.46 b Below 0.258 b 0.27 b
GILBEC625 Vv 0.23 d 0.33 b Other stem 0.087 c 0.06 c
TRAFLA377 Vv 0.11 d 0.04 c
GIL007 Po 0.11 d 0.08 c
SCP Buffer 0.08 d 0.04 c Mean 0.35 0.30
MEDPRI025 No 0.05 d 0.00 c C.V., % 102 108

GILGRA286 At 1.13 a 0.79 a Inoculation 0.53 a 0.46 a
GILGRA288 Ha 0.70 b 0.54 b Above 0.471 ab 0.44 a
UVA119 Po 0.39 c 0.42 b Below 0.324 b 0.25 b
TRAFLA377 Vv 0.16 d 0.21 c Other stem 0.078 c 0.06 c
GILBEC625 Vv 0.15 d 0.21 c
MEDPRI025 No 0.10 d 0.13 c
SCP Buffer 0.09 d 0.08 c Mean 0.35 0.30
GIL007 Po 0.07 d 0.04 c C.V., % 112 119

GILGRA286 At 0.51 a 0.38 ab Inoculation 0.238 a 0.20 a
GILGRA281 At 0.47 a 0.50 a Above 0.23 a 0.20 a
LLAFAL650 Ha 0.24 b 0.29 b Below 0.144 ab 0.09 b
TRAFLA345 Vv 0.11 bc 0.08 c Other stem 0.107 b 0.07 b
LLAFAL718 Ig 0.07 c 0.00 c
GILBEC530 Vv 0.07 c 0.00 c
GILBEC625 Vv 0.07 c 0.04 c
TRAFLA344 Vv 0.04 c 0.00 c Mean 0.18 0.14
SCP 0.04 c 0.00 c C.V., % 145  201
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Table 10. Responses of annual ryegrass (Lolium multiflorum 'Jumbo') to diverse Xf. Test A inoculated 17-25Mar08;
evaluated 5Jun08.  Test B inoculated 7-22Apr08; evaluated 5Jun08.
Test Isolate OD Rx OD Rx
A GILGRA288 Ha 1.48 a 1.48 a

GILGRA286 At 1.31 a 1.31 a
MEDPRI025 No 1.08 ab 1.08 ab
GIL007 Po 0.65 bc 0.65 bc
TRAFLA377 Vv 0.30 cd 0.30 cd
GILBEC625 Vv 0.19 d 0.19 d
UVA119 Po 0.16 d 0.16 d Mean 0.65 0.52
SCP Buffer 0.01 d 0.01 d C.V., % 83 66

B GILGRA286 At 0.67 a 0.50 a
GILGRA288 Ha 0.44 ab 0.50 a
MEDPRI025 No 0.20 bc 0.17 b
TRAFLA377 Vv 0.16 c 0.25 ab
GIL007 Po 0.15 c 0.25 ab
GILBEC625 Vv 0.14 c 0.17 b
UVA119 Po 0.05 c 0.00 b Mean 0.23 0.23
SCP Buffer 0.00 c 0.00 b C.V., % 133  170

Table 11. Host plant origins of Xf isolates.
Acronym Family   Species Common name
At Asteraceae Ambrosia trifida var. texana Giant ragweed
Ha Asteraceae Helianthus annuus Common sunflower
Ig Asteraceae Iva angustifolia Narrowleaf sumpweed
No Asclepiadaceae Nerium oleander Oleander
Po Platanaceae Platanus occidentalis American sycamore
Vv Vitaceae Vitis vinifera European grape
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ABSTRACT
The aim of this project is to construct and express in grapevine, a protein or protein chimera capable of inactivating or
otherwise interfering with the infectivity of, or disease-induction by, Xylella fastidiosa (Xf), the causative agent of Pierce’s
disease (PD) of grapevine.  A single-chain, monoclonal (scFv) antibody was selected for its ability to bind to Xf cells
recovered by centrifugation of Xf liquid culture.  Immunoblot analysis of total protein extracts from Xf cells revealed a single
band corresponding to a ~47K protein target of this antibody. The identity of the target is unknown but is not likely to be
major outer membrane protein MopB or the protein synthesis elongation factor EF-Tu, both of which have gel electrophoretic
mobilities similar to the scFv antibody target.  Previously we demonstrated that Xf EF-Tu induces chlorosis when pressure
infiltrated into leaves of Chenopodium quinoa, suggesting that EF-Tu may be a protein recognized by plants as a signal of Xf
infection.  Although the primary function of EF-Tu in eubacteria is in protein synthesis, specific bacterial species have
evolved to use EF-Tu for other applications, including binding the bacterium to host cells.  We found Xf EF-Tu to be
associated with an insoluble fraction which remains after treating Xf cells with lysozyme.  Expression of Xf EF-Tu in
Escherichia coli altered the cell morphology.  The transformed E. coli, when introduced into the petioles of grapevine
transformed with reporter constructions driven by a Xf-infection-specific promoter, activated synthesis of the reporter.  These
results suggest that EF-Tu may be a signal in grapevine of Xf infection, in addition to its role in protein synthesis.

INTRODUCTION
Grapevine cultivars resistant to or tolerant of Xf presumably present the best approach to long term, effective, economical and
sustainable control of PD.  The mechanisms by which Xf induces symptoms in infected grapevine have not been established.
However, interference with symptom development (i.e., creation of tolerance) is conceivable, and Xf virulence factors are
potential targets for interfering with Xf infection and symptom induction.  A strategy is to create transgenic rootstock(s) that
will secrete a protein or proteins into the xylem for transport to scion xylem to provide protection against insect vector-
delivered Xf or interfere with symptom development. Xf surface proteins are candidate targets in this strategy. Examples of
Xf surface proteins are a major outer membrane protein MopB, the hemagglutinin-like minor outer membrane proteins HXfA
and HXfB (Guilhabert and Kirkpatrick 2005), a protein that is recognized by a single chain, monoclonal antibody (described
below), and possibly a form of the protein synthesis elongation factor “temperature-unstable” (EF-Tu). We report here on the
single-chain, antibody and then, more extensively, on the properties of Xf EF-Tu.

We reported last year that EF-Tu was the major component of a minor trailing band observed after electrophoresis of partially
purified MopB through sodium dodecyl sulfate- (SDS-) permeated polyacrylamide gel. Xf EF-Tu was recovered by elution
from excised gel pieces from the trailing band and was shown to induce chlorosis in Chenopodium quinoa (Bruening et al.
2007), whereas Xf MopB produced in transformed E. coli failed to induce chlorosis in C. quinoa.  These observations suggest
that the chlorosis-inducing factor in our MopB preparations may be Xf EF-Tu and not MopB, formerly the candidate
chlorosis-inducing factor.  EF-Tu is one of a small number of highly conserved eubacterial macromolecules (“microbe-
associated molecular patterns” = MAMPs) that have been discovered to induce defense responses in a variety of plants (Jones
and Dangl 2006).  Flagellin, chitin, certain lipopolysaccharides, and a few other molecules are other MAMPs. EF-Tu is the
most abundant soluble protein of rapidly growing E. coli cells, so it is reasonable for it to be a signal for the presence of
bacteria.  That is, at least some EF-Tu proteins act as elicitors. The MAMP activity of E. coli EF-Tu is illustrated by
alkalization of the medium of cultured Arabidopsis thaliana cells on exposure to subnanomolar concentrations of EF-Tu.
EF-Tu, when introduced at 1 µM by pressure-infiltration into Arabidopsis leaves, induced resistance to Pseudomonas
syringae and accumulated defense gene mRNAs (Kunze et al. 2004). E. coli EF-Tu and Xf EF-Tu gene sequences show 77%
identical and 88% similar in amino acid sequence.  The regions of identity between the E. coli and Xf EF-Tu gene sequences
also revealed >90% identity with >100 eubacterial EF-Tu sequences (Kunze et al. 2004).  Some bacteria have evolved an
EF-Tu protein with an additional function, beyond participating in polypeptide chain elongation or acting as an elicitor.
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Mycoplasma pneumoniae and Lactobacillus johnsonii appear to use EF-Tu as an adhesin that is responsible for the binding of
these bacteria to human cells, and, in the case of M. pneumoniae, antibody to EF-Tu was demonstrated to interfere with
attachment to human cells (Dallo et al. 2002, Granato et al. 2004).

OBJECTIVES
1. Discover or develop peptides and proteins with high affinity for the Xylella fastidiosa (Xf) cell exterior.
2. Test surface-binding proteins for their ability to coat Xf cells, for possible bactericidal activity or for interference with

disease initiation following inoculation of grapevine or model plant with Xf.
3. In collaboration with the Gupta laboratory, develop gene constructions for chimeric proteins designed to bind tightly to

and inactivate Xf cells; express and test the chimeric proteins against Xf cells in culture and in plants.
4. In collaboration with the Dandekar laboratory, prepare transgenic tobacco and grapevine expressing and xylem-targeting

the candidate anti-Xf proteins; test the transgenic plants for resistance to infection by Xf.

RESULTS AND DISCUSSION
A single chain antibody selected for affinity to Xf cell suspension
We obtained a library of single chain (scFv) antibodies, expressed on bacteriophage M13 particles, from the University of
Cambridge, UK. Cultures of the rapidly growing and minimally aggregating Xf strain HXfA-, which has a transposon
insertion in the HXfA gene (Guilhabert and Kirkpatrick 2005), were centrifuged to collect the cells.  This cell preparation was
used to “pan” the M13-scFv library through three cycles.  Ten of the 24 selected M13-scFv clones were sequenced, and all
had the same deduced amino acid sequence.  Therefore, all subsequent analyses were applied to just one selected scFv
antibody, designated A2scFv.  To identify the epitope bound by the A2scFv, Xf proteins were resolved by electrophoresis and
were subjected to immunoblot detection using the A2scFv-p3 fusion protein-carrying bacteriophage particle as the “primary
antibody” and anti-M13 major coat protein as the target of the secondary antibody conjugate.  A single band was observed
with mobility corresponding to slightly less than an apparent molecular weight of approximately 47K (results not shown).
This is comparable in electrophoretic mobility to two other Xf proteins which we have investigated: Xf EF-Tu (formula
weight 42.9K) and Xf mopB (mobility corresponding to molecular weight 45K).  To test whether the A2scFv is recognizing
either of these Xf proteins, we attempted to interfere with A2scFv binding by pre-incubating two immunoblots with peptide
polyclonal antibody against Xf EF-Tu or polyclonal antibody against Xf MopB.  No apparent interference with the binding of
the A2scFv-carrying bacteriophage M13 particles was observed (data not shown), but the anti-EF-Tu peptide antibody might
not block scFv binding to other parts of EF-Tu.  However, results from experiments involving digestion of Xf cells with
lysozyme, as described below, are not consistent with recognition of either MopB or EF-Tu as possessing the epitope of
A2scFv (data not shown).

The A2scFv was purified under non-denaturing conditions from solution using its encoded hexahistidine sequence and was
labeled with Alexa-488 (fluorescein).  The
Alexa-488 labeled A2 scFv was incubated with
Xf cell preparations in phosphate-buffered
saline-Triton X100 (PBS-T) (Figure 1), and the
cell preparations were washed with PBS-T
before observing fluorescence.  The
fluorescence was observed not in association
with the cells, as might be expected, but with
somewhat larger, amorphous structures that
apparently had been collected with the cells
during centrifugation or formed during
centrifugation.  Similar results were observed
with the Temecula Xf strains bearing mutations
in hemaglutinin-like protein genes, HxfA- and
HxfB- (Guilhabert and Kirkpatrick 2005).
These experiments do not eliminate the
possibility of weak binding of the scFv to intact
Xf cells, since weak binding would not have
been detected after the washing procedures
followed here.  At this point, both the protein
target and the larger-than-cells target of the A2
scFv monoclonal antibody remain unknown.

Figure 1. A Temecula strain Xf cell suspension, prepared by
centrifugation, was observed under white light (upper panel) and 488nm
light using an epifluorescence microscope.  Alexa-488 (fluorescein)
labeled A2scFv monoclonal antibody was added to the cell suspension,
which subsequently was washed 3 times with phosphate-buffered saline
containing 0.1% Triton X-100 (PBS-T).  The red oval identifies an in-
focus field of Xf cells.
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Xf protein synthesis elongation factor “temperature unstable” (EF-Tu) in an insoluble fraction of a Xf extract
Since EF-Tu was found in MopB preparations, and the MopB purification procedure (Bruening and Civerolo 2004) includes
extraction from insoluble material, it is likely that at least some EF-Tu of Xf is in an insoluble form.  Results presented in
Figure 2 suggest that EF-Tu is associated with an insoluble fraction from which some other proteins, including MopB, had
been released.  HXfA- cells were exposed to a proprietary detergent solution, “BugBuster®,” or they were exposed to
lysozyme, or to both. Prior exposure of HXfA- cells to BugBuster® solution reduced the intensity of, or eliminated, a few
protein bands (Figure 2, lanes 1 and 2), whereas treatment with lysozyme had no apparent effect on the pattern of protein
bands (lane 4 compared to lane 1).  Incubating the cells with BugBuster® and lysozyme together resulted in diminution or
elimination of several protein bands (lane 3 compared to lane 1), including a prominent band with a mobility corresponding
to an apparent molecular weight of about 43K, i.e., to the mobilities of Xf EF-Tu and Xf MopB.

Figure 2. Effects of lysozyme treatment on the recovery of MopB and EF-Tu from an insoluble fraction of Xf
cells.  Each of the three images, lanes 1-4, 5-8 and 9-12, was derived from a different 12% polyacrylamide gel
after electrophoresis of extracts of the relatively rapidly growing Xf strain HXfA-. Cells were harvested from
liquid culture in late logarithmic phase.  Cells were washed with water and cell pellets were quick-frozen in
liquid nitrogen and stored at -70˚C.  Rapidly thawed cells were suspended to approximately 0.3 µg/µL total
protein in 20 mM Tris-HCl, pH 8, alone (T, lanes 1, 5 and 9), in Tris-buffered “BugBuster®” (EMD
Biosciences, proprietary detergent solution, T+D, lanes 2, 6 and 10), in Tris-buffered BugBuster® containing 45
U/µL recombinant lysozyme (EMD Biosciences, T+D+L, lanes 3, 7 and 11), and in Tris-buffered 45 U/µL
recombinant lysozyme (T+L, lanes 4, 8 and 12).  Samples were incubated at room temperature for 15 min with
mixing, and insoluble material was collected by centrifugation at 14K rpm for 10 min.  Precipitates were
suspended in one-eighth the original volume of water, were mixed with SDS-mercaptoethanol-dithiothreitol
disruption solution and were heated before loading the equivalent of 27 µg (lanes 1-4) or 8.5 µg (lanes 5-12) of
starting protein on the gels.  Detection was by staining with Coomassie Brilliant Blue (lanes 1-4), by
immunoblotting using anti-MopB (lanes 5-6) or anti-EF-Tu peptide polyclonal antibody.  Horse radish
peroxidase-conjugated goat-anti-rabbit secondary antibody was located using the DuraSignal (Pierce)
chemiluminescense system.  The locations of bands for molecular markers and a presumed band for recombinant
lysozyme (rLys) are indicated by arrows.

Immunoblot analysis using chemiluminescense detection is subject to a characteristic bleaching reaction when the target
protein is present above a threshold amount.  The apparent MopB signal of Fig. 2, lanes 5, 6 and 8, shows bleaching, as
expected for the 8.5 µg of Xf cell total protein and the known abundance of MopB.  In contrast, the anti-MopB antibody
provided only a weak signal from the insoluble fraction left after treatment with BugBuster® and lysozyme (lane 7).  The
anti-MopB antibody was raised against an immunogen MopB preparation that likely contained traces of EF-Tu, so it is
possible that the lane 7 signal at about 43K apparent molecular weight reflects EF-Tu rather than MopB. Most of the EF-Tu
remained in the insoluble fraction after treatment with BugBuster® and lysozyme (Fig. 2, compare lanes 11 and 9).  Anti-Xf
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HXfA polyclonal antibody (gift from Tanja Voegel and Bruce Kirkpatrick), which cross-reacts with Xf HXfB, and the A2
scFv antibody, gave a greatly diminished signal for cells treated with BugBuster® and lysozyme (data not shown).  Thus, it
appears that the treatment with the two reagents results in solubilizing two outer-membrane proteins, MopB, HXfB, and the
scFv target, but not EF-Tu.

The insoluble product of the BugBuster® and lysozyme incubation (Figure 3A) was applied to a 50%-to-80% (w/v) sucrose
gradient, which was centrifuged under conditions which should result in the various components of the digest moving
through the gradient and reaching their own density.  The main band of material (Figure 3B) was found to retain EF-Tu
according to immunoblot results (Figure 3C).  The centrifugation process, in effect, performs multiple washing steps as the
main band material moves from the top of the tube to its isopycnic position, suggesting that the association of EF-Tu with the
insoluble material is strong.  Presumably this EF-Tu is not participating in protein synthesis but, as has been found for other
systems (Dallo et al. 2002, Granato et al. 2004), Xf EF-Tu may have more than one function.

Figure 3. Xf EF-Tu is tightly associated with an insoluble fraction released from Xf cells by treatment with
lysozyme A. Xf cells were suspended in a mild detergent solution (“BugBuster®,” EMD Biosciences), and the
suspension was incubated at room temperature with lysozyme and then with a general nuclease (Benzonase, EMD
Biosciences), which greatly reduced the viscosity of the suspension.  Differential centrifugation produced a small
brown precipitate (B), a white, fluffy precipitate (P), and a supernatant fraction (S). B. The P fraction was applied
to a 50%-to-80%(w/v) sucrose gradient in 20 mM Tris-HCl, pH 8. Centrifugation was for 4 hr at 35,000 rpm in a
Beckman SW-41Ti rotor at 4˚C.  The tube was mounted in a blue clamp, visible near the bottom of the image.  In
addition to the main band (MB) of white, turbid material, material also accumulated at the bottom of the tube, in a
pellicle (Pel) floating on the gradient, and in two other small bands (UB and LB). C. Fractions from centrifugation
and sucrose gradient centrifugation were heated in SDS-urea solution and were analyzed by SDS-PAGE on an 8-
16% gradient gel.  The bulk of the material reacting with peptide antibody to Xf EF-Tu in an immunoblot was
associated with the MB fraction, which had a buoyant density of about 1.24 g/mL.

Phenotype of Xf EF-Tu expression in E. coli cells
An E. coli strain was designed and constructed to express a fusion of the M13-like single-stranded DNA bacteriophage fd
outer membrane protein P3 with Xf EF-Tu, Xf EF-Tu forming the amino end of the fusion. P3 is an adhesin protein
responsible for initiating attachment of the bacteriophage M13 particle to the bacterial F-pilus.  Prior to extrusion of the
bacteriophage particle from the infected cell, or when P3 is expressed in transformed but uninfected cells, P3 resides in the
cell outer membrane.  Therefore, our expectation is that the fusion protein EF-Tu-P3 will be targeted to the outer membrane.
When cells from the EF-Tu-P3-expressing and control P3-expressing strains were collected and treated with lysozyme
(Figure 4), an insoluble residue remained.  The insoluble material was subject to analysis by sucrose gradient centrifugation
and electrophoresis in a fashion similar to the analysis of Xf cells presented in Figure 3.  Figure 4A reveals a difference
between the results obtained for P3-generating and EF-Tu-generating E. coli, in both amount and buoyant density of the
product.  Wildtype E. coli cells, incubated under the conditions reported in the Figure 2 or Figure 3 legends, in BugBuster®
and lysozyme solution, were completely liquefied, leaving no insoluble residue (data not shown).  These results suggest that
targeting a protein to the outer membrane may induce the accumulation of a new, lysozyme-resistant substance in the E. coli
cell.  Presumably proteases of E. coli prevent the accumulation of more than a trace of intact EF-Tu-P3 (Fig. 4C).
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Comparison of Figure 3B and Figure 4A reveals that accumulation of EF-Tu-P3 in E. coli cells and EF-Tu in Xf cells do not
generate lysozyme-resistant, insoluble materials of similar densities.
E. coli transformed and induced, by IPTG, for P3 expression increased in culture at a rate that was comparable to that for the
corresponding untransformed strain.  However, the E. coli strain bearing the EF-Tu-P3 construction grew slowly and very
slowly after induction by IPTG.  Cells from the two cultures, as viewed by light microscopy, had very different appearances.
The presumed EF-Tu-P3-expressing cells were larger, in both length and diameter, than the P3-expressing or wildtype cells
(data not shown).  These results are consistent with incorporation of Xf EF-Tu, but not E. coli EF-Tu, into the E. coli cell
wall.

Does EF-Tu of Xf act as a MAMP or contribute to the symptoms seen on Xf-infected grapevines?
The above results suggest that Xf EF-Tu is present in Xf in an immobilized or insoluble form unlikely to be active in protein
synthesis.  What function might this altered form of Xf EF-Tu have?  The chlorotic response of C. quinoa leaves to pressure-
infiltrated Xf EF-Tu (Bruening et al. 2007), although no defense response has been documented, suggests that Xf EF-Tu may
be a MAMP in some plants.  It is well established that local concentrations of Xf cells and symptom intensities on leaves do
not correlate (Gambetta et al. 2007).  Therefore, symptom development could be the result of factor(s) secreted or otherwise
released by Xf cells.  Such factors could accumulate at the leaf margin, for example, where scorch symptoms are first
observed.  Whether a Xf factor such as EF-Tu is involved in symptom induction or in defense response in grapevine, the
relevant events must include recognition of the factor by grapevine as may be indicated, for example, by altered transcription.

Previous work from the laboratory of Prof. Douglas Cook identified grapevine promoters whose transcription was increased
specifically in Xf-infected plants (Cook et al. 2005, da Silva et al. 2005).  Transgenic Thompson Seedless grapes containing
constructs with these promoters coupled to a green fluorescent protein (GFP) sequence were prepared in the laboratory of
Prof. David Gilchrist (Gilchrist et al. 2007).  Plants of the transformed line have been demonstrated to accumulate GFP in the
pith region of petioles after inoculation of Xf but not after inoculation of another xylem-invading bacterium, Xanthomonas
campestris (Gilchrist et al. 2008).

Figure 4. Expression of Xf EF-Tu in E. coli alters
the insoluble residual found after digestion with
lysozyme A. A 40 mg/mL (wet weight) suspension
of E. coli cells that had been induced with IPTG was
exposed to 30 U/µL recombinant lysozyme in
BugBuster® detergent for 15 min and then to
0.05U/µL nuclease (EMD benzonase) for 10 min at
room temperature.  The resulting white precipitate
was applied to the top of preformed 45%w/v –
75%w/v sucrose gradients.  Gradients were
centrifuged at 35,000 rpm for 4 hr at 4˚C. B. An
immunoblot was prepared using anti-Xf EF-Tu
antibody.  Lanes 1 and 3 received the flocculent
lysozyme digestion product whereas lanes 2 and 4
were loaded with material recovered from the
sucrose gradients.  The uppermost band in lanes 3
and 4 has a mobility expected for a Xf EF-Tu-P3
fusion protein.  Arrows indicate the locations of
reference proteins by their molecular weight.

Significant accumulation of GFP was observed by confocal microscopy in the transgenic grapevine petioles after inoculation
of the petiole with E. coli cells of the strain transformed for expression (Figure 4B, lanes 3 and 4) of the EF-Tu-P3 fusion
protein, provided the cells were induced by exposure to IPTG (lower right panel, Figure 5).  This image does not show GFP
accumulation in pith cells, which is unlike the pith-cell accumulation seen when Xf cells were inoculated (Gilchrist et al.
2008).  Significant GFP signals were not observed for the E. coli cells not exposed to IPTG or to cells transformed for P3
protein expression (Figure 5).  In the Figure 5 experiment, E. coli cells had been stored at 4oC overnight before infiltration.
Cold storage may lead to substantial bacterial death (data not shown).  Therefore, based on these results, we are not able to
connect the observed induction of GFP synthesis to live cells actively accumulating EF-Tu-P3 or even to intact, EF-Tu-P3-
containing cells.  In a subsequent experiment, the transformed E. coli cells were held at room temperature, and GFP
accumulation in pith cells was observed (not shown).  The results presented here suggest that Xf EF-Tu protein may act as an
elicitor that is recognized by grapevine.  Whether this recognition has a role in symptom development or defense against Xf
infection remains to be determined.
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CONCLUSIONS
A single-chain monoclonal antibody was isolated that reacts with a Xf protein that is most readily accessible in unusual
structures found in liquid cultures of Xf cells but is also present in Xf cells. This protein is a potential target for interfering
with Xf growth or colonization of grapevine.  The protein synthesis elongation factor of Xf was demonstrated to have a bound
form that may be recognized by grapevine in symptom development or defense reactions.

Figure 5. A Xf-specific grapevine promoter
is activated by E. coli expressing EF-Tu-P3.
The transgenic Thompson seedless grape
plants bear constructions for green
fluorescent protein (GFP) expression under
the control of the Xf-infection inducible
9353 promoter (da Silva et al. 2005,
Gilchrist et al. 2007). Transgenic grape
petioles were inoculated with E. coli cells
bearing either P3 (left panels) or EFTu-P3
(right panels), all at 2 x 108 cells per ml.
An aliquot of cells was supplied with the
gratuitous inducer IPTG (lower two panels)
for two hr before storing the cells overnight
at 4oC and inoculation.  At 13 days post
inoculation, transverse sections of petiole
taken a few mm from the inoculation site.
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ABSTRACT
Xylella fastidiosa (Xf), a Gram-negative bacterium, is the causative agent of Pierces’s disease.  Because Xf is xylem-limited,
any potential anti-Xf gene product must be present in xylem at an effective concentration to provide disease control.
Understanding how existing proteins are transported to xylem is necessary to target delivery of therapeutic proteins to this
organ.  We collected xylem exudate from Vitis vinifera cv. Chardonnay and analyzed its protein composition by two-
dimensional gel electrophoresis, then purified and sequenced some of the abundant proteins to identify corresponding genes
in the grapevine EST database.  We identified the signal sequences present in these gene sequences and made vectors where
these signals were fused to mature polygalcturonase inhibiting protein (mPGIP), which is secretion competent.  Five different
vectors were successfully constructed to test four signal sequences.  These vectors were incorporated into Agrobacterium and
used to transform grapevine.  Callus and embryos were successfully selected and regenerated to give transformed grapevine
lines for each construct.  Plants have been obtained for all five constructs and protein inhibiting activity for two constructs
has been tested.  Next we will validate that our signal sequences are essential and sufficient to mobilize proteins into
grapevine xylem.  Such transgenic proteins, if synthesized in a rootstock, could confer resistance to xylem-specific infections
such as Pierce’s disease and assist in control of Xf.

As an alternative to signal peptide fused to PGIP, we designed a chimeric anti-microbial protein with two functional domains.
One domain (the surface recognition domain, SRD) specifically binds to the bacterium outer-membrane and the other domain
lyses the membrane and kills Xf. In this chimera, human neutrophil elastase (HNE) is the SRD that recognizes MopB, the
major outer membrane protein of Xf. The second domain is cecropin B (CECB), a lytic peptide that targets and lyses gram-
negative bacterial membranes.  We have combined HNE and CECB using a flexible linker such that both components can
simultaneously bind to their respective targets.  This chimeric gene was synthesized in two versions, one with a mammalian
signal peptide sequence designated HNE-CECB and the other with a signal peptide sequence from a plant pgip gene
designated pgip-HNE-CECB, incorporated into binary vectors, and transformed into grapevine (Vitis vinifera var ‘Thompson
Seedless’) and SR1 tobacco using Agrobacterium. Plant transformation experiments with both HNE-CECB and pgip-HNE-
CECB were successful and plants have been obtained.  Using PCR, the presence of HNE-CECB or pgipHNE-CECB was
confirmed in 37 and 7 plants, respectively.  Methylation assay is in progress to confirm the presence of functional expression
of HNE.

Preliminary testing of transgenic tobacco plants looks promising. To evaluate the signal sequences and to test the efficacy of
the antimicrobial protein in grapevine, individual transgenic lines will be validated for transgene expression using RT-PCR.
Plants  will be tested as such and as rootstocks for wild type scions.  Resistance will be validated in the greenhouse by
challenging them with infected insects and by needle inoculations of Xf.

INTRODUCTION
Pierce’s disease (PD) in grapevines is caused by the Gram-negative bacterium Xylella fastidiosa (Xf).  This bacterium infects
xylem and kills grapevines by occluding the water-conducting vessels.  The University of California reported that the disease
destroyed over 1,000 acres of northern California grapevines between 1994 and 2000, causing $30 million in damages.
Globally, one-fifth of potential crop yields are lost to plant diseases primarily of bacterial origin.  Xylem, the target tissue for
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this organism, is composed of nonliving cells (tracheids and vessel elements) which join end to end to form water-conducting
“pipes” from roots to the leaves and fruits.  An oversimplified definition of xylem is a tissue involved in transporting water
and dissolved mineral nutrients from soil to all other parts of the plant.  However, xylem sap also contains significant organic
material such as amino acids, proteins, sugars, and organic acids (Satoh 2006). Proteins have been reported in xylem sap
from many species (Alvarez et al. 2006, Biles and Abeles 1991, Kehr et al. 2005, Young et al. 1995) and the number of
identified proteins has recently increased considerably through multiparallel protein analysis (Aguero et al. 2006, Almeida
and Purcell 2003a, Almeida and Purcell 2003b).  In grapevine, proteins have been isolated from xylem tissue and separated
through capillary electrophoresis to compare Muscadinia and V. vinifera profiles (Jain and Basha 2003).

The purpose of the present study was to identify xylem sap proteins from grapevine and determine the signal sequences
necessary for their secretion to the apoplast and xylem (Figure 1). Because Xf is xylem-limited, xylem-targeted expression
of transgenic therapeutic proteins, such as PGIP and the antimicrobial chimera HNE-cercropinB, may be used to prevent and
control PD infestations.  The product of the pear PGIP gene, when expressed in transgenic grapevines, is present in xylem
exudates and moves through the graft union (Aguero et al. 2006). This movement to the scion implies that a few transgenic

rootstocks could be used with many different scions, provided
that the anti- Xf therapeutic protein is synthesized in effective
concentrations in roots and targeted to the xylem for transport to
the scion with the bulk flow of water through the root system
(Figure 2).

Signal peptides control entry of virtually all proteins to the
secretory pathway in both eukaryotes and prokaryotes.  The N-
terminal part of the amino acid chain is cleaved off when the
protein is translocated through the endoplasmatic recticulum
membrane (Nielsen et al. 1997).  Signal peptides are generally
interchangeable, so proteins that are not usually secreted can
become secretion-competent through attachment of a signal
peptide to the N-terminus of the mature protein, allowing its entry
into the vesicular transport system (Figure 1: Vitale and Denecke
1999).  While many reports show successful recombinant protein
targeting by signal peptides in transgenic plants, the signal
sequence of recombinant proteins can affect the amount of protein
produced.  For example, the secretion efficiency of heterologous
proteins in transgenic tobacco was improved by replacing the
heterologous signal peptide with one from tobacco (Yoshida et al.
2004).  Our final goal is to use signal sequences from grapevine
xylem proteins to deliver therapeutic proteins into the xylem of
transgenic rootstocks, thus conferring resistance to PD in the
entire plant without modifying the scion or affecting the fruit
(Figure 2).

In this project, we have taken a structure-based approach to
develop chimeric anti-microbial proteins for rapid destruction of
Xf. The strategy is based upon the fundamental principle of
innate immunity: that plants recognize and clear pathogens
rapidly (Pieters 2001, Baquero and Blazquez 1997 ).  Pathogen
clearance by innate immunity occurs in three sequential steps:
pathogen recognition, activation of anti-microbial processes, and
finally pathogen destruction.  Different plant factors are involved
in different steps of innate immunity.  Our strategy of combining
a pathogen recognition element and a pathogen killing element in

the chimeric molecule is a novel concept and has several immediate and long term impacts. During very early stages of Xf
infection, specific carbohydrates/lipids/proteins on the outer membrane of Xf interact with plant cells and are important for
virulence (Pieters 2001).  A protein inhibitor that interrupts this step of plant-Xf interaction will be useful in anti-microbial
therapy and controlling PD.  In this project, we developed a novel, protein-based therapy that circumvents the shortcomings
of traditional antibiotics.  We designed a chimeric, anti-microbial protein with two functional domains (Figure 3).  One
domain (the surface recognition domain, SRD) specifically targets the bacterium’s outer membrane and the other will lyse the
membrane and thus kills Xf. In this chimera, human neutrophil elastase (HNE) is the SRD that recognizes MopB, the major
outer membrane protein of Xf (Bruening et al. 2002). The second domain is cecropin B, a lytic peptide that targets and lyses
Gram-negative bacteria. We have combined HNE and cecropin B using a flexible linker so both components can bind
simultaneously to their respective targets.  This chimeric gene was synthesized and cloned into Agrobacterium vectors for

Figure 1: Theory: Identification of signal peptides
of grapevine xylem proteins, modification of mPGIP
with these peptides to test their secretion
competence.

Figure 2: Application:  Rootstock delivery of
therapeutic proteins to enhance disease resistance in
the scion.
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plant transformation.  Transformation experiments are
completed and we have plants of Nicotiana tabacum var SR1
and plants of Vitis vinifera ‘Thompson Seedless’ transformed
with this gene.  Preliminary results with some tobacco lines
were very encouraging, as they showed tolerance/resistance
to Xf infection of tobacco leaf tissues.  This proposal will
focus on evaluating transgenic grapevines expressing the
chimeric antimicrobial protein for resistance to Xf.

The work described in this proposal corresponds to research
priorities developed by the National Academies in their
publication, “California Agriculture Research Priorities: Pierce’s Disease” as outlined in Chapter 4, Recommendations 4.3,
4.4, and 4.5 and Chapter 3, Recommendation 3.3. Additionally, the objectives of this research project are relevant to the
research recommendations from the August 2006 PD/GWSS Scientific Summit: specifically, enhancing host resistance via
transgenics, biological control of Xf, understanding the transmission of the disease, and perhaps biological control of GWISS
through plant-incorporated proteins delivered through the xylem into the scion from the rootstock.

OBJECTIVES
1. Evaluate the efficiency of different signal sequences in targeting PGIP to grapevine xylem tissue, through the graft

union, and inhibiting infection with X.
2. Validate expression of chimeric antimicrobial proteins in transgenic grapevines, test for anti-Xf activity in planta, and

test for graft transmissibility.

RESULTS AND DISCUSSION
1.  Evaluate the efficiency of different signal sequences in targeting PGIP to grapevine xylem tissue, through the graft union,
and inhibiting infection with Xf:
In our previous research. Peptide spectrum and BLAST analysis showed that the proteins found in grape xylem exudates are
secreted and share function similarities with proteins found in xylem exudates of other species (Buhtz et al. 2004).  cDNA
sequences matching two of them found in the TGI Vitis vinifera gene index (http:compbio.dfci.harvard.edu/tgi/plant.html)
were used to design primers that were used to amplify the predicted fragments from genomic DNA of ‘Chardonnay’ and
‘Cabernet Sauvignon’ (Aguero et al. 2008).  These fragments were annotated as Chi1b and NtPRp27 (Table 1).  These
fragments were then fused to DNA sequences that contained the mature polygalacturonase inhibiting protein (mPGIP) gene
through gene splicing using a PCR-based overlap extension method (SOE) (Horton et al. 1990) and cloned into the pCR2.1-
TOPO vector (Invitrogen, Carlsbad, CA). These two chimeric genes were then ligated into a plant expression vector
containing the 35S cauliflower mosaic virus promoter and the octopine synthase terminator and the resultant expression
cassettes were then ligated into the binary vector pDU99.2215 (Escobar, et al. 2001) which contains an nptII-selectable
marker gene and a uidA (β-glucuronidase, GUS) scorable marker gene.  The mature PGIP sequences without any signal
peptide sequences was also incorporated into pDU99.2215 to serve as a control and this vector is designated pDU05.1002
(Table 1). We also incorporated signal peptides from the xylem sap protein XSP30 and the rice amylase protein Ramy3D
that we have described in earlier reports.  These binary vectors are designated pDA05.XSP and pDU05.0401, respectively
(Table 1).

Table 1. Construction of vectors for the expression of mature PGIP with various signal peptide sequences.
No Signal Peptide Binary Plasmid Map Reporter Gene Promoter Marker Genes Vector
1 None LB mas-KAN 35S-mPGIP Ubi3-GUS RB Mature PGIP CaMV35S GUS and Kan pDU05.1002

pDU05.1002 Gm

2 Rice amylase-
Ramy3Dsp

LB mas-KAN 35S-RSPmPGIP

pDU05.0401

Ubi3-GUS RB

Gm

Mature PGIP CaMV35S GUS and Kan pDU05.0401

3 Xylem sap
protein 30-
XSP30sp

LB mas-KAN 35S-XSPmPGIP

pDA05.XSP

Ubi3-GUS RB

Gm

Mature PGIP CaMV35S GUS and Kan pDA05.XSP

4 Chi1b signal
peptide

LB mas-KAN 35S-CHImPGIP

pDU06.0201

Ubi3-GUS RB

Gm

Mature PGIP CaMV35S GUS and Kan pDU06.0201

5 NtPRp27
signal peptide

LB mas-KAN 35S-NTmPGIP

pDU05.1910

Ubi3-GUS RB

Gm

Mature PGIP CaMV35S GUS and Kan pDU05.1910

Figure 3: Structures of the components of the chimeric
anti-microbial proteins for the rapid clearance of Xylella.
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Binary vector # 1 is the control and should be immobile although PGIP with its native signal peptide is secretion competent
in grape. In binary vector #2, mature PGIP has been fused to the signal sequence of rice amylase 3 (Ramy3D), which has
been very effective in secretion of human α1-antitrypsin in rice cell cultures (Trexler et al. 2002).  In binary vector # 3 mature
PGIP has been fused to the signal sequence of cucumber XSP30, which is a xylem-specific protein.  Constructs 4 and 5 have
been described above.  All five binary vectors were transformed into the disarmed A. tumefaciens strain EHA 105 pCH32
(Hamilton, 1997) by electroporation (Wen-jun and Forde 1989) and  the stable transformation of Vitis vinifera ‘Thompson
Seedless’ (TS) has been completed in all five vectors.  The methods for Agrobacterium-mediated transformation have been
reported earlier by us (Aguero et al. 2006).

Table 2. Status of Vitis vinifera ‘Thompsons seedless’ transformants
No. Signal peptide Plasmid Callus Embryos Plants

1 Mature pDU05.1002 yes Yes Yes
2 Ramy pDU05.0401 yes Yes Yes
3 XSP pDA05.XSP yes Yes Yes
4 Chi pDU06.0201 yes Yes Yes
5 Nt pDU05.1910 yes Yes Yes

As a result of the above transformation callus, embryos and plants have been obtained for all five vectors (Table 2).  Callus
cultures that were embryogenic were selected on kanamycin and grown into plants.  We have tested all the plants containing
vectors 4 and 5 using PCR (Table 3).  DNA was isolated from leaves using DNeasy Plant Mini Kit (Qiagen, Valencia, CA).
Primers used for detection of nptII were Aph3: 5’ ATGATTGAACAAGATGGATTGCACGCA  and Aph4:  5’
GAAGAACTCGTCAAGAAGGCGATAGA.  Primers for detection of PGIP were 5’ Mature PGIP: 5’
ATGGATCTCTGCAACCCCGACGAC  and 3’PGIP: 5’ TTACTTGCAGCTTGGGAGTG.  Tissue from these plants has
been tested individually for PGIP activity using the zone inhibition assay with PG (Table 3, Figure 1)(Taylor and Secor
1988).  PG preparations were obtained from Botrytis cinerea strain Del 11 isolated from grape (Aguero et al. 2005). Protein
from leaf tissue (~100mg) was extracted in extraction buffer (Dandekar, et al. 1998) at a ratio of 1 ul/mg.  Tissue was ground
in a 2 ml tube containing a 5mm stainless steel bead in a TissueLyzer (Qiagen). The homogenate was centrifuged at 16000
xg for five minutes.  Protein concentration of the supernatant was determined according to Bradford (1976). The inhibition of
endo-PG activity from culture filtrates of B. cinerea was determined by zone inhibition assay in a 1% agarose gel in a 0.1M
sodium acetate buffer pH 5 supplemented with 100mg/L pectin (modified from Taylor and Secor, 1988).

Twenty four of the plants transformed with Nt and ChiPGIP were tested for PGIP activity using the zone inhibition assay
with PG (Table 3, Figure 4).  Select lines were looked at quantitatively.  All 11 ChiPGIP plants were assayed and had a
range of inhibition from 6-62 %. The 10 remaining NtPGIP plants were also assayed and had a range of 0-45 % inhibition.
The ChiPGIP plants had a greater number of lines with strong inhibition than the NtPGIP plants, 6 vs 2, respectively.  Also,
there were more, 3 NtPGIP vs 0 ChiPGIP, that had no inhibition activity.  The 6 ChiPGIP plants with strong inhibition and 5
of the NtPGIP with strong to medium inhibition are being micropropagated to obtain 40 clones of each line for testing with
Xylella to determine efficacy of the PGIP protein. In vitro plants have also been received from the Parsons Plant
Transformation Facility transformed with the plasmids pDU05.1002
(mature PGIP, mPGIP) and pDA05.XSP (PGIP with xylem sap protein
signal peptide, XSP).  They have been PCR tested for PGIP using the
primers 5’ Mature PGIP: 5’ ATGGATCTCTGCAACCCCGACGAC  and
3’PGIP: 5’ TTACTTGCAGCTTGGGAGTG.

FigFiguurree 44.. ZZoneone iinhnhZoiibbne iniittiionon aahssssiaabyyitiorreessululn assay resuttss.. WWeellllss 9,9, 10,10,lts.1717 aanndd
1818Welararee sshhlsoo 9wwii, nngg10nnoo, popo17llyy anggaalld aactct18uurronon areaassee shiinnhhiiobbwiiittiioonnng aaccnottiivivittyy aanndd
wweellllss 2525,, 2266,, 3333 aanndd 3434 araree popossiittiiveve ffoorr polpolygygaallaaccttururononaassee
iinhinhipbibiolyalactuttiioonn aaccttiivivittryyon.. ase inhibition activity and

wells 25, 26, 33 and 34 are positive for
polygalacturonase inhibition activitiy.

Figure 4.
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Table 3. Evaluation of Vitis vinifera ‘Thompsons seedless’ transformed plants
No
.

Signal
peptide

Plasmid Plant Positive PCR
for PGIP

Positive  for
PGIP Activity

Lines
Cloned

Lines
grafted

Moved
greenhouse

1 Mature pDU05.
1002

Yes 2/7 2 2

2 Ramy pDU05.
0401

Yes To be tested To be tested

3 XSP pDA05.
XSP

Yes 8/10 In progress

4 Chi pDU06.
0201

Yes 11/11 10 6 2 In progress

5 Nt pDU05.
1910

Yes 17/22 5 5 In progress

Table 4. Construction of vectors for the expression of HNE-CECB and pgipHNE-CECB
N
o

Signal
Peptide

Binary Plasmid Map Reporter
Gene

Promoter Marker Genes Vector

1 HNE-CECB
LB mas-KAN HNE-CECB

pDU05.6105

Ubi3-GUS RB

Gm HNE-CECB CaMV35S GUSand KAN pDU04.6105

2 pgipHNE-
CEPB

LB mas-KAN pgipHNE-CECB

pDU05.1002

Ubi3-GUS RB

Gm HNE-CECB CaMV35S GUSand KAN pDA05.0525

In the meantime individual clones of Chi and nt PGIP are being acclimated to the soil for transfer to the greenhouse for initial
experiments with Xylella.  The vines will be allowed to grow up to 6”-12” (about 10 nodes long), then inoculated with Xf by
hand and by insect and evaluated for symptoms of Pierce’s disease (PD) after three months. Since we found in earlier
research that pPGIP with its endogenous signal peptide is xylem competent, we are using a grapevine successfully
transformed with this construct and highly expressed as a positive control in the inoculation experiments (Aguero et al.
2005).  The screening of mature-PGIP and XSP-PGIP plants has been initiated. We have also initiated grafting experiments
where selected transformed lines will be grafted with wild type TS scion; we have done this type of  experiment previously to
evaluate the movement of the PGIP protein from the rootstock up into the xylem of the wild type scion (Aguero et al. 2005).

2. Validate expression of chimeric antimicrobial proteins in transgenic grapevines, test for anti-Xf activity in planta, and
test for graft transmissibility:
In vitro grape plants transformed with the constructs, pDU04.6105 (Elastase-Cecropin = HNE-CECB) and pDA05.0525
(pgipSP-Elastase-Cecropin= pgipHNE-CECB) (Table 4), have been received from the Parsons Plant Transformation Facility.
69 HNE-CECB plants and 18 pgipSP-HNE-CECB plants have been screened by PCR to verify the individual transformation
events.  PCR was performed on DNA isolated from leaves using the Qiagen DNeasy Plant Mini Kit.  Primers used for
detection of elastase were: CaMV355-2: 5’ GACGTAAGGGATGACGCACAAT  and 3HNEb:  5’
TTACTAGAGTGCTTTTGCTTCTCCCAG.  As an additional screen, the micro-propagated plants were tested for
methylation of the elastase gene using digestion with McrBC.  Methylated DNA is not expressed and, therefore, we would
not be interested in these plants.  The McrBC enzyme cleaves DNA containing methylcytosine on one or both strands and
was obtained from New England BioLabs Inc., catalog #M0272S.  This assay involves preparing a reaction mix of 100ng
DNA, 1X NEBuffer 2, 1X BSA, 100mM GTP and 5 units of McrBC in a volume of 25ul.  Following 4 hour incubation at
37ºC, a 10 ul aliquot of this reaction was tested by PCR for elastase using the above primers; no product will be amplified if
the gene is methylated.  The resulting 33 HNE-CECB plants (Table 5) are being micropropagated for future transfer to the
greenhouse and for RNA and protein analysis.  This will be followed up with a more significant evaluation of disease
susceptibility using both needle and insect inoculations in the greenhouse.
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Table 5. Current status of testing transgenic lines of Vitis vinifera var. Thompson Seedless grapevines with HNE-
CECB and pgipHNE-CECB genes.
Signal peptide Plasmid Plant Positive

PCR
Negative for
methylation

Lines
Cloned

Lines
grafted

Moved
greenhouse

HNE-CECB pDU04.6105 yes 37/69 33 In
progress

pgipHNE-CEPB pDA05.0525 yes 7/18 In progress In
progress

Table 6. Current status of testing transgenic lines of N Tabacum
SR1with HNE-CECB and pgipHNE-CECB genes.

Plasmid Plant Positive
PCR

Lines
Cloned

Moved
greenhouse

pDU04.6105

pDA05.0525

20

34

15

24

15

29

15

29

We also obtained transgenic tobacco transformed with either the HNE-CECB or pgipHNE-CECB constructs.  We have tested
13 tobacco SRI lines transformed with pgipHNE-CECB, of which 11 performed measurably better than controls after
inoculation with Xf (Table 6; Figure 5).

CONCLUSIONS
The main objective of this project is to develop a potent therapy against Xf by utilizing the principles of innate immunity by
which plants counteract virulence factors like PG with PGIP or that recognize pathogens using their surface characteristics
and then rapidly clear them by cell lysis. Because Xf is xylem-limited, xylem-targeted expression of transgenic therapeutic
proteins, such as PGIP and the antimicrobial chimeric proteins, may be used to prevent and control PD.  Five different
vectors were successfully constructed to test four signal sequences to target PGIP to the xylem of grapevine.  Plants have
been obtained for all five constructs and PG inhibiting activity for two constructs has been tested. We are testing two

Figure 5. In planta testing of 8SRone tobacco transformed with pgip-
HNE-Cecropin vector (pDA05.0525).  Three leaves on three plants each
line (9 leaves) were inoculated with hypervirulent HXfB strain of Xf.
Plants were scored after two months.  Infected controls had no surviving
leaves (0/9), one line was low (3/9) five were moderate (5/9) and two
showed a strong response of leaf survival (6/9).  Line 051095-005 is an
example of moderate and 051095-004 and 051095-003 are examples of
transgenic lines showing strong response indistinguishable to the
uninfected controls.
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constructs containing two versions of the chimeric protein Elastase-Cecropin and have transformed tobacco and grapevine.
Expression in tobacco indicates that protection against Xf looks promising.  Transgenic grapevines expressing these two
constructs have been obtained and are being screened and propagated for greenhouse testing.  Next we will validate the
efficacy of  these two types of proteins to ensure that our signal sequences are essential and sufficient to mobilize proteins
into grapevine xylem and that the targeted chimeric proteins control Xf in grapevine tissues.  Such transgenic proteins, if
synthesized in a rootstock, could confer resistance to xylem-specific infections such as Pierce’s disease and assist in control
of Xf infestations.
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ABSTRACT
Xylella fastidiosa subsp. pauca (Xfp) causes citrus variegated chlorosis (CVC) disease in Brazil, resulting in significant
production problems in the citrus industry. Xfp is mainly transmitted by three species of sharpshooters (Hemiptera:
Cicadellidae) in Brazil, Dilobopterus costalimai (Young), Acrogonia citrina Marucci & Cavichioli and Oncometopia facialis
(Signoret).  Endophytic bacteria have been defined as those that do not visibly harm the host plant but can be isolated from
surface-disinfected plant tissue or the inner parts of plants, showing potential benefits in the biocontrol of pathogens causing
diseases.  Some endophytes colonize the same niche of phytopathogens, such as Xfp, allowing interaction with the
phytopathogen during plant colonization and transmission.  We evaluated the bacterial communities associated with the
heads of the insect vectors of Xfp that were collected from CVC affected citrus groves in Brazil. Bacteria were isolated from
the heads of three insect species (O. facialis, D. costalimai and A. citrina).  Total DNA of insect heads was analyzed by
denaturing gradient gel electrophoresis (DGGE).  The compositon of the microbial community was found to be characteristic
of the insect species and period of evalution.  Specific polymerase chain reactions (PCRs) for detection of two important
citrus endophytes, Curtobacterium flaccumfaciens and Methylobacterium mesophilicum were performed, and the highest
frequency of detection was 89.6% for C. flaccumfaciens, which has been described as a citrus endophyte that interacts with
Xfp.

INTRODUCTION
Citrus variegated chlorosis (CVC) was first reported in Brazil in 1987 (Rossetti et al. 1990) and has spread over at least 90%
of the orchards in Brazil (Lambais et al. 2000) and is caused by the xylem-limited gram-negative bacterial pathogen, Xylella
fastidiosa subsp. pauca (Xfp) (Schaad et al. 2004).  In Brazil, CVC is responsible for losses of US $100 million per year to
the citrus industry (Della-Coletta et al. 2001).  Endophytic microorganisms, not visibly harmful to the host plant, can be
isolated from surface-disinfected plant tissue or the inner parts of plants (Hallmann et al. 1997).  Endophytes were reported to
be contributing to host plant protection and ultimately survival (Azevedo et al. 2000).  Furthermore, endophytes can colonize
an ecological niche similar to that of phytopathogens, which makes them possible candidates as biocontrol agents (Hallmann
et al. 1997).  Araújo et al. (2002) found that the endophytic bacteria Methylobacterium spp. and Curtobacterium
flaccumfaciens were present in asymptomatic citrus trees.  Lacava et al. (2004) reported that the growth of Xfp was inhibited
by endophytic C. flaccumfaciens and stimulated by Methylobacterium sp. and Lacava et al. (2007) demonstated that C.
flaccumfaciens reduced the severity of CVC symptoms when co-inoculated with Xfp in planta. Cicadellinae leafhoppers,
commonly named sharpshooters, are xylem-feeders (Young 1968). In Brazilian citrus groves, Dilobopterus costalimai,
Oncometopia facialis and Acrogonia citrina are the most common sharpshooters found (Lopes et al. 1996).  After acquisition
of Xf by the insects, colonies of bacterial cells were visible in the cibarium and pre-cibarium of transmitting insects attached
to the foregut walls (Purcell & Finlay 1979; Newman et al. 2003).  Many aspects can influence the transmission of a
pathogen by an insect vector such as the low concentration of Xfp cells in the citrus plants (Almeida et al. 2003) and the low
number of colonized vessels in affected plants (Alves et al. 2003).  The interaction between different bacteria inside the insect
foregut can also influence the transmission, as once inside the foregut, bacterial interaction, such as competition for nutrients,
space and other complex interactions, could occur.

OBJECTIVES
The aims of this work were:
1. Access the bacterial population associated with the main sharpshooters responsible for the transmission of Xfp in citrus.
2. Compare the bacteria collected from insects to endophytic bacteria collected from citrus by denaturing gradient gel

electrophoresis (DGGE).
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RESULTS
A total of 17,230 bacteria were isolated and they were classified according to morphological groups.  The morphological
groups found during isolation and the results of the sequencing of one representative of each group were: G1) actinomycetes,
G2) dark pink colonies (Curtobacterium sp.), G3) light pink colonies (Methylobacterium sp.), G4) yellow colonies
(Sphingomonas sp.), G5) white colonies (Bacillus sp.), and G6) transparent colonies (Microbacterium sp.).  From the heads
analyzed, 51.7% of insects from the species O. facialis were positive for the presence of the endophytic bacteria M.
mesophilicum, 8.7% of the D. costalimai and 20% of the A. citrina. C. flaccumfaciens was found in 89.6% of O. facialis,
39.1% of D. costalimai and 70% of A. citrina.  A summary of the results comparing to previous data of Xpf transmission by
the insect vectors and the presence of Curtobacterium sp. is presented in Table 1.  The DGGE analysis showed considerable
variability between the different insect species and also between sampling periods. Figure 1 shows that the samples from
March are more similar to samples from May than the ones from July.  The bacteria isolated from insects are represented by
the code IAB (Insect Associated Bacteria) described on Table 2.  In the present study, Curtobacterium sp. was the most
important bacteria colonizing insect heads. Curtobacterium flaccumfaciens was implicated in playing an important role in
the prevention of CVC symptoms in citrus trees.  The presence of the citrus endophyte, Curtobacterium sp., colonizing the
insect heads could explain why the transmission efficiency of Xfp by vectors is low (5 to 10%), when compared to the
transmission of Xf subsp. piercei by GWSS, which transmit Pierce’s disease (PD) (45%). Table 1 illustrates that
Curtobacterium, can play an important role in the transmission of Xfp, as it could be influencing pathogen adhesion to the
vector foregut or inhibiting growth of the pathogen.

CONCLUSIONS
The bacterial communities associated with insects appear to change with changes in environmental conditions.  Endophytic
bacteria could influence disease development by reducing the insect transmission efficiency due to competition with
pathogens in host plants and also in insect foreguts.  In addition the bacterial communities in the foregut of insect vectors of
Xfp changed with time, environmental conditions and in different insect species.  However, since members of the genus
Curtobacterium were consistently detected in the insect vectors of Xfp, they maybe candidates for biological control of Xfp,
which requires endophytic bacteria that can colonize both the insect vectors of CVC and citrus plants.

Table 1. Resume of the results of the present work, comparing to previous data of Xfp transmission by the insect
vectors and the presence of Curtobacterium sp.

O. facialis A. citrina D. costalimai
Curtobacterium sp. frequency of
isolation (G2) 1.01 x 103 2.16 x 102 4.33 x 101

Curtobacterium sp. positive
specific PCR 89.6% 70% 39.1%

Presence of Haplotype 1
(Curtobacterium sp.) from 120 45 17 0
total isolates

Transmission rate of Xfp (Krügner
et al., 2000) 1% 2% 5%
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Figure 1. Dendogram representing the insect associated bacteria clustered with citrus endophytes. Bootstraps
of 1,000 repetitions.

Table 2. Average of the number of colony forming units per head of insect (CFU/head) found in each isolation
experiment. Groups: G1) actinomycetes, G2) dark pink (Curtobacterium sp.), G3) light pink (Methylobacterium sp.),
G4) yellow (Sphingomonas sp.), G5) white (Bacillus sp.), G6) transparent (Microbacterium sp.).

Vector insect Isolation G1 G2 G3 G4 G5 G6
O. facialis March

May
June

100,4 (+44,6) 
23 (+11,1) 
12,73 (+5,03) 

1225,7 (+253,2)
0 
1,5 (+0,47) 

 51 (+11,1) 
101,7 (+46,5) 
0,4 (+0,10) 

627,7 (+176,3) 
2,75 (+1,2) 
0,8 (+0,26) 

185,13 (+33,8) 
82,25 (+36,3)
1,6 (+0,5) 

48 (+21,4)
0
3,1 (+1,38)

A. citrina March
May
June

0
0
0

16,2 (+5,18) 
0
0,6 (+0,17) 

2 (+0,89)
0
0 

0
1 (+0,35) 
1,5 (+0,5) 

0
6,5 (+1,16) 
0,2 (+0,08) 

0
176,9 (+48,1)
0,4 (+0,17)

D. costalimai March
May
June

0,2 (+0,08) 
0
0,4 (+0,1) 

584,6 (+258,8) 
1 (+0,35) 
0 

1 (+0,44) 
0,25 (+0,12) 
0 

121,1 (+49,6) 
1,625 (+0,65) 
0 

8,5 (+3,8) 
1,5 (+0,47) 
0,2 (+0,08)

4 (+1,78)
1,25 (+0,37)
0
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ABSTRACT
The development of a bacteriophage (phage) and/or high molecular weight bacteriocin-based biocontrol strategy offers a
novel approach for the control of Pierce’s disease caused by Xylella fastidiosa (Xf).  We have isolated, propagated and
characterized a functional Xylella phage, designated Xfas53.  Phage morphology was examined by electron microscopy and
was classified as belonging to the family Podoviridae with a head diameter of 55 nm and a short non-contractile tail having a
diameter of 12 nm.  The dsDNA genome of Xfas53 was determined to be 36,673 base pairs with a GC content of 57%.
Bioinformatic analysis of the Xfas53 genome predicted a total of 46 protein coding genes.

INTRODUCTION
Pierce’s disease of grapes, caused by the xylem-limited, fastidious bacterium Xylella fastidiosa (Xf), is a limiting factor in the
cultivation of high quality wine grapes.  This disease is particularly damaging to Texas vineyards.  The Texas Wine
Marketing Institute in 2007 reported that the Texas wine industry currently consists of 2,900 bearing acres which produced
8,500 tons based on 2005 year end data (http://www.depts.ttu.edu/hs/texaswine/docs/TX_ECONOMIC_IMPACT_2007.pdf).
The full economic benefit of Texas wine and grape industry is estimated at $997.3 million to the state’s economy and
provides over 8000 jobs.  It is estimated that the disease has resulted in several millions of dollars in damage due to lost
vines, replanting costs, and the closure of numerous productive vineyards. Pierce’s disease has also become a major threat to
the nation’s most valuable wine producing regions in California, with the potential to have an economic impact in the billions
of dollars.  Other strains of the same bacterium cause disease in oleander, peach, plum, and several shade trees including
sycamore and a number of oak species native to Texas. Xf has a wide host range and is transmitted by several species of
sharpshooter leafhoppers.

The search for new ways to combat microbial pathogens is an ongoing process in both medicine and agriculture.  The long-
term goal of our project is to ultimately develop a phage and/or bacteriocin–based biocontrol agents to control Xf, the causal
agent of Pierce’s disease in grapes. The double-stranded DNA (dsDNA)-containing phages are very likely the most
numerically abundant group of similar organisms in the biosphere (Hendrix et al. 1999).  Treatment of a disease with phages,
a practice also termed phage therapy, involves the use of bacterial viruses that can only attack specific bacteria to kill the
targeted pathogenic microorganism.  Despite a controversial legacy arising from the pre-DNA era of microbiology, there is
growing interest in reconsidering therapy as an additional weapon against both human (Chibani-Chennoufi et al. 2004,
Bruttin and Brussow 2005) and plant bacterial pathogenesis (Federal Register /Vol. 70, No. 248/Wednesday, December 28,
2005, Balogh et al. 2003, 2008). Phage therapy pre-dates antibiotics by decades, but was largely abandoned when chemical
antimicrobials became readily available.  Now, however, the emerging threat posed by antibiotic-resistant pathogens is
spurring a resurgence of interest in phage as a potential therapy to cure or prevent infections, and as a tool to kill food-borne
pathogens.  A combination of six phages were recently approved by the FDA to be sprayed on ready-to-eat meat and poultry
products, including sliced ham and turkey (Federal Register Vol. 71, No. 160, Friday, August 18, 2006). Multiple
commercial efforts to develop phage therapeutics are underway (www. evergreen. edu/phage/companies.htm for a list).  We
submit that it is necessary to address experimentally the key scientific issues that are involved to establish practical phage
and/or bacteriocin therapy for Pierce’s disease.

The genomes of the Xylella strains have a high number of phage-related sequences dispersed in their chromosomes,
constituting 7% of the CVC strain 9a5c genome and 9.02% of the Temecula strain genome (Simpson et al. 2000) suggesting
that bacterial viruses have contributed to the evolution of Xylella. The 9a5c genome exhibits five potential prophage regions
(Simpson et al. 2000, Canchaya, 2004) with a different GC content (57%) and several other phage-related genes dispersed
throughout the sequence, which result in a high percentage of repeated fragments.  These regions and genes are organized
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differently in the Temecula strain genome.  A total of eight clusters of phage-related genes have been identified in the
Temecula strain, none of which is present in strain 9a5c genome (Moreira et al. 2005).  A more recent analysis using the
“Prophage Finder” program indicates four and three potential prophage clusters in the strain 9a5c and Temecula genomes,
respectively (Bose and Barber 2006). Using manual annotation, we have identified three and four potential prophage clusters
in the draft sequence contigs of the Dixon and Ann-1 strains, respectively.  Presumptive phage particles associated with the
Temecula strain grown in PW broth were recently observed by transmission electron microscopy (Chen and Civerolo 2008).

OBJECTIVES
1. To develop a method for the isolation and propagation of Xylella phage.
2. To isolate lysogenic and/or virulent phage.
3. To characterize the isolated phage.

RESULTS AND DISCUSSION
The formulation of a semi-solid medium that is conducive to even dispersal and confluent growth of Xf, a technique which is
required for the efficient manipulation and study of phages and bacteriocins, has not been previously reported in the
literature.  We have established such techniques and developed an efficient plate assay for detection of phage and
bacteriocins (Figure 1).  Using this novel method we were able to screen a 30 X 30 matrix using each isolate as an indicator
to test supernatants of isolates grown in PW-M broth.  California Xf isolates
included in the study were Temecula, Ann1 and Dixon (Feil and Purcell
2001).  Texas isolates included one each from American Sycamore
(Plantanus occidentalis), seacoast sumpweed (Iva annua), annual sunflower
(Helianthus annuus), redspike mexican hat (Ratibida columnifera), and
western ragweed (Ambrosia psilostachya), black Spanish grape (Vitis
aestivalis hybrid), mustang grape (Vitis mustangensis), as well three giant
ragweed (Ambrosia trifida var. texana) isolates, two oleander (Nerium
olenander), and 15 grape isolates (Vitis vinifera) isolated from different
commercial varieties of grapevines grown in Texas.

Using the overlay method, we were able to identify plaque production on
plates seeded with hosts. Phage activity was indicated by plaque formation.
Serial dilutions of supernatants indicating activity were plated using the
overlay method in which the bacterial suspensions
and phage were added and mixed before being
applied.  After incubation for five-seven days at
28 ºC, individual plaques were excised from the
overlay, suspended in phage buffer and titered.
This procedure was repeated twice to obtain a
single clonal plaque isolate. High titer lysates
(1010 PFU/ml) were prepared by harvesting
overlays of plates exhibiting confluent lysis
(Figure 2A).  To perform further analysis, high
titer lysates were purified using a CsCl gradient
(Figure 2B).

Transmission electron microscopy of purified
phage revealed that phage Xfas53 belonged to the
family Podoviridae with a head diameter of 55
nm and a short non-contractile tail having a
diameter of 12 nm (Figure 3 A and B).

Figure 1.  Plate overlay method for
isolation and propagation of Xylella
phage.

A B

Figure 2. A. Dilution series of phage Xfas53 exhibiting
confluent lysis of host. B. CsCl gradient showing phage band
(red arrow).
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The adsorption of Xfas53 was characterized by measuring the disappearance of free phage after mixing with the susceptible
host cells. We observed 95% adsorption to susceptible host in 15 min at an MOI of 10-3. Both sensitive and resistant Xf
isolates from a variety plant hosts were identified in a host range study.  Representative Xf isolates from a range of hosts or
grape varieties that exhibited sensitivity to phage Xfas53 are listed in Table 1.

Table 1.  Representative isolates, plant source and origin exhibiting
sensitivity to phage Xfas53.
Plant source-variety Isolate Origin
Oleander Xf 95 M. Black (TX)
Black Spanish Grape Xf 39 M. Black (TX)
Mustang Grape Xf 41 M. Black (TX)
Grape-Chambourcin Xf 48 Apple/Torres(TX)
Grape-Sangiovese Xf 76 Gonzalez/Enderle (TX)
Grape-Zinfandel Xf 67 Apple/Torres(TX)
Grape-Zinfandel Xf 78 Gonzalez/Enderle (TX)
Grape-Syrah Xf 66 Gonzalez/Enderle (TX
Grape Temecula Temecula (CA)

The genome size of phage Xfas53 was estimated to be approximately 36
kb by pulsed-field gel electrophoresis (Figure 4), and no genomic ladder,
indicating end annealed multimers, was observed, suggesting that the
phage uses pac-type rather than cos-type DNA packaging.

A random library of the phage DNA was sequenced with eight-fold
coverage.  The assembled reads resulted in the production of a single
contig of 36,673 base pairs with a GC content of 57 %.  A total of 46
protein coding genes were predicted.  The genes are organized into two
transcription units with the first 19 genes being transcribed from the
reverse strand and all but three of the remaining 27 genes being
transcribed from the forward strand (Figure 5).  Genes at the divergent
promoter region include some with similarity to proteins implicated in
lysogenic control in other temperate phage. Xfas53 has a lysis cassette
that includes a holin, endolysin, Rz, and Rz1 equivalent.  Functional
annotation of the 46 genes indicates these include genes for DNA
replication and metabolism, lysogenic control, host cell lysis, and virion
morphogenesis.  Comparison of the Xfas53 encoded proteins to those
from other phages indicated that the predicted structural proteins are most
closely related to the Bpp-1 – like podophages as well as Thalassomonas
phage BA3.

BA

Figure 3A and B.  Electron micrograph of CsCl purified phage Xfas53
stained with 2% (w/v) aqueous uranyl acetate.

1               2              3             4

97.0

82.5

63.5

48.5

33.5

kb

15.0

Figure 4.  Ethidium bromide stained gel
showing 0.5 μg (lane 2) and 0.05 μg (lane
3) of genomic DNA from phage Xfas53.
MidRange PFGE Marker I (lanes 1 and 4).
Marker sizes are indicated.
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Figure 5.  Map of phage Xfas53. Boxes are predicted genes drawn to scale and placed above or below the genome scale bar,
based on transcription orientation.  Gene numbers are listed in the boxes and homolog or functional assignments, where
possible, are indicated.  Yellow boxes indicate novel hypothetical proteins.  Red boxes indicate proteins unique to Xylella.
Green boxes indicate conserved hypothetical proteins.

CONCLUSIONS
We have isolated and characterized a functional lysogenic phage of Xf. This is a significant step forward in understanding the
biology of Xf and its phages, which will allow us to study the phage-Xylella interaction and the potential use of phages as
biocontrol agents.  Our results increase the probability of success in identifying functional virulent phage and/or bacteriocins
for the implementation of a control strategy that is not currently available against this economically important pathogen.
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ABSTRACT
This project includes the evaluation of the biological control of Pierce’s disease (PD) in California with a strain of Xylella
fastidiosa, EB92-1, which has provided effective control of PD in previous greenhouse and vineyard tests in Florida.  On
June 26, 2008 in greenhouses at UC Davis, fifty plants of Orange Muscat, Cabernet Sauvignon, Reisling, Chardonnay,
Barbera, and Viognier were inoculated with strain EB92-1 and fifty plants of each were left untreated as controls.  The
Orange Muscat and Cabernet Sauvignon vines were transplanted into the Bella Vista Vineyard in Temecula on July 21-22.
Barbera and Viognier were transplanted into Preston Vineyards in the Sonoma Valley during the last week of July and
Reisling and Chardonnay were transplanted into Beringer Vineyard in Napa Valley in October.  The development of PD in
these trials will be monitored for two-five years.  In Florida, different methods of obtaining young plants colonized with
strain EB92-1 were evaluated for the effectiveness in biological control of PD.  In the greenhouse, rooted Chambourcin
cuttings from vines in the UF research vineyard that had been treated with EB92-1 had fewer PD symptoms than rooted
cuttings from control vines; however, Chardonnay rooted cuttings from treated vines had similar PD symptoms as from the
untreated.  In the vineyard at Mid-Florida REC, scion, rootstock, and scion plus rootstock treatments with EB92-1 all had
significantly lower incidences of PD than the untreated vines of Merlot and there were no significant differences among these
treatments.

INTRODUCTION
Pierce’s disease (PD) of grapevine is a chronic problem for the California grape industry and has become more of a threat to
the industry with the introduction of the glassy-winged sharpshooter.  PD is especially damaging in the southeastern USA
where it is endemic and is the primary factor limiting the development of a grape industry based on the high-quality
European grapes (Vitis vinifera L.).  The only feasible control for Pierce’s disease is resistance.  Through 10 years of research
on the biological control of Pierce’s disease of grapevine in Florida by cross protection with weakly virulent strains of Xf, we
demonstrated that this also is a potential means of controlling this disease. In a vineyard study, Xf strain EB92-1, benign to
grapevine, provided excellent control of PD in V. vinifera cv. Cabernet Sauvignon for four years in the vineyard in central
Florida (Hopkins, 2005).  Strain EB92-1 was introduced into the vines only once at the beginning of the 4-year trial and was
still controlling the disease at the end; whereas, all unprotected vines were dead.  These treated vines were still healthy and
producing fruit in 2008, 11 years after treatment.   The overall goal of this project is to develop a biological control system
for Pierce’s disease (PD) of grapevine that would allow the production of V. vinifera in California and other areas where PD
and the glassy-winged sharpshooter (GWSS) are endemic.

OBJECTIVES
1. To evaluate strain EB92-1 of Xf which has provided effective biocontrol of PD in previous greenhouse and vineyard tests

in Florida for possible commercial application for the biological control of Pierce’s disease of grapevine in the vineyard
in California.

2.    To compare different methods of treatment with strain EB92-1 of Xf for the biocontrol of PD in V. vinifera in the
vineyard.

RESULTS
Establishment of field trials of strain EB92-1 for biological control of PD in vineyards in California
It took from July to December 2007 to obtain the USDA Permits to test the biocontrol strain in California.  The field plot
locations are in the Bella Vista Vineyard in Temecula, CA, in the Beringer vineyard in the Napa Valley, and in Preston
Vineyards in the Sonoma Valley.
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All plants for the vineyard tests were planted in April in greenhouses at UC Davis.  The cultivars were Orange Muscat
(propagated by the grower, Imre Cziraki, and starting budbreak when planted April 6), Cabernet Sauvignon/110R (dormant
rooted vines from Vintage Nursery, planted April 30), Reisling/3309 (dormant rooted vines from Vintage Nursery, planted
April 30), Chardonnay/3309 (dormant rooted vines from Vintage Nursery, planted April 30), Barbera/110R (dormant rooted
vines from Sunridge Nursery, planted April 30, and Viognier/110R (growing potted vines from Vintage, planted April 30.

The biocontrol strain, EB92-1 was recovered from storage in glycerol at -70 C.  Five and six-day cultures of second transfer
of the bacterium from storage on PD3 solid medium were hand-carried by Don Hopkins on a flight to California.  For
biocontrol treatment of the grape plants, a slightly cloudy solution of EB92-1, approximately 0.25 OD at 600 nm (107 – 108

CFU/ml) was prepared in 75 ml of SCP buffer (disodium succinate, 1.0 g/L; trisodium citrate, 1.0 g/L; K2HPO4, 1.5 g/L;
KH2PO4, 1.0 g/L; pH 7.0) in Bruce Kirkpatrick’s laboratory at UC Davis.  A pin pricking technique was used to inoculate the
biocontrol into the xylem vessels of the treated grapevine.  A drop (0.02 ml) of the biocontrol suspension was placed onto
each of two lower internodes of the plants.  The stem was pierced three-five times through the drop with a syringe needle.
The inoculum was pulled into the plant by the negative pressure of the pierced xylem vessels.  Approximately 5 x 105 to 5 x
106 bacteria were inoculated into each node.

For transplanting into the Bella Vista Vineyard in Temecula, 50 Orange Muscat were inoculated with the biocontrol strain
(EB92-1) on June 26, and 50 were left untreated as controls.  Fifty Cabernet Sauvignon/110R were treated and 50 were
untreated controls.  These plants were transported to Temecula and transplanted into plots in the Bella Vista Vineyard on July
21-22..

For Preston Vineyards in Sonoma, 50 Barbera/110R and Viognier/110R from were inoculated with EB92-1 and 50 vines of
each were left as untreated controls.  These plants were transported to Sonoma and transplanted the last week of July, 2008.
For transplanting into the Beringer Vineyard in Napa, 50 Reisling/3309 and 50 Chardonnay/3309 were treated with EB92-1
on June 25 and 50 vines of each were left untreated as controls.  The vines were transplanted in Beringer Vineyard in
October.

Comparison of treatment methods with strain EB92-1 for biocontrol of PD
Cuttings of the cultivars Chardonnay and Chambourcin (French/American hybrid) in the UF Mid-Florida REC vineyard were
taken both from vines that are colonized by biocontrol strain EB92-1 and vines not colonized by Xf. Rooted cuttings of these
vines were potted in the greenhouse and 12 of the cuttings from untreated vines were injected with strain EB92-1.  Two
weeks later all plants were inoculated with pathogenic PD strains and observed weekly for symptoms.  In both cultivars,
plants injected with strain EB92-1 in the greenhouse had significantly lower PD rating than the untreated plants (Table 1).
There did not seem to be any effect of taking the cuttings from an infected vine in the vineyard with Chardonnay, but PD was
significantly less severe in the plants derived from cuttings of biocontrol vines of the cultivar Chambourcin than in plants
derived from untreated vines.  This may mean that the biocontrol strain is not consistently carried over into propagated
plants.  Recent experiments have indicated that the 0.25 OD inoculum of pathogen can overcome the biocontrol strain in
some cases; therefore, this experiment is being repeated with lower pathogen inoculum levels.

Table 1. Comparison of treatment method with EB92-1 on control of PD in the greenhouse.

PD rating after 8 wks:1,2

Source of EB92-1 treatment

Untreated rooted cuttings

Rooted cutting from field EB92-1,
biocontrol plant

Injected EB92-1 untreated rooted cuttings

Chardonnay

2.9 b

3.0 b

2.2 a

Chambourcin

4.1 b

2.8 a

2.6 a
1Plants were rated on a 0 - 5 scale with 0 = no symptoms and 5 = a dead plant.  Ratings were
averaged for treatments.
2Mean separation in columns by Duncan's New Multiple Range Test, 5% level.
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Experiments to evaluate different methods of treatment with EB92-1 were established in the Mid-Florida REC vineyard
during the summer, 2007.  Four treatments were applied to the cultivar Merlot/101-14 (dormant rooted vines from Vintage
Nursery planted in pots in mid-April) on May 29 and the plants were transplanted into the vineyard on June 21.  The
treatments were 1) injection of EB92-1 into the new growth of the scion only,  2) injection of EB92-1 into the rootstock only,
3) injection of EB92-1 into both the rootstock and scion, and 4) nontreated.  Five treatments were applied to the cultivar
Chardonnay CL96/330914 (dormant rooted vines from Vintage Nursery planted in pots in mid-April) on June 13 for the three
greenhouse treatments and on July 26 for the scion field injection..  The plants were transplanted into the vineyard on July 3.
The treatments were 1) injection of EB92-1 into the scion only in the greenhouse, 2) injection of EB92-1 into the rootstock
only in the greenhouse, 3) injection of EB92-1 into both the rootstock and scion in the greenhouse, 4) nontreated, and 5)
injection of EB92-1 into the scion only in the vineyard.  In a third experiment, Chardonnay cuttings from the MREC vineyard
were grafted onto Salt Creek rootstock rooted cutting from the vineyard.  The grafted plants were transplanted into the
vineyard on August 14.  The treatments included 1) Chardonnay cuttings from mature vines that had been treated three years
ago with EB92-1 on Salt Creek, 2) Chardonnay cuttings from mature nontreated vines on Salt Creek, and 3) Chardonnay
cuttings from mature nontreated vines on Salt Creek, with the scion injected with EB92-1 in the vineyard on August 29.

One year after these trials were established, PD incidence was still low and there were not any significant differences
between treatment methods and the untreated in Chardonnay/3309 (Table 2).  However, on October 7, 2008, scion,
rootstock, and scion plus rootstock treatments with EB92-1 all had significantly lower incidences of PD than the untreated
vines of Merlot.  This early, preliminary data indicates that it may not be critical whether the strain EB92-1 is injected into
xylem of rootstock, scion, or both.  Disease development in these trials in years two and three is most important to any
conclusions on the most effective treatment methods.  In the first year, there were no significant differences among the
Chardonnay/Salt Creek treatments.  This evaluation of cuttings from treated vines is especially significant, because rooting
cuttings from infected mother vines would be a preferred treatment method over having to inject every vine by the pin
pricking method.

CONCLUSIONS
There are no results or conclusions for the California field trials, since the vines treated with strain EB92-1 were not
established in vineyards until mid-summer to fall of this year. Preliminary results in Florida indicated that rooted cuttings
from EB92-1 mother vines did not consistently have reduced incidence of PD in greenhouse tests.  This method of using the
biocontrol strain may not be feasible, but field tests are underway to evaluate this treatment method, because rooting cuttings
from infected mother vines would be a preferred treatment method over having to inject every vine by the pin pricking
method.  As symptoms of PD began to develop in Merlot in Florida trials, the strain EB92-1 appeared to reduce PD incidence
whether it was applied to rootstock or scion.
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Table 2.  Effect of methods of treatment of grape plants with Xylella fastidiosa
strain EB92-1 on biological control of PD.

% PD incidence in:1

Treatment Merlot/101-14 Chardonnay/3309
Scion injection 0 a 0
Rootstock injection 0 a 0
Scion & Rootstock injection 11 a 11
Scion field injection NT 11
Untreated 33 b 0
1Mean separation in columns by Duncan's New Multiple Range Test, 5% level.
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ABSTRACT
Pierce’s disease (PD) is currently found in many regions of California and the southeastern United States.  One factor that has
been shown to be associated with the observed limited geographical distribution of PD in North America is the severity of
winter temperatures in those regions. For example, PD does not occur in New York, the Pacific Northwest or at high
altitudes in South Carolina, Texas and California where the winter temperatures on average drop below zero degrees Celsius
(Hopkins & Purcell, 2002).  Purcell (1977, 1980) and Feil’s (2002) research suggested that some factor(s) expressed in the
intact plants helps eliminate Xyllela fastidiosa (Xf) from grapevines.

To elucidate the mechanism(s) of the “cold curing” phenomenon, it is necessary to determine the cold curing temperature
threshold that maximizes PD recovery and minimizes vine mortality.  This research should also allow us to generate
projection maps to determine if vineyards in cold boundary areas (i.e., foothills of the Sierra and northern-most California)
are at risk for developing PD.  The information obtained from these experiments will facilitate basic research on mechanisms
causing cold therapy and provide data that could be used by grape growers for risk assessment and management purposes.
It has been well documented that xylem sap contains many metabolites such as mono- and disaccharides, organic acids, plant
growth regulators and other organic compounds (Andersen et al., 1989; Bollard, 1960; Pate, 1976; Wormall, 1924; reviewed
by Seyedbagheri & Fallahi, 1994).  Though it is well known that these compounds are in the sap, little is known about the
effects of cold temperatures on the synthesis or quantity of these compounds in sap.  Also, little is known about the effect of
cold temperatures on factors such as pH and osmolarity of xylem sap and how these factors may be contributing to the cold
curing phenomenon.  Assessing the effect of pH and osmolarity on the viability of Xf cells in vitro, could provide insight into
the factors that contribute to the cold curing phenomenon.

Previous research has shown that herbaceous and woody plants exposed to sub-lethal cold conditions have significantly
elevated levels of plant hormones, such as abscisic acid (ABA), which induce the synthesis of a number of cold shock
proteins (Guy, 1990; Bravo, et al., 1998; Thomashow, 1998).  Kuwabara et al. (2002) elicited cold-shock proteins at 23°C in
winter wheat using an exogenously applied 100ppm ABA solution.  The ABA treated plants elicited the synthesis of proteins
that inhibited the in vitro growth of a wheat fungal pathogen.  Although nothing is known about the effects of these cold-
induced proteins on the growth of Xf, if they were antagonistic the application of ABA could lead to a potentially novel
approach for managing Pierce’s disease.

INTRODUCTION
Xylella fastidiosa (Xf) is a xylem-limited, gram-negative bacterium that causes Pierce’s disease (PD) in grapevines.  The Xf
strains that cause PD in grapevines also cause alfalfa stunt and almond leaf scorch, while other strains of Xf cause citrus
variegated chlorosis, oleander leaf scorch, phony peach, and several other diseases (Purcell, 1997). Little is known about host
specificity of strains or the mechanisms by which Xf causes plant disease (Purcell & Hopkins, 1996).  Symptoms of this
“mysterious disease” were first described by Newton Pierce in 1882.  Today, typical symptoms of PD in grapevines include
leaf margin necrosis, leaf blade drop, irregular lignification of canes, “raisining” of fruit clusters, dieback and death of
grapevines  (Hopkins & Purcell, 2002; Varela, et al., 2003).

PD is currently found in many regions of California and the southern United States.  One factor that has been shown to be
associated with the observed limited geographical distribution of PD in North America is the severity of winter temperatures
in those regions.  For example, PD does not occur in New York, the Pacific Northwest or at high altitudes in South Carolina,
Texas and California where the winter temperatures on average drop below zero degrees Celsius (Hopkins & Purcell, 2002).
Purcell (1977, 1980) demonstrated that relatively brief exposures to sub-freezing temperatures eliminated Xf in cold treated
Vitis vinifera grapevines.  Purcell also found that moderately susceptible ‘Cabernet Sauvignon’ had a higher curing rate
following cold treatment compared to the PD-susceptible variety ‘Pinot Noir’.  More recently, Purcell’s group also showed
that whole, Xf infected potted vines that were exposed to low temperatures had a higher rate of recovery than PD-affected
detached bud sticks exposed to the same cold temperatures (Feil, 2002).  This implies that some factor(s) expressed in the
intact plant, but not in detached bud sticks, helped eliminate Xf from the plants.
Despite documentation of the cold curing phenomenon, little is known about the physiological/biochemical basis that
mediates cold therapy.  To further understand the basis of this phenomenon, we are conducting several studies to identify the
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physiological/biochemical factor(s) that occur or are expressed in cold treated vines that contribute to the elimination of Xf.
If such a factor(s) is/are found, it may be possible to induce their expression under non-freezing temperatures and potentially
provide a novel approach for managing PD.

OBJECTIVES
1. Develop an experimental, growth chamber temperature regime that can consistently cure Pierce’s disease affected

grapevines without causing unacceptable plant mortality.
2. Analyze chemical changes such as pH, osmolarity, total organic acids, proteins and other metabolites that occur in the

xylem sap of cold-treated versus non-treated susceptible and less susceptible Vitis vinifera varieties.
3. Assess the viability of cultured Xf cells growing in media with varying pH and osmolarity and cells exposed to xylem

sap extracted from cold- and non-treated grapevines.
4. Determine the effect of treating PD-affected grapevines with cold-induced plant growth regulators, such as abscisic acid

(ABA), as a possible therapy for PD.

RESULTS AND CONCLUSIONS
Objective 1: The results described in previous reports show that our field plots and cold chamber plants showed lower disease
ratings and higher curing rates in the colder temperature treatments.  In 2005-2007 sites, vine mortality was minimal due to
better cold acclimation of the grapevines prior to establishing the plots in the fall.

The data collection for the field and cold chamber studies is complete and analysis of the data to determine the critical
temperature thresholds for inducing the cold curing phenomenon is underway.  We are continuing to work with Len Coop
from the University of Oregon to generate a cold temperature model to determine if vineyards in cold boundary areas (i.e.,
foothills of the Sierra and northern-most California) are at risk for developing PD.  The information obtained from these
models could provide data that could be used by grape growers for risk assessment and management purposes.

Objective 2:  Xylem sap was extracted from vines from each field location and cold chamber treatment using a pressure
bomb.  The samples were then tested for potential changes in pH, osmolarity, protein profiles, total sugars, and calcium and
magnesium concentrations in xylem sap.  The results for the 2005-2006 field and cold chamber grapevine xylem sap pH,
osmolarity, and calcium and magnesium concentrations can be found in previous reports.  The 2006-2007 xylem sap samples
were analyzed for sugars, calcium and magnesium levels. The results of these analyses will be reported in our 2008 Pierce’s
Disease Meeting poster in December once the statistical analyses are completed.

Xylem sap protein profiles were analyzed for the 2005-2007 samples.  The sap proteins were concentrated by acetone
precipitation and the proteins were electrophoresed in a 12% Tris-HCl 1-dimensional polyacrylamide gel (PAGE).  Protein
profiles of the PAGE gels were compared for each treatment.  Unique protein bands that were found in the cold treated plants
were cut from the gel, and end terminally sequenced by the UCD Molecular Structure Facility.  Some of the constitutively
expressing xylem sap proteins were also sequenced to determine their identity.

Cold Chamber Experiment Results:
The results reported in previous reports show that the pH of Cabernet Sauvignon (CS) xylem sap was significantly higher
than Pinot Noir (PN) sap overall.  Sugar and select ion concentration analysis of CS grapevines showed greater amounts of
glucose and fructose in –5ºC cold chamber vines, whereas Ca+ levels were greater in the warmest treatments.  Osmolarity
was greatest in the coldest treatments and decreased with increasing temperature.  Conversely, in PN grapevines, glucose and
fructose levels were the lowest in the coldest treatments.  Ca+ levels showed a similar trend with CS vines, with increased Ca+

levels in the warmer temperature treatments.  Temperature appeared to have a less direct effect on osmolarity in Pinot Noir
grapevines.  ABA concentrations in the spring xylem sap collections were the lowest in the coldest cold chambers.
Protein profiles of grapevine xylem sap exposed to various temperatures were determined by PAGE (Figure 1).  Most of the
proteins were similar for the various temperatures, but a few unique proteins were found in the cold stressed and/or Xf-
inoculated plants and these proteins were end terminally sequenced by the UCD Molecular Structure Facility.  Sequencing of
xylem proteins from cold-treated vines identified proteins that had high sequence homology with stress proteins that are
produced by Cabernet Sauvignon berries under water deficit stress conditions, proteins that are similar to proteins produced
in Pinot Noir roots, tryptase inhibitors and a thaumatin-like protein which is reported to have anti-fungal properties.
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Field Experiment Results:
ABA concentrations in the spring xylem sap collections were the lowest in the coldest field locations.  ABA levels were
higher in the late winter sap collections than in the spring collections for the field locations.  Osmolarity, pH, calcium and
magnesium levels show similar trends to those seen in the cold chamber experiments.

Objective 3:  The solutions used for these viability experiments included: water, extracted V. vinifera (‘Pinot Noir’ and
‘Cabernet Sauvignon’ varieties) xylem sap, PD3, HEPES, sodium and potassium phosphate buffers.  All buffers and media
were adjusted to pH 6.8. Xf cells suspended in the various buffers and media were exposed to various temperatures (28ºC,
5ºC, 2.2ºC, 0ºC, -5ºC, -10ºC and -20ºC).  Potassium phosphate buffer at various pH values (5.0-6.8) was also used to
determine the effects of pH on the survival of Xf. 104 Xf cells were suspended in 1ml of the various test solutions which were
then incubated at various temperatures.  Aliquots of the suspensions were plated on PD3 medium and Xf CFUs were counted
seven days post plating.

The results of these experiments were reported in detail in the 2007 progress report.  To summarize the results, these
experiments indicate that Xf can survive at 28ºC in most media except water.  The mortality rate was the lowest in PD3
medium in the 5˚C and 2.2˚C temperature treatment.  The deionized water treatment had the highest mortality rate followed
by potassium phosphate at pH 6.2.  The highest survival at 0˚C occurred with PD3 media and in xylem sap collected from
grapevines growing in a cold climate (Placer County, CA).  These experiments showed that Xf can survive at -5ºC in all
buffers at pH 6.8, media and xylem sap for at least four days.  No cultivable Xf was recovered from any of the media, buffers
or xylem sap after 24 hours at -10˚C or at -20˚C.

Objective 4: To assess the possibility of using a plant hormone to artificially induce cold curing, we contacted Valent
Bioscience Corporation who has an active research and development program on the use of ABA on agricultural crops.  In
November of 2005, 2006, and 2007, healthy and Xf-inoculated Cabernet Sauvignon and Pinot Noir vines grown and
inoculated with Xf as described in Objective 1 were foliar sprayed or soil drenched with solutions of ABA in the fall.  The
2005-2006 results showed interesting trends and were repeated in the 2006-2007and 2007-2008 seasons.
Our applications of ABA in the 2005-2006 season appeared to have a curing effect in PD-infected grapevines.  ABA
application that was the most effective was VBC-30030 applied as a drench, but some of the other forms and concentrations
of ABA also had some curing effect.  For this first application in 2005-2006, there was no rain until a week following the
application. In 2006-2007, this experiment was replicated with some modifications to the treatments used in 2005-2006.  The
resulting curing rates were not the same as in the 2005-2006 treatments.  The only treatment that seemed to have more curing
than the control treatment was the VBC-30030 drench in Pinot Noir grapevines, but the curing rate was not as high as in the
2005-2006 season.  This difference could possibly be due to a rain event that occurred a few hours after the ABA application,
possibly diluting, washing off, or leaching out the applied ABA.

To evaluate the reproducibility of the 2005-2006 results, a third ABA trial was conducted in the 2007-2008 season.  In 2007,
there were four treatments with Xf- infected vines and healthy controls.  The curing rates for the various treatments are
currently being evaluated by IC-PCR.

To examine the mechanism behind the possible curing due to ABA application, the xylem sap of the grapevines was
extracted using a pressure bomb four days after the application of the ABA treatments.  To examine the proteins produced
when grapevines are exposed to ABA, protein profiles were made of each treatment.  The 150 ul of xylem sap was
precipitated with cold acetone to concentrate the proteins.  The proteins were resuspended in 30 uL of SDS-loading buffer
and electrophoresed in a BioRad 12% Tris-HCl gel.  Some of the proteins that were sequenced in the ABA treated vines were
similar to those found in our cold treated vines.

Lane 1: Dual Color SDS-ladder.
Lane 2: CS +5ºC xylem sap from control vines.
Lane 3: CS -5ºC xylem sap from control vines.
Lane 4: CS +5ºC xylem sap from inoculated vines.
Lane 5: CS -5ºC xylem sap from inoculated vines.

Figure 1. Protein profiles of grapevine xylem sap as
determined by PAGE analysis. 150 uL of xylem sap was
precipitated with cold acetone. Proteins were suspended
in 30 uL of SDS-loading buffer and electrophoresed in a
12% Tris-HCl polyacrylamide gel.
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2008-2009:
To evaluate the reproducibility of the 2006-2007 Chardonnay results a third ABA spray trial is being prepared for the 2008-
2009 season.  In the fall, treatments will be applied to healthy and Xf- infected Chardonnay vines as follows:

Control:                 16 Chardonnay plants sprayed with water
2000 ppm spray:   16 Chardonnay plants sprayed with VBC-30054
100 ppm spray:     16 Chardonnay plants sprayed with VBC-30030
100 ppm drench: 16 Chardonnay plants drenched with VBC-30054
10 ppm drench: 16 Chardonnay plants drenched with VBC-30030

Our first unique cold expressed protein found in Objective 2 has been cloned and expressed (Figure 2).  Expressed and
purified xylem sap proteins will be used to determine if the proteins demonstrate any anti-Xf activity in vitro.  If anti- Xf
activity is shown, future work would focus on expressing the anti-Xf proteins in transgenic rootstocks as a possible Pierce’s
disease control method.

1       2               3               4                5

CONCLUSIONS
The results of our field and cold chamber experiments show lower disease ratings and higher curing rates in the colder
temperature treatments.  The coldest treatments had the highest rate of recovery from PD, but also the highest grapevine
mortality.  These findings will be used to determine a Pierce’s disease Risk Assessment Model based on curing rates and
winter temperatures.

Analysis of the biochemical factors in sap revealed some interesting results.  For the cold chamber experiments, the pH of CS
xylem sap was significantly higher than PN sap overall.  Sugar and select ion concentration analysis of CS grapevines
showed greater amounts of glucose and fructose in –5ºC cold chamber vines, whereas Ca+ levels were greater in the warmest
treatments.  Osmolarity was greatest in the coldest treatments and decreased with increasing temperature.  Conversely, in PN
grapevines, glucose and fructose levels were the lowest in the coldest treatments.  Interestingly, the osmolarity of PD3 media
is 113 mmol/kg, whereas the osmolarity of xylem sap was 25-45 mmol/kg. Ca+ levels showed a similar trend with CS vines,
with increased Ca+ levels in the warmer temperature treatments.  Temperature appeared to have a less direct effect on
osmolarity in Pinot Noir grapevines.

ABA concentrations in the spring xylem sap collections were the lowest in the coldest field locations and coldest cold
chambers.  ABA levels were higher in the late winter sap collections than in the spring collections for the field locations.
PAGE protein profile analysis showed that most of the proteins we found were similar for the various temperatures, but a few
unique proteins were found in the cold stressed and/or Xf-inoculated plants.  Sequencing results of xylem proteins from cold-
treated vines showed proteins that are similar to stress proteins that are produced by Cabernet Sauvignon berries developing
under water deficit stress conditions, proteins that are similar to proteins produced in Pinot Noir roots, and tryptase inhibitors.
One of the   proteins that was expressed at comparatively high concentrations in cold-exposed vines is a thaumatin-like
protein which has been reported to have anti-microbial activity.  We will assess the potential anti-Xf properties of this protein
by cloning, expressing, purifying and using this protein in Xf growth inhibition assays in the future.
The in vitro culture experiments indicate that Xf can survive at 28ºC in most media except water.  At 28˚C, the survival rate
was the highest in PD3 media followed by potassium phosphate at pH 6.8, sodium phosphate, and xylem sap.  At the coldest
temperatures, the highest survival at 0˚C occurred with PD3 media and in xylem sap collected from grapevines growing in a
cold climate (Placer County, CA), whereas survival was the lowest in deionized water and potassium phosphate at pH 6.2.
Interestingly, Xf can survive at -5ºC in all buffers at pH 6.8, media and xylem sap for at least four days.  No cultivable Xf was

1. Molecular size markers.
2. Cloned and expressed Cabernet TLP protein.
3. Cloned and expressed PG protein (positive control).
4. Cloned, non-induced Cabernet TLP protein.
5. Cloned, non-induced PG protein.

Figure 2. Cloning and expression of an Xf
polygalacturonase and Vitis vinifera thaumatin-like
protein in E. coli.
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recovered from any of the media, buffers or xylem sap after 24 hours at -10˚C or at -20˚C. Xf in potassium phosphate buffers
with pH values at 5.0, 5.4 and 5.8 died rapidly at all temperatures.

The results the ABA application experiments in the 2005-2006 season indicate that ABA appears to have a curing effect
when applied as a drench.  The synthetic ABA had the most interesting result with 100% curing in Pinot Noir vines.  Disease
ratings for both ABA drench treatments were significantly less than untreated controls.

In 2006-2007 this experiment was replicated with some modifications to the 2005-2006 treatments.  Curing rates were not as
high as what we saw in the 2005-2006 treatments.  The only treatment that seemed to have more curing than the control
treatment was the VBC-30030 drench in Pinot Noir grapevines.  The difference observed in the 2006-2007 ABA application
could possibly be due to a rain event that occurred a few hours after the ABA application, possibly diluting, washing off, or
leaching out the applied ABA.  We are repeating the ABA experiment this season to determine if ABA applications could be
used as a possible tool in the management of Pierce’s disease.
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ABSTRACT
Polygalacturonases (PG) (EC 3.2.1.15), catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate
and other galacturonans. Xylella fastidiosa (Xf) possesses a single PG gene, pglA (PD1485) and Xf mutants deficient in the
production of PG lose pathogenicity and have a compromised ability to systemically infect grapevines.  We have cloned the
pglA gene into a number of protein expression vectors and a small amount of active recombinant PG has been recovered,
unfortunately most of the protein expressed is found in inclusion bodies in an inactive form.  The goal of this project is to use
phage panning to identify peptides or single chain fragment variable (scFv) antibodies that can bind to and inhibit Xf PG.
Once peptides or scFvs are discovered that can inhibit PG activity in vitro these peptides will be expressed in grapevine
rootstock to determine if the peptides can provide protection against Pierce’s disease (PD).

INTRODUCTION
Polygalacturonases (PG) have been shown to be virulence factors of a number of plant pathogenic bacteria including
Ralstonia solanacearum, Xanthomonas campestris, and Erwinia carotova (Huang and Allen 2000; Dow et al. 1989; Lei et al.
1985). Xylella fastidiosa (Xf) possesses a single PG gene pglA (PD1485), and mutation of this gene results in a loss of
pathogenicity and reduced ability to systemically infect grapevines (Roper et al. 2007).  In order for Xf to systemically infect
a grapevine, it must break down the pit membranes that separate individual xylem elements.  Pectic polymers determine the
porosity of the pit membrane (Baron-Epel, et al. 1988; Buchanan et al. 2000) and Xf PG allows the bacterium to breakdown
the pectin in these membranes.  The premise of this research is to identify a peptide that can be expressed in the xylem of a
grapevine that can suppress Xf PG activity thus limiting the ability of Xf to spread systemically through grapevines and cause
PD.

To accomplish this we will use phage display of a random dodecapeptide library and a scFv antibody library attached to the
coat protein gp38 of M13 phage in a phage panning experiment using active recombinant Xf PG as the target.  After three
rounds of panning, phage that show a high binding affinity for Xf PG will be screened for their ability to inactivate PG
activity in vitro in reducing sugar assays.  Once a suitable inhibitory peptide, or the peptide embedded in a small protein
carrier, is discovered it will be cloned into an Agrobacterium binary vector and used to transform tobacco and grapevines by
the UCD Plant Transformation Facility.  These transgenic plants will then be inoculated with Xf and the progression of PD
symptoms will be compared to non-transgenic plants.  If significant disease inhibition is shown, we will use these transgenic
grapevines as rootstock to determine if they can also provide resistance to grafted non-transgenic Vitis vinifera scions.

OBJECTIVES
1. Isolate a sufficient amount of biologically active Xf polygalacturonase (PG) enzyme to conduct phage panning and PG-

inhibition assays.
2. Isolate M13 phage that possess high binding affinities to Xf and/or Aspergillus aculeatus (AA) PG, or synthetic peptides

specific for the active sites of several PGs, from a M13 random peptide and scFv library.
3. Sequence candidate binding phage and determine if selected M13 phage and the gp38 M13 protein which mediates

phage binding to Xf PG can inactivate PG activity in vitro.
4. Clone anti-Xf PG gp38 protein into an Agrobacterium binary vector and provide this construct to the UCD Plant

Transformation facility to produce transgenic SR1 tobacco and Thompson seedless grapevines.
5. Determine if anti-Xf PG gp38 protein is present in xylem sap of transgenic plants.
6. Mechanically inoculate transgenic plants with Xf and compare Pierce’s disease development with f-inoculated, non-

transgenic control plants.

RESULTS
Objective 1.
Although we now have in hand a PG enzymatic activity assay, we would still like to obtain greater amounts of active Xf PG.
The first attempt at using a recently developed agroinfection-compatible tobacco mosaic virus protein expression system
(Lindbo, 2007) did not provide us with active Xf PG.  However, we have produced a new Xf PG plant expression construct to
help improve our yields using the plant expression system.  This construct employs the use of a Rice Alpha Amylase signal
peptide that will export Xf PG to plastids and extracellular compartments (Chen et al. 2004).  Targeting the Xf PG to these
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areas could be important if the reason we are not getting active Xf PG is because the plant is recognizing it and degrading it in
the cytoplasm.  In addition to the plant expression system, we are also generating constructs for an E. coli expression system
that fuses Xf PG to Maltose Binding Protein (MBP) in the hopes the MBP will help overcome some of the insolubility issues
we have encountered with other E. coli protein expression systems.  The method we described previously for generating
active Xf PG remains the method that delivers the most protein in active form, however we hope that one of these new
strategies will provide us with a greater amount of active protein.

As reported in the previous PD/GWSS Proceedings, we feel confident that the reducing sugar assays that we are using to
detect Xf PG activity dinitrosalicylic acid (Wang et al. 1997) and 3-Methyl-2-benzothiazolinonehydrazone methods (Anthon
and Barrett 2002), will be suitable for the PG-inhibition assays.

Objective 2.
We have done extensive in silico analyses of the enzymatic active sites of several phytopathogenic bacterial and fungal PGs
such as Pectobacterium carotovora ssp. carotovora and Aspergillus aculeatus (Pickersgill et al. 1998, Cho et al. 2001). The
PGs from these other microbes have been well studied and structural studies have shown that the active site consists of
roughly eight amino acids and the tertiary structure of the PGs are highly conserved across all fungal and bacterial PGs
(Pickersgill et al. 1998, Cho et al. 2001, Shimizu et al. 2002, Abbott and Boraston 2007).  Furthermore, previous research
using phage display technologies showed that many of the phage that bound to a variety of enzymes also bound to and
inactivated the enzyme (Hyde-deRuyscher et al. 1999).

Having a very good idea of where the Xf PG active site is likely located on the PG protein, and which amino acids are
involved in catalysis and substrate binding, we had synthesized two 14-mer peptides derived from the Xf PG sequence, one
which will target the active site directly and a second that will target an area providing substrate entry into the active site.
Additionally, these peptides were injected into rabbits to create polyclonal antibodies.  These polyclonal antibodies were used
in Western blot analyses that confirmed that the antibodies created against each 14-mer peptide could also recognize full
length Xf PG (Figure 1).

←

1     2   ladder     1      2   ladder

We have completed the phage panning procedure for peptide 2 using the Tomlinson I and J scFv libraries.  At the end of the
third round of selection a polyclonal ELISA with BSA conjugated peptide 2 as the target was run which showed that each
library (I and J) of scFv’s showed a higher binding affinity to BSA conjugated peptide 2 than to BSA alone, or to other
negative control wells in the plate.  With this knowledge, 90 individual colonies from each library were picked from the third
round phage pool and used in a monoclonal based ELISA to determine which monoclonal scFvs had the highest binding
efficiencies for the Xf PG peptides.  Eight clones from each library (I and J) providing the highest ELISA absorbances
readings were chosen for sequencing.  We have currently only sequenced the heavy chain variable portion of the scFv and
although none of the eight clones from each of libraries shared the exact same sequence they did have similarities to each
other.  We are in the process of sequencing the light chain portion of these clones.

The eight monoclonal phages from each library (I and J) were then used individually as the primary antibodies in a Western
blot to confirm that monoclonal phage raised against the 14-mer peptide 2 conjugated to BSA would also be able to indentify
full length recombinant PG (Figure 2) (Tanaka et al. 2002).  Now that we have monoclonal phage that can bind to Xf PG, we
will finish sequencing the variable regions and begin testing the efficacy of each monoclonal phage to inhibit Xf PG activity
in vitro.

Figure 1. Western blot analysis of polyclonal
antibodies to Xf PG peptides 1 and 2. Lane 1 is
E.coli lysate containing no Xf PG.  Lane 2 is
E. coli lysate containing recombinant Xf PG.
Arrow represents location of Xf PG band.
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←

1             2              3                4

Objectives 3-6.
We have sequenced the heavy chain variable regions of the 16 candidate monoclonal phage and although none of the eight
clones from each of libraries shared the exact same sequence, they did have similarities to each other.  We are in the process
of obtaining the sequences of the light chain variable portions.  Once all variable region sequences have been determined we
will use the monoclonal phages in Xf PG inhibition assays.  Once a candidate phage is found that can inhibit Xf PG in vitro
we will then express the scFv protein alone and determine if the protein itself can also inhibit Xf PG activity in vitro. We will
then be able to clone the anti-Xf PG protein into an Agrobacterium binary vector and provide this construct to the UCD Plant
Transformation facility to produce transgenic SR1 tobacco and Thompson seedless grapevines.  Once we have transgenic
plants, we will be able to complete Objectives 5 and 6.

CONCLUSIONS
We have made good progress thus far in identifying suitable PG activity assays to use in the PG-inhibition assays.  We are
currently exploring different plant and E. coli protein expression systems to generate more active PG to use in phage panning
and activity assays.  We have identified 16 candidate scFv phage, by panning against peptide 2 conjugated to BSA, that are
capable of binding to full length Xf PG in Western blot analyses. These phage will now be used in in vitro Xf PG inhibition
assays identified in Objective 1.  If one of the candidate phage can inhibit Xf PG activity in vitro, then we will transform
tobacco and grapevines with the peptide(s) and determine if the expressed anti-PG peptides are present in xylem sap and
evaluate their potential for providing resistance to Pierce’s disease.
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ABSTRACT
Xylella fastidiosa (Xf) possesses genes for hemagglutinins (HAs), large adhesion proteins involved in cell-cell aggregation
and biofilm formation.  Mutations in either one of the functional HAs, HxfA (PD2118) or HxfB (PD1792), result in
hypervirulent strains that move faster and cause more severe disease in grapevines.  We generated antibodies against portions
of the HA proteins, used them in Western blot analyses and showed that HA proteins are secreted into the supernatant as
soluble proteins, associated with membrane vesicles, and inserted into the outer membrane of Xf. Native HA proteins are
processed from a predicted size of 360 kD to 220 kD.  We identified two N-terminal portions of the HA proteins that will be
expressed in transgenic tobacco and grapevines where we hope the protein will act as a “molecular glue” to aggregate insect-
inoculated Xf cells, retard their ability to systemically colonize plants and potentially provide a unique form of resistance
against PD.

INTRODUCTION
Xylella fastidiosa (Xf) HAs are large secreted proteins that play important roles in mediating cell-cell aggregation and plant
pathogenicity.  Mutations were made in both Xf HA genes, HxfA (PD2118) and HxfB (PD1792), by transposon mutagenesis.
The resulting mutants did not aggregate in liquid culture and they had reduced biofilm formation in vitro and in planta (1).
When inoculated into grapevines the mutant cells showed hypervirulence and more rapid colonization of xylem vessels (1).
The premise of this research is to determine if by expressing Xf HA adhesion domains in the xylem of transformed
grapevines, the HA can act as a “molecular glue” to clump Xf cells and retard their ability to systemically colonize grapevine
and cause Pierce’s disease (PD).

Because of the large size of the HA genes (10 kb), it is difficult to transform grapevines with the whole HA gene.  Therefore
we have been trying to identify the active adhesion domains (ADs) responsible for cell-cell aggregation by dividing the HA
genes into several smaller fragments that should contain the cell-cell AD.  Recombinant proteins derived from these
fragments were expressed in E. coli, purified and injected into rabbits to produce AD specific antisera.  The resulting antisera
were used in ELISA, Western blot analysis, immunolocalization studies and cell-cell clumping experiments to determine
which of the HA fragment(s) contain functional ADs that could be transformed into plants.

OBJECTIVES
1a. Use antibodies we have prepared against a conserved, putative binding domain (AD2) that is present in both Xf

hemagglutinins (HA) to determine the native size and location of Xf HA in cultured Xf cells and PD-affected grapevines.
b. Determine if these antibodies (Fab fragments) can prevent cell-cell clumping in liquid Xf cultures.
c. Prepare an affinity column using HA domain antibodies and isolate native Xf HAs from culture cells.  Establish the

identity of affinity purified, putative HAs by N-terminal sequencing.
d. Determine if native HAs and HA domain fusion proteins can bind to Xf cells.
e. Inject affinity purified HA proteins into rabbits and obtain HxfA and B specific-antibodies.  Determine if HxfA and B

specific antibodies can block cell-cell clumping of Xf grown in liquid medium.

2a. PCR-amplify, clone and express as fusion proteins, additional hypothetical adhesion domains of HxfA and B.
b. Prepare rabbit polyclonal antibodies against each Hxf A/B domain fusion protein.  Use antibodies to determine native

size and location of Xf HAs in cultured cells.
c. Determine if antibodies against various HxfA/B domain fusions can block cell-cell clumping of Xf grown in liquid

medium.
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3a. Transform Thompson seedless grapevines and tobacco, an experimental host of Xf and an easily transformable plant,
with Xf HA binding domains.  Use antibodies prepared in Objective 2 to determine if Xf HA proteins can be found in
tobacco and grapevine xylem fluid.

b. Mechanically inoculate HA-transgenic grapevines and tobacco with wild type (wt) Xf cells.  Compare disease
progression and severity in transgenic plants with non-protected controls.

RESULTS
Objectives 1a-d, 2a
The results of these objectives have been reported in the Proceedings, 2007 Pierce’s Disease Research Symposium, CDFA,
Sacramento, CA.  Because of the low quality of the AD2-antibodies, we repeated Objectives 1a-d with high quality
antibodies that were generated against AD1-3 and AD4 in Objective 2a (2).

Objective 2b
Determination of native size and location of Xf HAs in cultured cells.

The antibodies that were raised against AD1-3 and AD4 of the HA proteins (2), were used in Western blot analysis of
isolated Xf soluble, secreted proteins (Figure 1A), HA proteins associated with secreted vesicles (Figure 1B) and HAs
present in the outer membrane (Figure 1C);  HA proteins were detected in all three fractions.

A doublet of proteins at approximately 220 kD that corresponds to HxfA and HxfB was observed in wild type supernatant
(Figure 1A, lane 2), and only one protein band was detected in the HxfA- and HxfB- mutant supernatant samples (Figure 1A,
lanes 3 and 4).  The large protein corresponding to HxfA is missing in the HxfA- mutant, the slightly smaller protein band
corresponding to HxfB is missing in the HxfB- mutant strain (Figure 1A).

To distinguish between secreted soluble HA proteins, and HA proteins that are associated with membrane vesicles, the
vesicles were isolated by centrifugation and proteins remaining in the supernatant were precipitated using trichloroacetic acid
(TCA).  Western blot analysis of the precipitate confirmed the presence of HA proteins as secreted soluble proteins (Figure
1B).  Interestingly, 220 kD proteins in the vesicle fraction were also detected by the anti-AD4 antibody (Figure 1B).
Vesicles that are released from the envelope of growing bacteria may contain virulence factors in many Gram-negative
bacteria (3).

Western blot analysis of isolated outer membrane proteins of Xf wild type Temecula also revealed a doublet of bands at 220
kD corresponding to both HA proteins (Figure 1C).  To ensure that the outer membrane were indeed being isolated, Western
blots were also probed with anti-MopB antibodies (kindly provided by the Bruening lab).  MopB is the major outer
membrane protein in Xf (4), and a 38.5 kD protein corresponding to MopB was detected in the membrane fraction thus
confirming that Xf HAs are inserted into the outer membrane (data not shown).

The size of the mature protein detected by Western blot analysis (220 kD) was smaller than the predicted size based on the
amino acid sequence of the protein (360 kD). To identify the processing site of the mature HA proteins, we isolated secreted

Figure 1 A. Western blot analysis of soluble
proteins extracted Xf media supernatant and
probed with anti-AD4 antibodies. Lane 1:
Molecular weight standards; lane 2: Wild type
Temecula; lane 3: HxfA-, lane 4: HxfB-. A
doublet of bands in the wild type Temecula is
detectable. The larger protein band corresponding
to HxfA is missing in the HxfA- mutant, the
slightly smaller protein band corresponding to
HxfB is missing in the HxfB- mutant strain.
Figure 1 B. Western blot analysis of Xf vesicle
preparation developed with anti-AD4 antibodies.
Lane 1: Molecular weight standards; lane 2: Wild
type Temecula vesicle preparation; lane 3: TCA-
precipitated supernatant after isolation of vesicles,
proteins represent soluble HA proteins. C:
Western blot analysis of an Xf outer membrane
protein preparation. Lane 1: Molecular weight
standards; Lane 2: outer membrane preparation of
wild type Temecula.
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HA proteins by size exclusion chromatography and subjected the native HA proteins to LC MS/MS mass spectrometry
(Genome Center Proteomics Core, University of California, Davis).  Identified peptides were associated only with the N-
terminal portion of the HA protein, suggesting that the C-terminal portion is cleaved off in the mature protein and does not
play a role in cell-cell aggregation(Figure 2).

Objectives 2c
The results of these objectives were reported in the 2007 Pierce’s Disease Research Symposium Proceedings.

Objectives 3
AD1-3 and the entire processed 220kD HA protein (protein220) will be used for transformation of tobacco SR-1 and
Thompson seedless grapevines.  These constructs were both cloned into the vector pCR-2.1 resulting in pCR2.1-AD1-3 and
pCR2.1-220.  Several clones of both constructs were sequenced to confirm the integrity of the cloned genes.  We obtained
suitable clones for both pCR-2.1-AD1-3 and pCR-2.1-220 that can be used for plant transformation.  We obtained the pGIP-
signal sequence, which directs the secretion of proteins into the plant apoplast and xylem, fused to the N-terminal portion of
AD1-3 from a biotech company ( DNA2.0) in a plasmid called pJ202:21008.  This construct can be used to insert the pGIP-
signal sequence (5) in front of AD1-3 as well as for protein220 to direct the secretion of the expressed proteins outside the
plant cell.  This secretion signal sequence has been successfully inserted into pCR2.1-220 and we are in the process of putting
the secretion signal on pCR-2.1-AD1-3.  After successful fusion of the pGIP-signal peptide to the HA proteins, the constructs
will be cloned into a Agrobacterium binary vector that is available in the Dandekar lab (5) and used to transform
Agrobacterium tumifaciens.  The Agrobacterium cultures will then be used by the UC Davis Plant Transformation facility to
transform tobacco SR-1 and Thompson seedless grapevine with the two HA protein constructs.  Xylem sap will be expressed
from transgenic tobacco and grapevines and analyzed by ELISA and Western blots to determine if Xf HA proteins are present
in the sap of transgenic plants.  The transgenic plants will be mechanically and insect incoculated with Xf and the plants will
be evaluated for the presence of Xf and the severity of PD symptoms.

CONCLUSION
Our data suggests that HA proteins are needed for efficient aggregation of Xf cells because Xf cells that have a mutation in
either HxfA or HxfB lose the ability to aggregate and to form biofilms.  Also, Xf cell cultures that were incubated with Fab
fragments against AD1-3 and AD4 of HxfB were inhibited in their ability to aggregate (2).  We showed that HA proteins are
secreted and processed to a mature 220 kD protein and that contain N-terminal hemagglutination domains.  Taken together,
this suggests that the secreted N-terminal portion of the HA proteins is responsible for cell-cell aggregation and biofilm
formation.  We hope that free Xf HA protein in the plant xylem may mediate increased cell-cell aggregation of  insect
inoculated Xf cells and increase the agglutination of Xf cells in the plant xylem, thereby retarding the systemic colonization of
grapevines and possibly providing a novel resistance to Pierce’s disease.
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isolated by size exclusion
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MS/MS to estimate the location of
processing site to produce  the mature
220kD protein.



- 179 -

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board.

ACKNOWLEDGMENTS
We like to thank Sandra Uratsu (Dandekar lab), Carl Greve (Labavitch lab), Paul Feldstein (Bruening lab), and Ayumi
Matsumoto (Igo lab) for help in the construction of plant transformation vectors, isolation of native Xf HAs, providing MopB
antisera and the isolation of Xf outer membranes, respectively.



- 180 -

CONTROL OF PIERCE’S DISEASE BY METHODS INVOLVING PATHOGEN CONFUSION

Principal Investigator:
Steven E. Lindow
Dept. of Plant & Microbial Biology
University of California
Berkeley, CA  94720

Cooperator:
Subhadeep Chatterjee
Dept. of Plant & Microbial Biology
University of California
Berkeley, CA  94720

Reporting Period: Most of the results reported here are from work conducted October 2007 to October 2008.

ABSTRACT
Xylella fastidiosa (Xf) produces an unsaturated fatty acid signal molecule called diffusible signal factor (DSF) that changes its
gene expression in cells as they reach high numbers in plants.  We have investigated DSF-mediated cell-cell signaling in Xf
with the aim of developing cell-cell signaling disruption as a means of controlling Pierce’s disease (PD).  We have
investigated both the role of DFS-production by Xf on its behavior within plants, the manner in which other bacterial strains
affect such cell signaling, the extent to which other endophytes could modulate density-dependent behaviors and virulence in
Xf by interfering with cell-cell signaling, performed genetic transformation of grape to express DSF, and explored other
means to alter DSF abundance in plants to achieve PD control. Xf mutant strains that overproduce DSF cause disease
symptoms in grape, but only at the site of inoculation and the cells do not move within the plant as do wild-type strains.  Thus
elevating DSF levels in plants should reduce movement of Xf in the plant and also reduce the likelihood of transmission by
sharpshooters.  When co-inoculated into grape with Xf DSF-producing strains such as Rhizobium etli, harboring rpfF from Xf
greatly reduced the incidence and severity of disease in grape; lesser effects were observed when these strains were
inoculated into plants separately, suggesting that the biological control strains did not move efficiently within the plant and
hence were not coincident with Xf. Topical application of DSF extracted from over-producing strains of Erwinia herbicola
harboring rpfF cloned from Xf reduced the severity of Pierce’s disease when applied shortly before inoculation with Xf. We
have transformed tobacco, tomato and grape with the rpfF gene of Xf to enable DSF production in plants.  While expression
of RpfF in the cytoplasm has yielded modest levels of DSF that were sufficient to greatly reduce the movement of Xf in
grape, and thus reduce Pierce’s disease, targeting of RpfF to the chloroplast of plants has led to much higher levels of DSF
production that should provide even high levels of disease control.  Grafting studies are underway to determine if DSF
produced by rootstocks can move to scions and confer disease control.

INTRODUCTION
We have found that the virulence of Xylella fastidiosa (Xf) is strongly regulated in a cell density-dependent fashion by
accumulation of  a signal molecule called DSF encoded by rpfF and involving signal transduction that requires other rpf
genes.  We now have shown that Xf makes a DSF molecule that is recognized by Xanthomonas campestris pv. campestris
(Xcc) but slightly different than the DSF of Xcc (Figure 1).
In striking contrast to that of Xcc, rpfF- mutants of Xf
blocked in production of DSF, exhibit dramatically
increased virulence to plants, however, they are unable to
be spread from plant to plant by their insect vectors since
they do not form a biofilm within the insect.  These
observations of increased virulence of DSF-deficient
mutants of Xf are consistent with the role of this density-
dependent signaling system as suppressing virulence of Xf at high cell densities.  Our observations of colonization of
grapevines by gfp-tagged Xf are consistent with such a model.  We found that Xf normally colonizes grapevine xylem
extensively (many vessels colonized but with only a few cells in each vessel), and only a minority of vessels are blocked by
Xf. Importantly, rpfF- mutants of Xf plug many more vessels than the wild-type strain.  We thus believe that Xf has evolved
as an endophyte that colonizes the xylem; blockage of xylem would reduce its ability to multiply since xylem sap flow would
cease and thus the DSF-mediated virulence system in Xf constrains virulence.  That is, Xf would benefit from extensive
movement throughout the plant where it would partially colonize xylem vessels but would have evolved not to grow to
excessively within a vessel, thereby plugging it and hence blocking the flow of necessary nutrients in the xylem sap.  Given
that the DSF signal molecule greatly influences the behavior of Xf, we are investigating various ways by which this pathogen
can be “confused” by altering the local concentration of the signal molecule in plants to disrupt disease and/or transmission.
We thus are further exploring how DSF-mediated signaling occurs in the bacterium as well as ways to alter DSF levels in the
plant.  Our work has shown that the targets of Rpf regulation are genes encoding extracellular polysaccharides, cellulases,
proteases and pectinases necessary for colonizing the xylem and spreading from vessel to vessel as well as adhesins that
modulate movement.  Our earlier work revealed that several other bacterial species can both positively and negatively
interact with the DSF-mediated cell-cell signaling in Xf. In this period we have extensively investigated both the role of
DSF-production by Xf on its behavior within plants, the patterns of gene regulation mediated by DSF, the extent to which
other endophytes can modulate density-dependent behaviors and virulence in Xf by interfering with cell-cell signaling,
obtained genetic transformation of grape and other hosts of Xf to express DSF, and explored other means to alter DSF
abundance in plants to achieve PD control.

Figure 1
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Table 1. Proportion of leaves of wild-type and
DSF-producing SR1 tobacco with marginal leaf
scorch after inoculation with Xf

Treatment Fraction of leaves

Wild-type SR1 0.52 a
Xf rpfF-expressing SR1 0.38 b
Xcc rpfF-expressing SR1 0.27 b
No Xf control 0.22 c

OBJECTIVES
1. Evaluate plants with enhanced production of DSF for disease control.
2. Determine if DSF is transferable within plants – eg. whether DSF production in rootstocks can confer resistance to

Pierce’s disease in the scion.
3. Evaluate enhanced DSF-producing endophytic bacteria for control of Pierce’s disease.
4. Investigate DSF-overproducing strains of Xf as biocontrol agents for Pierce’s disease and whether Xf strains previously

identified with biocontrol potential exhibit an elevated production of DSF.
5. Determine if resistance to Pierce’s disease is associated with low rates of degradation of DSF by plants.
6. Determine those plant factors that confer induction of virulence genes in Xf and whether susceptibility to Pierce’s disease

is due to differences in induction of virulence factors in the pathogen by the plant.

RESULTS
Objective 1.  Production of DSF in transgenic plants for disease control.
We have expressed the rpfF gene in several different plant species to investigate whether DSF excess can lead to reduced
disease caused by Xf. In addition to grape, we have transformed genes conferring DSF production into tobacco since this
species is colonized by Xf and disease symptoms can be produced (Figure 2).  Because transformation of tobacco is much
quicker than grape, we have used studies of Xf infection of tobacco as a surrogate for studies in grape to speed our assessment
of different ways to produce DSF in grape.  The various mutants of Xf that are hyper and hypo virulence on grape yield
similar reactions on SR1 tobacco (Figure 3).

Further tests of SR1tobacco as a surrogate host to evaluate transgenic expression of rpfF as a means to increase DSF
abundance in plants were performed.  SR1 tobacco which had been
transformed with the untargeted rpfF genes from either Xf or Xcc
were inoculated with Xf ; the incidence of disease was dramatically
reduced in rpfF-expressing SR1 compared to untransformed
tobacco (Table 1).  Some of the more mature leaves on the base of
the plant had exhibited leaf scorching even on uninoculated plants
(Table 1), suggesting that the extent to disease control conferred
by expression of rpfF was much greater than 50%.

Grape has been transformed at the Ralph M. Parsons Foundation
Plant Transformation Facility at the University of California at
Davis with a non-targetted rpfF construct.  These plants produced
only very low levels of DSF but are MUCH less susceptible to Pierce’s disease (Figure 4).  While Xf spread throughout non-
transformed plants causing disease on petioles located great distances from the point of inoculation, disease was observed
only very close to the point of inoculation in rpfF-expressing plants.  We thus expect to find that Xf is limited in its
movement in plants having even higher levels of DSF due to the expression of rpfF, in a manner similar to what we have
observed in DFS-overproducing strains of Xf.

We have recently transformed tobacco and Arabidopsis with an rpfF gene that has been modified to direct the protein product
to the chloroplast where fatty acid synthesis (and DSF synthesis) should be much enhanced compared to its production in the
cytosol, the presumed location of RpfF in the current transformed plants.  Assay of DSF in transgenic SRI tobacco plants-
where the RpfF is targeted to the chloroplast, indicates that the DSF levels as well as expression of rpfF are much higher as
compared to the plants in which the RpfF is expressed in the cytosol.  Transcription analysis of the chloroplast targated rpfF
transformed plants indicates high level expression of the rpfF gene (Figure 5).  We have generated seeds from the transgenic

Figure 3. Severity of disease on
SR1 tobacco inoculated with WT Xf
and an rpfF mutant (61), an rpfC
mutant, and a gfp-marked strain.

Figure 2.  Symptoms
caused by Xf on SR1
tobacco.
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SRI tobacco plants and we are conducting pathogenicity assays with Xf comparing these enhanced producing plants with
normal and untargeted RpfF plants.

Further tests of the efficacy of chloroplast targeting of rpfF implants were preformed by evaluating DSF production in
transgenic Moneymaker tomato.  Substantial levels of DSF could be detected in the chloroplast-targeted tomato and
sufficient amounts of DSF were present to alter the behavior of Xanthomonas campestris pv. vesicatoria (Xcv) that was
inoculated onto leaves.  While an average of 323 lesions formed when Xcv was inoculated onto normal tomato, 570 lesions
formed per leaf on the DSF-producing plants, a finding expected if DSF was present since virulence of Xcv is enhanced by
DSF.  We have also initiated transformation of grapes with a chloroplast targeted rpfF construct.  We expect to receive the
transformed plants by December, 2008, and then will grow them to larger sizes, make green cuttings to produce enough
plants for pathogenicity testing by mid-2009.  Although RpfB is not required for DSF synthesis in Xf, it presumably aids in
DSF synthesis by encoding long chain fatty acyl CoA ligase which might increase availably of the appropriate substrates for
DSF synthesis by RpfF.  We expected that co-expression of RpfB and RpfF in the chloroplast will further enhance the DSF
levels in plants.  We have produced transgenic Arabidopsis plants with such a construct and find evidence of high levels of
DSF production.  Pathogenicity assays with the rpfF mutant of Xcc indicated that the transgenic plants can complement the
virulence of the non pathogenic rpfF mutant of Xcc
(Table 2).  Importantly, transgenic plants expressing
both rpfB and rpfF were more susceptible to the rpfF
mutant of Xcc, indicating enhanced DSF levels.  Given
this evidence of enhanced DSF production in
transgenic Arabidopsis, and recent results with
similarly-transformed tomato, we are initiating
transformation of grape with similar constructs.

Direct application of DSF to non-transgenic grape can
also confer disease control.  While we have very
recently determined the chemical structure and have
synthesized DSF of Xf, for these studies we used crude
ethyl acetate extracts of a DSF-producing E. herbicola
strain as a source of DSF.  The DSF was either topically applied as well as needle inoculated into the stems of grape either
once a day before inoculation with Xf or weekly.  While a single needle application of DSF reduces disease index, a weekly
application of DSF into the stem of the plant was much more effective (Figure 6).  These results are exciting in that they
suggest that disease control from external applications of DSF might be a practical means of disease control.  We have
recently been successful in determining the structure of Xf DSF and have synthesized gram quantities of DSF.  Plants have
recently been treated with topical and injected synthetic DSF and then inoculated with Xf; disease assessment will commence
in mid-November.

Table 2.  Disease severity from topical application
of bacteria varying in DSF production to Arabidopsis. Bacteria
were inoculated on different Arabidopsis genotypes
transformed with rpfF or with both-rpfB and rpfF

Arabidopsis genotype Xcc strains
Wild type rpfF-

Col (WT) ++++ -
rpfF transformed ++++ +
rpfF & rpfB transformed ++++ ++

-2

0

2

4

6

8

10 wild type
TRA1
TRA1
TRA3
TRA4
TRA5
TRA6
TRA7
TRA8
TRA9

Figure 4.  Disease severity (#
symptomatic leaves/plant) on Freedom
grape transformed with the rpfF gene
encoding DSF production and inoculated
with Xf.

Figure 5.  DSF extracted from transgenic tobacco SR1 plants
harboring a chloroplast targeted RpfF (left) or from WT
tobacco (center) or purified DSF from Xcc (right). DSF is
spotted on a paper disc on the right side of each image and
the Xcc DSF bioindicator is to the left.  gfp fluorescence is
evidence of DSF.
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Objective 2.  Graft transmissibility of DSF.
To test whether DSF is mobile within the plant we are performing grafting experiments in which DSF-producing tobacco
transformed with the rpfF of Xf are used as rootstocks to which normal SR1 tobacco is grafted as a scion (Figure 7).  Over
100 of such grafted plants have now been made, and they have been inoculated with Xf to test whether normal SR1 scions on
DSF-producing rootstocks have a lower susceptibility to Xf colonization; disease will be rated by mid-November.  Non-
chloroplast targeted RpfF-expressing transgenic Freedom grape plants have been propagated in sufficiently large numbers to
produce enough plants to serve as rootstocks to test with Xf inoculations in larger scale studies.  Over 100 such plants have
now been propagated and green-grafting of Cabernet Sauvignon has been successfully employed to produce grafted plants
with a normal Freedom and a DSF-producing Freedom rootstock (Figure 7).  Initial attempts at green grafting of grape
produced a low frequency of successful grafts, but a new procedure has provided a satisfactory level of graft success; the
grafted plants have been inoculated with Xf to test for graft transmissibility of DFS as evidenced by reduced movement of Xf
and disease severity.

Objectives 3 and 4.  Disease control with endophytic bacteria.
We have been successful in producing large quantities of DSF in endophytes like Erwinia herbicola and also in lab strains of
E. coli (Table 2).  We recently were able to transform a putative efficient endophyte of plants, Rizobium etili G12 with both
the Xcc and Xf rpfF (DSF biosynthetic gene) and have obtained production of DSF in this strain.  This DSF-producing
endophyte has been inoculated into grape to determine both its ability to move and multiply within grape as well as its ability
to interfere with the disease process.  The R. etli strain G12 was found to move within grape tissue after inoculation into
either the stem or the leaves.  When measured four weeks after inoculation by puncture inoculation into one site in the stem,
measurable populations of R. etli were seen as far as 50 cm away from the point of inoculation (Figure 8).  While the
population size away from the point of inoculation were relatively low in this short time interval since inoculation, this strain
clearly has the ability to move within grape; we are excited about this result since no other of several bacterial strains that we
have investigated for the ability to move within grape has ever exhibited any ability to move beyond the point of inoculation.
Further studies are underway to determine the population sizes to which R. etli will grow given more time after inoculation.
R. etli also has the ability to move within grape leaves and multiply to high population sizes.  When applied as a point source
to leaves using a penetrating surfactant, cells of R. etli could be found up to three cm away within one week, and population
sizes of this strain increased 100-fold within three weeks after inoculation (Figure 9).  Studies are continuing to determine
the maximum population size that this strain can achieve in grape leaves.

Figure 7. Grafted SR1 tobacco plants
(left) and Cabernet Sauvignon grape
grafted onto DSF producing Freedom
rootstocks (right) onto which Xf has
been inoculated.  The plants are as yet
asymptomatic.

Figure 6. Disease incidence-severity
relation (disease index) for grape
inoculated with Xf and to which DSF
was topically applied or introduced
into the stem.
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Various DSF-producing bacteria were tested for their ability to control Pierce’s disease when applied to grape in different
ways.  DSF-producing R. etli were both needle inoculated one or more times at sites near where Xf was subsequently
inoculated, as well as co-inoculated with Xf into grape stems and sprayed onto leaves with 0.5% of the penetrating surfactant
Breakthru 1 week before Xf was inoculated into stems.  The co-inoculation of R. etli with Xf greatly decreased the incidence
of colonization of grape petioles compared to control plants inoculated with Xf alone (Figure 10) while topical application or
injection elsewhere in the stem provided little control.  We presume that the relatively slow movement of R. etli in the stems
of plants (Figure 8) explains why co-inoculation was most effective. R. etli was somewhat susceptible to damage from
Breakthru and its population sizes were reduced during application with this detergent.  We will continue to test different
ways in which R. etli can be introduced into plants to determine its ability to control PD.  We expect that introduction of R.
etli into stems far in advance of Xf will provide much better disease control. RpfC- mutants of Xf greatly over-produce DSF
so we tested them for their ability to control PD when applied in various ways as discussed above for R. etli.  The incidence
of colonization of grape petioles with Xf was greatly reduced when plants were needle inoculated into grape either two weeks
before plants were inoculated with Xf or when coinoculated with the pathogen (Figure 11).  While the RpfC mutant does not
move as well within grape as the wild-type Xf, its presence locally in plants can suppress the movement of wild-type Xf and
thus lead to control of PD.  These studies are promising and are being repeated.

Objective 5.  Degradation of DSF by plants. Development of an Xcc biosensor efficient in detecting Xylella DSF.
For many of the objectives of this project, in addition to the study of DSF degradation in plants an improved bioindicator for
DSF would be very valuable.  We are presently using an Xcc-based biosensor in which the endoglucanase gene is linked to a
green fluorescent protein (GFP) reporter gene.  Previous studies have shown that this biosensor is able to detect the DFS
made by Xf but that it detects Xf DSF with a lower efficiency then the Xanthomonas DSF since the two molecules apparently
differ slightly.  We have devised a strategy to develop a surrogate Xcc biosensor system which will express all the

Figure 10. Incidence of colonization of
petiols of grape by Xf when plants were
treated with DSF-producing R. etli in
various ways.

Figure 11. Incidence of colonization
of petioles of grape by Xf when plants
were treated with RpfC mutants of Xf
in various ways.

Figure 8. Population size of R. etli in
stems four weeks after inoculation at one
point.

Figure 9. Population size of R. etli in leaves one,
two, and three weeks after inoculation at a single
point.
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components of DSF signal transduction of Xf. This should give rise to a system which is close to DSF signal transduction
system in Xcc.  We have made two different Xanthomonas strains in which the endogenous signal synthesis as well as signal
recognition system (consisting of the hybrid two component RpfC and RpfG response regulators) has been knocked out.  In
one of these strains the DSF signal synthase RpfF and the DSF signal sensor RpfC has been knocked out (Figure 12).  We
have also made an Xcc strain in which the DSF synthase gene RpfF has been knocked out in a background of a RpfCHG
deletion.

These mutants will enable us to express the Xf RpfC-RpfG two component system and should serve as a more sensitive
surrogate host biosensor.  Completion of the biosensor is expected within three more months.  It then will be applied to the
study of Xf DSF stability in plant extracts as originally proposed.

We also are investigating the use of Xf itself to detect DSF. Among the several genes that we know to be regulated by DSF,
those genes most strongly regulated include pil genes involved in twitching motility, several genes such as fimA and hxfA and
HxfB which are involved in cell-surface adhesion, and gum genes involved in production of EPS.  We thus have examined
the phenotypes of an rpfF- mutant of Xf exposed to different amounts of DSF to determine if it can be used to bioassay for
the presence of DSF.  Initial results are encouraging.  Suppression of twitching motility of the rpfF- mutant was observed
when DSF was added at concentrations greater than about 10 uM (Figure 13).  Likewise, cells of the rpfF- mutant which
were not adherent, and thus which did not form cell-cell aggregations became much more adherent to each other when DSF
was added at concentrations greater than about 10 uM (Figure 14).  Thus it appears that we can assess the concentration of
DSF in samples using either a cell twitching assay or a cell adhesion assay using Xf cells, although both assays are time
consuming and somewhat qualitative.

Initial results have shown relatively little induction of EPS production in an rpfF- mutant of Xf by the addition of DSF; little
EPS was observed whether DSF was added to culture medium or not.  We are investigating, in cooperation with Rodrigo
Almeida, other medium contents which might be needed for EPS production and have very preliminary evidence that EPS
production can be stimulated by DSF under the correct culture conditions.  EPS abundance will then be measured both
chemically and immunologically as an estimator of DSF abundance.

Figure 13                                                                               Figure 14

Wild type Xcc rpfF::Spec rpfC-Kan rpfF-rpfC

Figure 12. Different Xcc mutants constructed to serve as surrogate host for expressing the Xf RpfC-
RpfG two component DSF signal transduction system. The presently used Xcc biosensor
8523/pKLN55 is sprayed over the colonies. Presence of DSF is detected by the GFP fluorescence of
the biosensor.
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Objective 5. Plant regulation of Xf virulence factors.
Before investigating the effects of plant extracts on gene expression in Xf, we have further examined the complex pattern of
gene regulation in Xf that is DSF dependent to better understand which virulence genes might be most informative to
examine.  Analysis of the genome sequence of Xf revealed that several genes encoding proteins potentially involved in
intracellular signaling are present.  Gene expression of several genes was thus examined in both an rpfF and rpfC mutant
background as well as a double mutant (Table 3).  The results have enabled the production of a more complete model of
DSF-dependent gene expression in Xf (Figure 15).  The several genes identified in Table 3 will be examined by RT-PCR in
cultures of Xf to which plant extracts have been applied as proposed.

CONCLUSIONS
Several methods of altering DSF levels in plants, including direct introduction of DSF-producing bacteria into plants, and
direct application of DSF itself to plants appear promising as means to reduce Pierce’s disease.  Given that DSF
overabundance appears to mediate an attenuation of virulence in Xf we have transformed grape with the rpfF gene of Xf to
enable DSF production in plants; such grape plants produce at least some DSF and are much less susceptible to disease.
Higher levels of expression of DSF have been obtained in plants by targeting the biosynthetic enzymes to the chloroplast.
Studies are underway using grafting experiments to determine if DSF produced by rootstocks can move to scions and confer
disease control.  Transgenic DSF-producing plants appear particularly promising and studies should soon indicate whether
they could serve as a rootstock instead of a scion.  Several genes encoding traits such as exoenzyme production, type IV pili
involved in twitching motility, and a variety of fimbrial and non-fimbrial adhesins are most strongly regulated by the
accumulation of DSF in bacterial cultures as well as in planta.  The expression of these genes will be assessed when Xf is
within different plant species to determine the host plant specificity of expression of such virulence genes.  While the
principle of disease control by altering DSF levels has been demonstrated, more work is needed to determine how to achieve
this by the most practical means.

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board.

Figure 15.  A proposed model for DFS-
mediated cell-cell signaling regulation in
Xylella fastidiosa.

Table 3. Relative quantification of gene expression
regulated by rpfF and rpfC by real-time RT-PCR.
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ABSTRACT
The movement of Xylella fastidiosa (Xf) in plants and insect transmission is controlled by a small diffusible signal factor
(DSF) that accumulates when cells are at high cell densities. Pathogen behavior can be dramatically changed and disease
reduced by altering the abundance of DSF in plants in a form of “pathogen confusion.”  To enable new strategies of pathogen
confusion we have chemically characterized the DSF produced by grape strains of Xf as 2-Z-tetradecenoic acid (hereafter
called C14-cis).  The DSF is structurally related to, but distinct from, the DSF made by Xanthomonas campestris pv.
campestris (Xcc). While an Xcc eng:gfp based biosensor for DSF can detect as little as about 1 uM of DSF produced by Xcc,
more than about 100 uM of C14-cis is required for detection.  Biological assays for the presence of C14-cis are being
developed in Xf. As the expression of genes conferring type IV pili and thus twitiching are suppressed while those involved
in extracellular polysaccharide (EPS) production and production of various cell adhesins are induced in the presence of DSF
in Xf, we are developing bioassays for C14-cis using an rpfF mutant of Xf that cannot produce DSF but which can respond to
exogenous C14-cis.  Twitching motility of the rpfF mutant was suppressed in the presence of as little as 1 uM exogenous C14
cis while cell-cell adhesiveness and cell-surface adhesiveness was enhanced.  Preliminary results indicate that Xf responds to
C14-cis concentrations that are at least 10-fold less than that of the DSF produced by Xcc suggesting that the responsiveness
of different DSF-producing bacteria is likely species specific; eg. they respond best to the DSF that they produce.  Further
bioassays based on immunological detection of cell surface adhesins or EPS as well as by quantifying mRNA associated with
these genes in Xf are being developed.  Sufficiently large amounts of C14-cis, as well as the sodium salt of this fatty acid,
which is highly water soluble, have been produced and have been used as topical and injected treatments of grape that have
subsequently been challenge inoculated with Xf for tests of disease control.  We have designed and will soon initiate
synthesis of DSF-analogs and test them for their ability to alter pathogen gene expression and behavior in culture as well as
control disease.

INTRODUCTION
Research in the Lindow lab has provided considerable evidence for a diffusible signal factor (DSF) encoded by rpfF, which
was considered likely to be a fatty acid derivative, that operates in quorum sensing and biofilm initiation in Xylella fastidiosa
(Xf). Xf rpfF- mutants, blocked in production of DSF, exhibit increased virulence to plants, however, they are unable to be
spread from plant to plant by their insect vectors.  We found that Xf colonizes grapevine xylem extensively, with many
vessels harboring relatively few Xf cells and only a minority blocked by Xf. We thus believe that Xf has evolved as an
endophyte that colonizes the xylem; blockage of xylem would reduce its ability to multiply and thus the DSF-mediated
virulence system in Xf constrains virulence when cell density increases to high levels in the plant.  Preliminary data indicate
that DSF perception is central to the expression of a large number of genes in Xf, including those that are involved in
virulence to plants as well as acquisition by insect vectors. DSF accumulation results in the expression of several fimbrial
and afimbrial adhesins, resulting in the cells becoming “sticky” in the plant.  DSF accumulation also results in the
suppression of expression of extracellular enzymes such as polygalacturonases and endoglucanases that are required for
erosion of pit membranes and hence movement through the plant. As the pathogen apparently acquires substantial nutrition
from the degradation products of the pit membranes, DSF thus suppresses the multiplication in vessels as cell numbers, and
hence DSF, accumulate. Xf thus appears to coordinate its behavior in a plant to have both an “exploratory” phase (non-sticky
cells highly expressing pit membrane-macerating enzymes) that enable it to spread widely through the plant but not be easily
acquired and transmitted by insect vectors, that occurs until cells start to become locally abundant.  This phase is followed by
an “acquisition phase” (sticky cells that no longer express extracellular enzymes) in a subset of the cells that are maximally
transmitted, by insects.  Thus, because the plant lifestyle (as an endophyte) conflicts with its ability to adhere to insects and
be transmitted the pathogen apparently takes on a “bi-polar” lifestyle of two different physiologies that are adapted for plant
invasion and insect transmission, respectively.  DSF serves as the switch to coordinate the plant lifestyle and convert cells
into the insect acquisition phase.

Our earlier work demonstrated that the severity of Pierce’s disease is reduced when the levels of DSF are increased in the
plant in various ways.  For example, the severity of Pierce’s disease is greatly reduced when DSF-producing bacteria are co-
inoculated with Xf into grape or when DSF expression is enhanced in Xf itself.  In a direct approach to altering DSF levels in
plants we have transformed grape with the rpfF gene from Xf. Large numbers of clonal rpfF-expressing grapes have been
produced and inoculated with Xf to test for susceptibility to Pierce’s disease. In very exciting results, the DSF-expressing
grapes are MUCH less susceptible to Pierce’s disease.  The severity of disease was reduced over 10-fold compared to non-
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transformed plants.  While Xf spread throughout non-transformed plants causing disease on petioles located great distances
from the point of inoculation, disease was observed only very close to the point of inoculation in rpfF-expressing plants.  A
major goal of this proposal is to determine the structure of Xf DSF so that it and analogs can be evaluated in a strategy of
control of diseases caused by Xf that rely on “pathogen confusion”.  Synthetic DSF and analogs will be made and tested for
efficacy in controlling Pierce’s disease by introducing these materials on or into the plant in various ways.

OBJECTIVES
1. Identification and characterization of low molecular weight signaling molecule (DSF) central to behavior of Xf.
2. Design and synthesize low molecular weight compounds capable of interfering with signal molecule function in Xf.
3. Evaluate efficacy of signal analogs for control of disease and insect transmission of Xf.

RESULTS AND DISCUSSION.
Objective 1.  Characterization of DSF. We determined the conditions that led to optimum production of DSF by Xf and
surrogate hosts.  An rpfC mutant of Xf that is de-repressed for DSF production was cultured in defined media for the harvest
of signal molecules. We found that an RpfC- mutant of Xf produces about 11-fold more DSF than a wild type strain.  We also
expressed rpfF from Xf in E. coli and Erwinia herbicola strain 299R under strong promoters.  The yield of DSF from these
surrogate hosts was much larger than even from the rpfC mutant of Xf because of the much larger number of cells that could
be produced in culture.  We obtained more than 100-fold more DSF than normally produced by a comparable number of Xf
cells in such surrogate hosts, and found that that E. herbicola is a superior surrogate host.

The scheme depicted in Figure 1 was used to isolate and characterize the DSF from Xf. Initial characterization of DSF was
made from the large amounts of DSF produced in these surrogate hosts.  DSF was extracted from culture media using ethyl
acetate partitioning.  Among several fractions from separations of materials made from these crude extracts made by flash
column chromatography, the fraction containing organic acids showed
higher activity in an Xcc DSF bioassay than other fractions above the
background.  The Xf DSF isolated from reverse phase HPLC of the active
fraction showed NMR spectral data consistent with a fatty acid containing
one site of unsaturation.  The DEPT 135 indicates that this is a straight
chain acid with no branching.  Spectral data suggest the Xf DSF has a
molecular formula of C14H26O2.  The methyl ester was synthesized for
GCMS analysis.  The methyl ester has a molecular formula of C15H28O2
which means the XfDSF has a formula of C14H26O2.  DSF was then
extracted from Xf and used to verify that the compounds made by Xf and
the surrogate hosts are the same. Xf was grown on periwinkle wilt (PW)
gel in solid culture.  From 200 plates (~4 L volume), we were able to
obtain 0.8 mg of the XfDSF.  The gel medium was cut into 0.4 x 0.4 cm
squares and sonicated with twice the volume of ethyl acetate.  Extracts
were purified by flash column chromatography and HPLC as described
above.  The isolable active compound (DSF) from Xf was identified as 2-Z-
tetradecenoic acid (hereafter called C14-cis).  Isolates from an rpfF mutant
of Xf strain did not produce C14-cis.  The putative Xf DSF was synthesized
using a Still-Gennari olefination followed by saponification (Figure 2).
The spectral data for the acid isolated from E. herbicola match those
obtained for the synthetic 2-Z-tetradecenoic acid.

Figure 1. Process by which Xf DSF was
isolated and characterized.
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Based on the finding that the DSF from the E. coli and E. herbicola surrogate hosts harboring Xf rpfF, and that isolated from
rpfC mutants of Xf were the same and that all matched that the synthetic material, we conclude that DSF from Xf is C14-cis
(Figure 3).  The putative DSF from Xf differs somewhat from the DSF made by Xcc in that it has a longer, but unbranched
acyl chain (Figure 4).

Figure 4.  Structure of DSF made by Xanthomonas campestris.

The biological activity of C14 cis was assessed using the Xcc based biosensor Xcc 8523 (pKLN55).  In this biosensor gfp
fluorescence conferred by cells harboring an eng:gfp reporter gene fusion that is responsive to Xcc DSF is measured. While
the Xcc based biosensor for DSF can detect as little as about 1 uM of DSF produced by Xcc, more than about 100 uM of C14-
cis is required for detection. (Figure 5).  It is important to note that the biological activity of C14-cis was much less than that
of Xcc DSF; this was expected as earlier work had revealed that while the Xcc biosensor could detect DSF from Xf the signal
was much lower than from a corresponding amount of cells of Xcc.  It is also clear that the trans form of the C14 enoic acid
has no biological activity in this assay (Figure 5).

Figure 2.  Synthesis of C14-cis.

Figure 3. Putative structure of C14-cis, the DSF made by Xf.
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Biological assays for the activity of  C14-cis are also being developed in Xf. As the expression of genes conferring type IV
pili and thus twitching are suppressed while those involved in EPS production and production of various cell adhesins are
induced in the presence of DSF in Xf, we are developing bioassays for C14-cis using an rpfF mutant of Xf that cannot
produce DSF but which can respond to exogenous C14-cis.  Twitching motility of the rpfF mutant was suppressed in the
presence of as little as 1 uM exogenous C14 cis while cell-cell adhesiveness and cell-surface adhesiveness was enhanced
(Figure 6).  Preliminary results indicate that Xf responds to  C14-cis concentrations that are at least 10-fold less than that of
the DSF produced by Xcc (Figure 7) suggesting that indicating that the responsiveness of different DSF-producing bacteria is
likely species specific; eg. they respond best to the DSF that they produce.

Further bioassays based on immunological detection of cell surface adhesins or EPS as well as by quantifying mRNA
associated with these genes in Xf are being developed to better assess the activity of DSF and synthetic analogs in future

Figure 5.  Dose response relationship for DSF from
Xcc and that from Xf as well as other related enoic
acids.

Figure 6.  Twitching motility of Xf evident as a fringe around
the colony of an rpfF mutant (top) on PWG medium but not
around the colony when grown on medium containing C14-cis.

Figure 7.  Inhibition of twitching activity of an
rpfF mutant of Xf in the presence of different
concentrations of DSF from Xf and Xcc.
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experiments.  The current biodetector for DSF that we developed earlier is based on an eng:gfp fusion that is expressed in
Xanthomonas campestris pv. campestris (Xcc) (it was known that the endoglucanas gene of Xcc was induced in the presence
of DSF).  The Xcc DSF biosensor (8523/PKLN55) will detect DSF of Xf but we have now shown it to be much less
responsive to C14-cis.  This may be due to considerable differences in the components involved in DSF sensing like RpfC
and RpfG which are hybrid two component sensor and response regulators in Xcc and Xf. We thus will produce improved
biosensors by two different means: A)  The rpfC and rpfG genes from Xf that are believed to be required for signal
transduction in the presence of DSF will be used to replace these homologs in Xcc.  To increase the sensitivity of Xcc
biosensor for Xylella DSF, we will express the whole DSF signal transduction component (RpfC, RpfG and RpfE) of Xf in an
rpfF- Xcc mutant background.  In this strategy, we will clone the entire operon of rpfC, rpfG and rpfE of Xf and insert the
operon in a construct containing the flanking sequence of the Xcc rpf genomic region.  The entire region will be recombined
in the rpfF- and wild type Xcc background.  We have already made constructs which can express high levels of Xf rpfC.
Thus this Xcc bioreporter should respond more efficiently to DSF from Xf; and B) as an alternative, we will take advantage of
the fact that we now know what genes in Xf are induced in the presence of DSF. For example, we now know that gumJ,
involved in extracellular polysaccharide (EPS) biosynthesis is strongly induced in the presence of DSF from Xf and that DSF-
deficient strains produce noticeably less EPS in culture.  We will fuse this gene to a gfp reporter gene and introduce it into the
genome of Xf by homologous recombination to yield cells of Xf that will become green fluorescent in the presence of DSF.
Such cells should be much more responsive to Xf DSF and be useful in assaying biochemical fractions for DSF in the
purification processes below and in assaying DSF analogs.  Alternatively, we can detect EPS production by Xf both in culture
and in plants by use of antibodies that recognize the EPS of Xf. Such antibodies have recently been described by the group of
Bruce Kirkpatrick.  We expect that DSF-deficient RpfF- mutants of Xf will exhibit little or no EPS production as monitored
by use of fluorescently-labeled antibodies directed against EPS.  A GFP-marked RpfF- strain of Xf could be used as a DSF
detector both in culture and in planta by examining co-localization of constitutive GFP fluorescence and red fluorescence
when a red-fluorophore-labeled anti-EPS antibody is applied to a sample; GFP fluorescent cells that were not also labeled
with the antibody stain would indicate lack of DSF availability while cells that were both GFP and red fluorescent would
indicate the presence of DSF.

Objective 2.  Design and synthesize DSF analogs.  We have made several synthetic analogs of C14-cis for testing for
biological activity in Xf (Figure 8).  As these materials have only recently been synthesized, the biological activity of most
have not yet been assayed.  As noted above and as expected, the trans variant of the C14 enoic acid exhibited no activity in
any of the biological assays performed today.  In addition to the DSF analogs noted in Figure 8, various halogenated variants
will also be synthesized.

Figure 8. Analogs of the DSF produced by Xf that have been synthesized to date.

Objective 3.  Synthesis of sufficient DSF analogs for in planta evaluations.  We have synthesized gram quantities of C14 cis
as well as the Sodium salt of this fatty acid which is highly water soluble.  These quantities are sufficiently large for initial
greenhouse studies. These materials have been sprayed onto leaves as well as injected into stems and used as a soil drench in
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initial studies to determine their efficacy for disease control.  After treatment plants have been challenge inoculated with Xf
and disease incidence will be measured; the first disease symptoms are expected by mid-November.

CONCLUSIONS
The DSF produced by grape strains of Xf has tentatively been characterized by C14-cis.  Both its relatively higher biological
activity as assessed in Xf than that of the DSF from Xcc and lesser activity in an Xcc bioassay  is as expected, indicating that
there is considerable specificity in the structure-function relationships between different bacterial DSF signal molecules.  The
production of sufficient Xf for testing for pathogen confusion has been shown to be possible and we are anxiously awaiting
initial tests to determine if topical applications of the material can lead to disease control via pathogen confusion.

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board.



- 193 -

Section 5:

Crop Biology

and

Disease Epidemiology



- 194 -



- 195 -

WHICH GRAPE VARIETALS ARE SOURCES OF PIERCE’S DISEASE SPREAD?  DECOUPLING
RESISTANCE, TOLERANCE, AND GLASSY-WINGED SHARPSHOOTER DISCRIMINATION

Principal Investigator:
Rodrigo Almeida
Dept. Environ. Sci., Policy, & Mgmt.
University of California
Berkeley, CA  94720
rodrigo@nature.berkeley.edu

Cooperators:
Jennifer Hashim-Buckey
UC Cooperative Extension
Bakersfield, CA  93307
jmhashim@ucdavis.edu

Matthew Daugherty
Dept. Environ. Sci., Policy, & Mgmt.
University of California
Berkeley, CA  94720
fezzik@berkeley.edu

Reporting Period: This project has just been funded.  We have no results to report at this time.

ABSTRACT
The glassy-winged sharpshooter (Homalodisca vitripennis; GWSS) is an important vector of Xylella fastidiosa (Xf), the
etiological agent of Pierce’s disease (PD).  Grape species and cultivars differ in PD severity, suggesting there is variability
among cultivars in resistance or tolerance to Xf. Quantifying the relative levels of resistance and tolerance among different
varietals is critical because each may impact GWSS spread of Pierce’s disease in different ways.  Tolerant varietals,
especially, may act as Xf sources.  We will evaluate the feasibility of using existing Vitis vinifera cultivars to control PD
spread by quantifying resistance, tolerance, and GWSS behavior for several important table and wine grape varietals.  This
work will provide recommendations to growers in high risk PD areas on which varietals to use to minimize spread.

OBJECTIVES
We propose to independently quantify Xylella fastidiosa (Xf) infection level (i.e. resistance), symptom severity (i.e.
tolerance), and glassy-winged sharpshooter (GWSS) preference for infected versus healthy plants, for several economically
important raisin, table and wine grape varietals. Our specific objectives are:
1. Measure the relative levels of both resistance and tolerance for important California grape varietals.
2. Measure GWSS discrimination against infected vines and Xf spread for different grape varietals.
3. Measure overwinter recovery from infection for different grape varietals.

We will address the first objective in both greenhouse and field experiments that evaluate comprehensively Xf infection and
symptom development in several table and wine grape varietals.  The second objective is needed to understand how GWSS
movement and feeding preference (for healthy vs. infected) differ among grape varietals, and what are the consequences for
Xf spread.  We will address the third objective with field and greenhouse measurements of recovery from Xf infection for
different varietals – an important epidemiological determinant of Pierce’s disease (PD) prevalence.  Collectively, this
research will allow us to pinpoint which of the current table and wine grape varietals are most and least likely to promote
spread of Xf. Such information will allow vineyard managers to temper PD outbreaks with targeted plantings of low risk
varietals.

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board.
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Reporting Period: The results reported here are from work conducted April 2005 through September 2008.

ABSTRACT
Multiple studies are being conducted to improve current recommendations for control of Pierce’s disease (PD) of grapes in
Texas.  These studies focus on epidemiology of the pathogen, Xylella fastidiosa (Xf), in several Texas vineyards.  Sequential
surveys in one of those vineyards for PD symptoms and vine mortality were conducted annually between 2005 – 2007.  Very
different disease progress and mortality rates were recorded for four varieties, including Chambourcin, Ruby Cabernet,
Shiraz, Primitivo, and Blanc du Bois.  Chambourcin exhibited the high mortality rate, while Blanc du Bois had the least
mortality.  Two different plantings of Shiraz responded very differently to the pathogen.  Attempts were made to isolate the
pathogen from throughout the vineyard and relate the success to the survey results.  The pathogen was most easily isolated
from vines in the advanced stages of disease development, but the pathogen could also be isolated from apparently healthy,
symptomless vines.  Vine recovery from infected plants was common in some varieties.  The collection of isolates was
analyzed using 5 Single Sequence Repeat (SSR) markers, confirming the population was exclusively in the Xf subsp.
fastidiosa group.  Three distinct strains were delineated within the pathogen population.  Studies are ongoing to determine the
significance of the strains with the population and how they may be influencing disease development.  The results of these
studies are particularly important to how we recommend roguing for control of within-vineyard spread of the pathogen.

INTRODUCTION
Xylella fastidiosa (Xf), the causal agent of Pierce’s disease (PD) of grapes, is considered to be a native, endemic pathogen in
Texas.  PD is a limiting factor for growth of Vinifera varieties in many of the winegrape regions in the state.  Current
recommendations for PD control can be expensive and inconsistent.  As a result, growers face a great deal of anxiety over
sustained production in existing vineyards, as well as a lack of confidence in selecting varieties for replanting and
establishing new vineyards.  Information on disease progress in preferred grape varieties is needed to for growers in high risk
PD areas.

Another problem for growers concerning PD relates to routine, timely and reliable diagnostic results.  Each of the currently
available methods for diagnosing PD has strengths and weaknesses when needed for locating diseased vines.  This is
particularly true when attempting to relate the appearance of visual symptoms to the results of diagnostic testing.  The
practice of roguing to reduce within-vineyard sources of inoculum is dependent on quickly identifying suspect vines.  Failure
to do so may lead to additional infections, but removal of falsely identified diseased vines will unnecessarily reduce
productivity.

Vine to vine spread of Xf appears to be an important element in the development of a PD epidemic in a vineyard.  Patterns of
disease incidence in some vineyards suggest that there are clusters of diseased vines from which the pathogen is transmitted
in distinct directions by sharpshooters (Tubajika et al. 2004).  Roguing is intended to prevent this sort of spread.  A better
understanding of this process might be provided by analyzing the population structure of Xf within a vineyard.  The existence
of multiple subspecies of Xf, and the potential for the introduction of different subspecies into vines by sharpshooters,
provides an additional source of unknown variation to the epidemiology of PD in Texas.  An understanding of strain diversity
within a subspecies might also be useful for identifying potential sources of inoculum and subsequent spread of the pathogen
through a vineyard.

The goal of this project is to improve current recommendations for control of PD by learning more about the epidemiology of
the pathogen.  Different approaches are being used to analyze disease incidence and severity over time and space to reveal
underlying influences on disease development.

OBJECTIVES
1. Compare rates of PD development among common grape varieties in a Texas vineyard.
2. Relate symptom development in diseased vines to the isolation of Xf.
3. Analyze population structure of Xf in a Texas vineyard.
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RESULTS AND DISCUSSION
Disease progress rates. Sequential surveys of symptom development in individual vines were carried out annually in a
vineyard near Brenham, TX.  This vineyard, planted in 2000 and 2001, is located in the south eastern winegrape region of the
state.  Eight grape varieties were planted in 2000 and 2001 in blocks ranging from 512 – 1270 vines.  The results from 7 of
these vineyard blocks containing 5 varieties are reported here, including only those blocks containing greater than 1000 vines
(Table 1).  Vines were rated on a 1 – 5 scale, where 1 was a symptomless, healthy vine and 5 was dead.  A vine rated 2 had a
few leaves with typical foliar scorch, a 3 extensive scorching, and a 4 exhibited various combinations of matchsticks, green
islands, and scorching combined with significant dieback.

Table 1. Attributes of 7 blocks containing 5 grape varieties in a vineyard near
Brenham, TX.

Variety No. of Vines Year Planted Rootstock

Chambourcin 1071 2001 own
Shiraz (4) 1270 2001 101-14
Primitivo (4) 1270 2001 SO4
Primitivo (3) 1280 2000 101-14
Shiraz (3) 1280 2000 101-14
Ruby Cab 1152 2000 101-14
Blanc du Bois 1071 2001 own

The surveys revealed a variety of responses to PD.  In Figure 1, the decline in vines rated “healthy”, with no scorching
(Rating 2) is depicted for each of the varieties.  A few of the varieties, such as Chambourcin, Shiraz block 4, and the Ruby
Cab block 5 had little decline in the numbers of healthy vines.  In contrast, the decline in symptomless vines dropped steeply
for the Chambourcin, Blanc du Bois, Ruby Cab block 5, and Shiraz block 4.  There was a noted trend of recovery of
Chambourcin, Blanc du Bois, Shiraz and Ruby Cab Block 5 in 2006, but the proportions of symptomless vines declined again
the following year.
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Figure 1. Proportions of healthy, or symptomless vines, in 7 vineyard blocks
containing 5 grape varieties in a Texas vineyard.

Figure 2 depicts the mortality curves for the same varieties.  The two steepest rates of mortality are exhibited by the varieties
Cahmbourcin and Shiraz Block 4.  As would be expected, Blanc du Bois, a muscadine hybrid x French varietal cross, had the
lowest mortality rate during the 2 years of the survey.  Shiraz Block 3 also had one of the lowest mortality rates, in contrast to
Block 3 of the same variety that was planted a year earlier and was located just a few yards away.
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Figure 2. Disease progress in seven grape varieties as measured by vine mortality.

Chambourcin is a French-American hybrid producing red grapes with an uncertain genealogy.  There is some evidence that
this variety is prone to overcropping, and without compensating for this tendency can undergo significant vine stress and
decline.  Blanc du Bois is a wine grape developed in Florida as a result of a cross between another American hybrid and the
Cardinal table grape.  It is known to be resistant to PD. Although these mortality rates are largely consistent with
expectations concerning susceptibility to Xf, the differences in mortality between the two blocks of Shiraz were unexpected.
The reasons for the dramatic differences in response are unknown.  The Shiraz block 3 was planted in 2000, and block 4 in
2001.   Although they both came from the same nursery, the different disease responses suggest there are some differences in
the genetic backgrounds of the two blocks.  They are on the same rootstocks and located adjacent to one another, making site
differences unlikely.

Attempted culturing for isolation of Xf. Six blocks in the Brenham vineyard were extensively sampled for laboratory
culturing and isolation of Xf (Table 2). Vines were randomly distributed from throughout each of 6 blocks representing 4
different varieties in order to obtain a representative sample from throughout the block and from vines in various states of
health.  Samples were collected during the first two weeks of June and rated two months later in August.  Samples were
surface sterilized and cultured on PW media.  From a total of 103 culture attempts in these blocks, the pathogen was
successfully isolated from 66 vines after one or two attempts.  The health status of the sampled vines is included in Table 2.
The 66 vines testing positive for isolation of Xf in June of 2007 were largely symptomless in 2005, two years before they
were sampled.  Twelve of the vines testing positive were ranked symptomless at the end of the growing season, illustrating
the ability of some vines to recover from infection and survive.  The majority of vines testing negative were rated
symptomless or in the earliest stages of disease development in 2007 as well as the two years previous.

Table  2.  Numbers of vines testing positive or negative for isolation of Xf ranked according to health where: 1 = healthy,
no symptoms, 2 = incipient symptoms with 1 or a few scorched leaves, 3 = majority of foliage symptomatic, 4 - 6 =
scorching, dieback, matchsticks, green islands, dead or removed.  Vines were rated at the end of the season after samples
were taken.

Numbers of Positive
Vines

Numbers of Negative
Vines

Year Rating =
1

Rating =
2

Rating =
3

Rating =
4-6

Rating =
1

Rating =
2

Rating =
3

Rating =
4-6

2005 30 33 2 1 24 10 0 1

2006 13 24 21 8 26 5 3 1

2007 12 6 20 28 19 7 3 6

Strain differentiation of isolates. Repeated sampling from several vines and sampling of vines from some smaller blocks in
the Brenham vineyard resulted in collection of 97 Xf isolates.  Simple sequence repeat (SSR) markers (Lin et al. 2005) are
being utilized to analyze the population structure of the isolates.  When 5 SSR markers were used with conventional PCR
(polymerase chain reaction), hierarchical clustering analysis resulted in delineation of 3 strain groups containing 14 – 44
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isolates per group.  There appears to be no selection of strains for different cultivars.  Spatial relationships and the association
between the occurrence of the strains and variation in disease progress will be analyzed.

CONCLUSIONS
Differences in susceptibility, tolerance, and resistance to Xf are being observed in popular grape varieties in Texas vineyards.
However, these differences are not entirely consistent with expectations based on previous observations (Fry and Millholland
1990).  Blanc du Bois proved to be extremely resilient, as expected, even though large proportions of the vines exhibit low
levels of scorching.  Even though we were unable to isolate the pathogen from the Blanc du Bois, vines in this vineyard have
tested positive with ELISA (enzyme linked immunosorbent assay) in other studies.  Another hybrid, Ruby Cab was also
extremely tolerant in the Brenham vineyard.  The two blocks of Shiraz responded very differently and illustrate the
difficulties that still remain in predicting the course of Pierce’s isease.  One planting is sustaining heavy losses, while a
nearby planting is proving very tolerant.  The reasons for these differences are unclear.  Insect control, irrigation, and other
management practices for the two Shiraz blocks were the same.  Since the two blocks were planted in different years, the
relative susceptibilities may result from different genetic backgrounds of the grapes.

There are always questions concerning the use of symptoms, particularly scorching, as basis for diagnosing PD.  Minor
scorching early in the season was prevalent on all varieties throughout the vineyard annually, and was used to select potential
vines for sampling and laboratory isolations.  These isolations illustrated that the pathogen was widely distributed throughout
the six vineyard blocks.  Consistent isolation of the pathogen does not occur until the vines are in advanced stages of disease
severity.  Yet the pathogen was also isolated at lesser frequencies from vines that were entirely symptomless by the end of the
growing season.  These results show why there are uncertainties in knowing when to rogue for disease control.  Although
scorching may reflect infection, it is not a good symptom for determining the ultimate fate of the vine.  Also, infected vines
may be symptomless and continue to yield.  Even though they may be colonized at levels too low to serve as inoculum
sources, they may unexpectedly collapse and thus become infective. This unpredictability will continue to confound efforts to
successfully rogue.

All of the isolates obtained from this vineyard were grape strains in the subsp. fastidiosa.  There has been some concern in
Texas that ELISA results may be identifying other subspecies in grapevines, but in the Brenham vineyard this does not
appear to be the case.  The significance of the three strains delineated with the 5 SSR markers has yet to be determined.  The
strains do not, however, appear to be associated with differences in disease development observed in the grape varieties.

REFERENCES CITED
Fry, S.M., and Milholland, M.D.  1990.  Response of resistance, tolerant, and susceptible grapevine tissues to invasion by the

Pierce’s disease bacterium, Xylella fastidiosa.  Phytopathology 80:60-69.
Lin, H., E.L. Civerolo, R. Hu, S. Barrows, M. Francis, and M.A. Walker. 2005. Multilocus simple sequence repeat markers

for differentiating strains and evaluating genetic diversity of Xylella fastidiosa. Applied and Environmental
Microbiology 71(8): 4888-4892
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ABSTRACT
The release of new technologies is often hampered by downstream legal and regulatory roadblocks.  A thorough analysis of
the current intellectual property (IP) rights of commonly used research tools is crucial to avoiding these obstacles, especially
in regards to agricultural biotechnology, specifically plant transformation-related technologies.  Keeping in mind the intricate
patent landscape as well as the strong IP technology portfolio in the public sector, this project looks to combine these
available technologies for plant transformation.  The goal of this research project is to develop a grape-specific recombinase-
based marker excision system for the generation of genetically engineered Vitis that is marker free and can be more
amenable to market entry.  The anticipated construct will provide a convenient means of instituting the various Pierce’s
disease control strategies.  In this reporting period, we present our results in validating key components of the transformation
platform.

INTRODUCTION
PIPRA, Public Intellectual Property Resource for Agriculture, is a nonprofit, public sector organization comprising a
multitude of universities and institutions designed to manage the complex Intellectual Property (IP) landscape as well as
develop the tools for the deployment of commercial and humanitarian agricultural technologies.  Pierce’s disease (PD)
research has already generated promising long-term transgenic control strategies.  Unfortunately, the proprietary nature of
these gene transfer tools is unlikely to incorporate features that are compatible with evolving regulatory frameworks.  Thus,
research output with commercial potential but developed using technologies with limited freedom-to-operate (FTO) may
need to be reengineered with legal and regulatory considerations.  This research project aims to develop and test a
transformation system not only for research, but for commercial development of PD control strategies in grape that address
IP and regulatory issues.

OBJECTIVES
1. Design, develop, and validate a grape-specific transformation system that addresses legal IP, technical and regulatory

consideration.
2. Develop alternatives to Agrobacterium-mediated transformation for California wine grapes and/or cultivars suitable for

generating root stocks.
3. Develop strategies to disseminate biological resources under appropriate licensing agreements for the PD community.
4. Explore collaborative opportunities with researchers developing PD control strategies to link the developed

transformation technologies with specific PD resistance technologies.

RESULTS
Tranformation vector system: There are several marker removal strategies that have been employed in various plants
species.  However, because of the long generation time of grapes, those strategies which depend on multiple plant
generations are not feasible for grape cultivars.  Our strategy, which has been tested in several model plant systems, utilizes a
recombinase-based excision for removal of the selectable marker, after transgenic lines have been selected for, without the
possibility for re-integration of the marker (Dale and Ow 1991, Russell et al. 1992, Gleave et al. 1999, Sugita et al. 1999,
Sugita et al. 2000, Hohn et al. 2001, Zuo et al. 2001, Schaart et al. 2004).  The recombinase-mediated transformation vector
is designed with a three-part system: a plant marker to select for early transformants, a recombinase gene driven by an
inducible promoter that can be transiently activated to remove the plant selectable marker, and a negative selectable marker
(Perera et al. 1993, Gleave at al. 1999) to kill the cells in which poor or incomplete recombinase-mediated excision has
occurred.  With this strategy, we will be able to eliminate the selectable marker during the first generation of the plant tissue.
Currently, PIPRA’s recombinase transformation vector is in its final stages of cloning.
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Figure 2. GUS expression in grape callus transformed with
pER8:GUS grown on medium without estradiol (left) and grape callus
grown for 48 hours on medium containing 50 uM estradiol (right)

Figure 1.  Negative selection construct to test efficacy
Par-A mediated recombinase activity in tobacco and
grape.

Selectable markers: Previous research focused on testing other plant selectable markers such as DEF and Atwbc19; however,
neither of these markers is suitable for grape transformation.  Thus far, NPTII and hygromycin have shown to be more
efficient plant selectable markers.  Though there is a pending application, it appears the NPTII marker may have greater FTO
in the near future.

Negative Selection System: In addition, PIPRA has proposed using a negative marker selection which will provide a means
of eliminating transformants in which the recombinase gene has failed to properly excise the unwanted DNA.  Our negative
selection system makes use of cytosine deaminase which shows impressive sensitivity when exposed to 5-fluorocytosine.
This negative selection system has already been tested with the recombinase-mediated excision strategy for plastid
transformation (Corneille, Lutz et al. 2001) and strawberry (Schaart, Krens et al. 2004).  IP analysis revealed that we had
appropriate freedom to operate (FTO) to isolate the cytosine deaminase gene from E. coli K12 MG1655.  Cloning of this
cassette is complete, with the cytosine deaminase gene being driven by the FMV34S constitutive promoter.  The cassette has
been successfully cloned into a binary transformation vector and transformed into grape and tobacco callus.  The transformed
tissue will be treated with increasing amounts of 5-fluorocytosine to identify the concentration necessary to eliminate the
tissue.  Those experiments are currently ongoing.

A parallel experiment aims to test the efficacy of the Par-A
excision activity prior to commercial and humanitarian
development of our vector.  We will employ another type
of negative selection involving DsRed and GUS reporter
genes (Figure 1, panel A).  The recombinase efficiency
can be evaluated by comparing expression levels of the
two visual markers.  A successful recombination event will
result in the deletion of the RRS-flanked DNA, which
contains the hygromycin plant selection marker as well as
the DsRed marker.  Therefore, only the GUS marker,
placed in the GOI cassette should be expressing in the
plant (Figure 1, panel B).  We are currently in the final
stage of the cloning of this construct.  The last step is the
insertion of the completed Par-A recombinase cassette
module.

Promoters: This transformation platform will
include a number of constitutive promoters for
expression in grapes (Purdue’s MAS, University
of California’s UC FMV34S, G10-90 from Zuo,
Niu et al. 2000).  In addition, we have
incorporated an estrogen-inducible promoter
system for tight control of transcription activity.
This promoter will be used to regulate the
expression of the recombinase gene.  Precise
control of expression of the recombinase gene is
preferred to avoid premature excision which
may occur due to the leaky expression of
constitutive promoters.  The estrogen-induced
XVE system has been previously used in a cre-lox-mediated marker free system in Arabidopsis (Zuo, Niu et al. 2001).  This
system was preferred over another inducible promoter, the glucocorticoid-system (Aoyama and Chua 1997; Ouwerkerk, de
Kam et al. 2001), which requires the use of dexamethasone treatment that can often inhibit plant tissue regeneration as well
as contain high background levels (Zuo, Niu et al. 2000).  The XVE system (Zuo, Niu et al. 2001) with a GUS reporter gene
was tested in tobacco and grape transformants with promising results (Figure 2).

In addition, with support from legal counsel, we recently concluded the IP analysis of the XVE system.  To conduct the IP
evaluation of the XVE system, we divided this system into three parts.  Part A considered the three components of the XVE
fusion protein: LexA Binding Domain (X), VP16 Transcription-Activation Domain (V), and Estrogen Receptor (E).  Part B
considered IP related to the LexA Operator sequence.   The LexA Operator sequence would be situated before the gene it is
regulating, in this case the recombinase Par-A gene.  Finally, part C reviewed the legal landscape around the constitutive
G10-90 promoter which drives the XVE fusion protein (Figure 3).  The results from this review show the technology would
require licensing from Rockefeller University.  PIPRA originally obtained the XVE system from Rockefeller University
under a research only material transfer agreement.  To consider commercial use of Rockefeller’s promoter, we have initiated
conversations in order to include this critical component as part of the patent pool that would be made available to the PD
community.
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CONCLUSIONS
Research to combat the threat of PD on California’s wine grape industry has led to the development of several promising
transgenic approaches (Aguero et al. 2005, Reisch and Kikkert 2005).  Regardless of the success of these projects, they
encompassed proprietary technologies that would hinder their downstream commercial production due to IP restrictions.  In
order to advance the transgenic grape technology, it is critical that thorough IP analysis be conducted in conjunction with the
research such that new control strategies in the lab can be adopted by the commercial sector without unnecessary delays or
need to reengineer transgenic plants.  Because of the incredibly long generation time of grapes, up to two-three years, it is not
feasible to develop technologies that must be repeated during the commercial phase of development because of IP restrictions
that could have been avoided at the beginning of the project.  For example, the thorough IP analysis on the recombinase-
mediated plant transformation system for grape provides a clear legal pathway for commercial applications of these
technologies.  PIPRA’s approach to form a patent pool of the technologies necessary or the PD community has paved the
way for the development of technologies with maximum FTO for research on PD and glassy-winged sharpshooter
applications.
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by the constitutive G10-90 promoter.
Completed IP analysis of this piece now
provided us complete FTO.
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Figure 1. Xylella fastidiosa responsive promoters were obtained from genes found
to be up-regulated in X. fastidiosa infected field grown plants but not up-regulated
by water stress alone. Example data used to identify individual genes from which
promoters were recovered as illustrated for G7061 and G9353.
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ABSTRACT
The goal of this research was to clone and characterize unique DNA sequences from grape that specifically regulate the
expression of grape genes in tissues that are infected with Xylella fastidiosa (Xf) or are receiving systemic signals of pathogen
presence.  In addition, these promoters, when fused to GFP, are specific tools to non-destructively study the presence and
movement of the bacteria in infected grape canes or petioles. This project was initiated in July 2004 as a priority research
area by the Pierce’s Disease Research Board and will conclude in August 2009 with the delivery of two Xf-responsive
promoters from grape to a) drive the site-specific expression of any candidate gene at locations where the bacteria reside and
b) provide an induced reporter gene expression system that can be used as a powerful tool to study and characterize host
responses to Xf and Xf-secreted effector molecules in intact xylem cells by observing fluorescence due to GFP.  The
promoters, G9353 and G7061 each will be available as GFP fusion constructs in transgenic Thompson Seedless clonally
propagated lines. Illustration of the use of these promoter fusions as diagnostic tools for grape response to Xf EF-Tu
infiltration can be found in the 2008 PD Symposium Proceedings report from Professor George Bruening’s group.

INTRODUCTION
This project was initiated in July 2004 as a priority research area by the Pierce’s Disease Research Board (3).  The need for
Xylella fastidiosa (Xf)-inducible promoters was based on the fact that the constitutive promoters, used universally to drive the
expression of transgenes, suffer from two disadvantages.  Firstly, they are protected by existing patents with the attendant
limitation for commercial use, and secondly, the constitutive expression of certain transgenes is widely considered to have
deleterious effects.  For example, there are recent reports showing a deleterious effect from constitutive expression of disease
resistance genes, effects that are remedied by expression from an inducible promoter (5, 6).  Specifically, the constitutive
expression of genes that normally are under control of stress-responsive promoters (infection responsive and resistance
genes) is likely to be disadvantageous to the plant (5).  An Affymetrix GeneChip was used to characterize the expression of
~15,000 Vitis vinifera genes in response to Xf infection and drought stress (1,2) (Figure 1).
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Figure 2.  Binary plasmid containing the G9353 promoter sequence
fused to GFP, which will be available to Pierce’s Disease researchers
upon request.

Promoters for two of the Xylella-
responsive vascular tissue localized genes,
referred to as G9353 and G7061, were
sequenced from bacterial artificial
chromosome (BAC) clones.  Regions 5' to
the coding sequence were isolated by PCR
and used to produce promoter-GFP-
reporter fusions (Figure 2) for
transformation into the Xf susceptible
Thompson Seedless grape background.
We received 42 transformants (Table 1)
from UC Plant Transformation Facility in
2006 from constructs of the promoters
G9353 and G7061 fused to GFP.  A line
bearing each promoter will be selected
from the 42 independent transformants for
maximum specificity and sensitivity to the
presence of Xf.

In addition to their utility for engineering
PD resistance in grape, the availability of
Xf-induced reporter gene expression can
provide an extremely powerful tool to
study and characterize host responses in their intact cellular and tissue context.  With such tools, it should be possible to
examine the chemical and/or physical cues from the insect or pathogen that trigger host gene expression and the deleterious
effect of the disease.  Lastly, an immediate and direct application has been identified through our collaboration with the
Bruening laboratory wherein, promoter G9353 expression is activated by injection into the grapevine petiole of Escherichia
coli cells expressing a single Xf protein, the protein synthesis elongation factor EF-Tu.  Please see article by Dr. Bruening in
these Proceedings for specific information on the EF-Tu assay.

OBJECTIVES
1. Evaluation of whole plant transgenics G9353 and G7061 with stem inoculation under greenhouse conditions.
2. Confirm the specificity of response of promoter G9353 to Xf vs Xanthomonas campestris using intact stem inoculation

under greenhouse conditions.
3. Promoter distribution to current researchers and long-term storage.

RESULTS AND DISCUSSION
Two of the original 14 putative promoters, G9353 and G7061, have been advanced to the transgenic stage as GFP (green
fluorescent protein) fusions (4) and show a response to infection by Xf as visualized by RT-PCR (Figure 3) and GFP
expression in the inoculated plants using confocal microscopy ( Figure 4).  A total of 42 plants were received (Table 1).
Prior to any functional analysis, the transgenic grape plantlets were grown in the greenhouse and each primary transgenic was
assayed for the presence of the transgenes by genomic PCR prior to any further experimentation.  Currently we have tested
50% of the primary transgenic plant lines. While all plants tested to date contain the transgene not all are activated to the
level of detectable fluorescence, even though analysis by qPCR confirmed that the promoter was active; just not sufficiently
active for GFP detection.

Table 1. Transgenic plants containing promoters G7061 and G9353
Promoter ID Putative total # of # of Results Xf # transformants # transformants

function of the transformants transformants uptake into petiole inoculated to be petiole
microarray with the tested to date detached leaf; and  analyzed inoculated and
transcript promoter-GFP analyzed

induced  by Xf
unknown

fusions
G7061 22 12 9 of 12 show 4 of 10 show 12/22

GFP expression GFP expression
G9353 Alpha-tubulin 20 10 3 of 10 3 of 10 show 10/20

show GFP GFP expression
expression
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Figure 4.  Specificity of the response of promoter G9353 fused to GFP in
response to the presence of Xf in the vascular system of grape compared with
Xanthomonas campestris.Blue color represents chlorophyll auto-fluorescence;
Green color indicates the translation of GFP and, therefore, activation of the
promoter 9353 in the presence of Xf.

1        2         3 4         5          6

Figure 3. RT-PCR analysis of the G9353 transcript from greenhouse grown
grape leaves. RNA in lane 1 healthy cv. Freedom; lane 2 Xf-infected
cv.Freedom; lanes 3and 5 are healthy Thompson Seedless; and lanes 4 and 6
are Xf-infected Thompson Seedless. Lanes 1-4 were amplified with G9353
specific primers and lanes 5-6 were amplified with actin specific primers as a
control. Lanes 2 and 4 indicate the induction of the G9353 transcript in the
infected plants in the greenhouse.

Hence, there is sufficient variation in the strength of the GFP fluorescence response to require that all independent
transformants must be tested to identify the plants with the most rapid and strongest response with minimal background.  For
example, quantitative data indicates that the activation must be greater than four-fold to be visualized as differential by
confocal fluorescence microscopy.   The remaining plants will be subjected to final testing with whole plant inoculations
(Table 1). Clonal copies of each line will be made before evaluation by inoculation.  Following clonal propagation, 10
transgenic lines of each promoter remain to be inoculated with Xf under greenhouse conditions, assessed by confocal
microscopy and qPCR for timing and location of response of the respective promoters to the presence of the bacteria.  These
studies will develop a sufficiently detailed picture of the temporal and spatial aspects of Xylella-induced gene expression
during bacterial colonization in stems, leaves and petioles of grapes as a base line for use as a diagnostic tool for the effect of
pathogen secreted molecules as indicated earlier.  Criteria for selecting the prime transgenic lines are that they express a
specific, rapid and strong response to Xf infection with low background response.  RT-PCR of the endogenous genes in
Thompson Seedless indicated that this promoter was expressed in the presence of Xf. This is confirmation that both the
endogenous gene and the promoter gene fusion in transgenic plants are expressed in the presence of Xf.

In addition to the Xf-activated response of these promoters, it is essential that the response to Xf be specific to this bacterium.
To assess the specificity, Xanthomonas campestris pv. vesicatoria (Xcv, another xylem dwelling bacteria that closely
resembles Xf but is not pathogenic on grape served as the bacterial test case.  Transgenic G9353 was inoculated with Xcv and
compared to clonal plants inoculated with pathogenic X f at the same cell density and evaluated by confocal microscopy after
21 days.  The presence of Xcv in the xylem did not trigger the expression of G9353-GFP whereas the promoter driven GFP
was activated by Xf, as shown previously.  These observations indicate that the promoter was responsive to Xf in planta but
not to the related Xcv (Figure 5). In addition, recent results from collaborative efforts between the Gilchrist laboratory and
the Bruening laboratory have demonstrated that promoter G9353 expression is activated by injection into the grapevine
petiole of Escherichia coli cells expressing a single Xf protein, the temperature unstable protein synthesis elongation factor
EF-Tu. The same E. coli strain, not induced to generate Xf EF-Tu, and another strain, not bearing the EF-Tu construction,
both failed to induce GFP accumulation, indicating that the effect is due to Xf EF-Tu and not, for example, to endogenous E.
coli EF-Tu. In other systems, examples of plant recognition of the EF-Tu from specific plant pathogenic bacteria are well
documented.
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Please see the report in this volume of the Proceedings of the 2008 Pierce’s Disease Research Symposium by George
Bruening entitled “Exploiting Xylella fastidiosa Proteins for Pierce’s Disease Control” for additional research description of
the diagnostic application of G9353 transgenic plants.

CONCLUSIONS
The activation of these two promoters following infection with Xf, but not Xcv, confirms the proof of concept that we can
supply Xf-inducible promoters to PD researchers. Our intention is to package and release the most responsive transgenic
lines of each of the two promoters and binary plasmids containing the validated Xf-inducible promoters, G9353 and G7061 to
all interested researchers.  These promoter-GFP fusions are currently being used for studying the timing and incidence of Xf
infection, action of pathogen effector molecules (Bruening) and could be used to determine plant response to mechanical
inoculation or sharpshooter feeding (Figure 1).

Lastly, this project will generate intellectual property; specifically promoters that drive expression of grape genes due to the
presence of Xf. The issue of IP will be handled in the following manner: 1) all sequences derived will be placed in the public
domain; 2) IP protection will be sought for functionally verified promoters sequences, and 3) all materials will be made
available to qualified researchers, including all those associated with the PD projects through a standard material transfer
agreement.
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Figure 5.XanthomonTime courseas anal campesysis oft trishe e-Injectedxpression of promoter Xylella fastidiosaG9353 fused to GFP i-Injecten respdonse to the
presence of Xf in the vascular system of grape. Bacteria were introduced by puncture inoculation as
illustrated in Figure 2.  Analysis is by confocal microscopy. Blue color represents chlorophyll auto-
fluorescence; Green color indicates the translation of GFP and, therefore, activation of the promoter 9353
in the presence of Xf.
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ABSTRACT
Xylella fastidiosa (Xf) is both an endophyte and a pathogen.  Cell death symptoms associated with the pathogenic state result
from the activation of programmed cell death (PCD) pathways with morphological markers of apoptosis in the susceptible
grape.  The goal of this project is to identify novel genes from cDNA libraries of either grape or heterologous plants that are
capable of suppression of Pierce’s disease (PD) symptoms when constitutively expressed as transgenes.  We identified, using
a functional cDNA screen, several novel genes from grape and heterologous plants that suppressed PCD when expressed as
transgenes.  We reported in 2007, several transgenes expressed in the root stock cultivar Freedom that suppressed PD
symptoms.  In addition, the level of bacteria in the vascular tissue are maintained four orders of magnitude lower than in
untransformed control plants, all of which died.  We now report that transgene expression in the fruited PD susceptible
cultivar Thompson Seedless also affords protection against PD symptoms and limits the bacterial titer up to four to six orders
of magnitude below that reached in untransformed plants that are killed within two months after inoculation.  The protected
plants have remained alive and asymptomatic nine months after inoculation. From the perspective of the grape-bacterial
interaction, it appears that the anti-PCD genes tested to date suppress PD symptoms and functionally restore the bacteria to an
endophytic ecology in the xylem equivalent to that seen in the asymptomatic host Vitis californica.

INTRODUCTION
At the outset of this project in 2001, little was known about the mechanisms or genes involved in symptoms or death of the
grape plants infected with Xylella fastidiosa (Xf).  In the course of these studies, we established that the cell death leading to
leaf scorch symptoms in Pierce’s disease (PD) is the result of the activation of programmed cell death (PCD) with
morphological markers of apoptosis.  In addition, Dr. Tom Rost and we, independently, determined that PD symptoms can
occur distal to sites where the bacteria are detected suggesting the presence of mobile signals from the bacteria.  It also is
documented that several relatives of grape, including Vitis californica, and other host plants can harbor otherwise lethal titers
of Xf without exhibiting PD symptoms.  The questions posed in this research were: a) are there genes in the plant that respond
to Xf signals by triggering programmed cell death in certain grape genotypes, b) can this response be blocked genetically; and
c) if so, does this then allow the bacteria to maintain the endophytic state, leaving the plant otherwise unaltered but free of
disease symptoms; and/or d) does suppressing PD symptoms negatively affect the ability of the bacteria to colonize the
vascular system.

Current literature and results from our laboratory indicate a number of plant diseases result from induction of PCD in the host
cells in advance of microbial growth (2,11,12).  The induction of PCD results in an orderly dismantling of cells that includes
maintaining integrity of the plasma membrane until internal organelles and potentially harmful contents including phenolics,
reactive oxygen and hydrolytic enzymes have been rendered harmless to contiguous cells.  However, when the cell contents
are released, they can serve as nutrients for microbial cells when they are present in the immediate environment (2,9).  Hence,
bacteria like Xf could receive nutrients from cells adjacent to the xylem that are triggered to undergo PCD and gradually
releasing contents of the grape cell into the apoplastic space surrounding the xylem.  The fact that we measure bacterial titers
three-six orders of magnitude higher in symptomatic (ultimately dead) grape plants than in either asymptomatic wild grapes
or the transgenic asymptomatic grape plants is consistent with enhanced nutrition in the xylem of infected symptomatic
plants.  The working scenario in this research is; blocking death, limits death dependent nutrient release, and thereby restricts
bacteria multiplication but does not act as an antibiotic against the bacteria.  If true, this scenario does not apply novel
selection pressure on the bacteria any more than residing in V. californica or any other asymptomatic host.

Genetic strategies for disease suppression and development of a biological understanding of  the bacterial-plant interaction
are high priority areas in the PD/GWSS Research Program and the NAS report.  The goal of this project is to identify novel
genes from cDNA libraries of either grape or heterologous plants that, when expressed in grape, will prevent colonization,
systemic spread or symptom development due to the presence of Xf in the xylem.  Recent published information from our
laboratory established that susceptibility of several plants to a range of pathogens depends on the ability of the pathogen to
directly or indirectly trigger the activation of existing, genetically regulated, pathways leading to apoptosis or programmed
cell death (PCD) (1,2,3,4,5,6).  These discoveries parallel investigations now widely reported and accepted in human
medicine whereby genes, signaling pathways and chemical signals expressed by animal pathogens initiate infection by
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activating or blocking apoptosis through constitutive gene expression or signaling pathways present in all cells.  These
studies are the basis for extensive searches for apoptosis-based therapeutic approaches and agents in human medicine (7,18).

Hence, this research on PD is conducted within a global context in which the process of PCD with apoptotic morphologies is
functionally conserved across the animal and plant kingdoms while sharing diagnostic markers of apoptosis including
chromatin condensation and segregation into distinct masses referred to as pycnotic DNA bodies 10,13,14,15),
oligonucleosomal DNA ladders, externalization of phosphatidylserine,  and TUNEL-positive nuclei in the incipient plant
disease lesions (2).  Also, it is known that many proteins and several regulatory RNAs function in the induction or
suppression of animal PCD and exhibit cross-functionality in the plant kingdom.  Ectopic expression of known apoptosis-
blocking animal and animal virus genes, or treatment with anti-apoptotic pharmacologically active peptides, has been shown
to block PCD and suppress disease in plants where cell death is a symptom of disease, as is the case of PD (3,4,16,17).

However, mining of plant genome sequences in the available databases has not revealed plant sequence homologs of either
the core pro- or anti-PCD pathway genes found in animals, even though the induction or suppression of PCD in transgenic
plants by cross-kingdom expression of pro- and anti-apoptotic animal genes suggested that anti-death homologs likely exist
in plant genomes (2,7,18).  Consequently, identification of plant genome derived anti-death genes must be based on
functional screens and is the premise that defined the direction of our research.  Results presented this year and in 2007 (8)
indicate that the approach has been successful.

OBJECTIVES
The objectives of the proposed research for 2008-2010 are as follows:
1. Continue to evaluate recently obtained Thompson Seedless transgenic grape plants expressing the eight candidate anti-

apoptotic genes for blocking of PD symptoms (Table 1).
2. Measure the effect, over a time course, of blocking PD symptoms with anti-apoptotic transgenes on Xf bacterial

population levels and movement in the xylem by quantitative PCR (qPCR) and confocal laser scanning fluorescence
microscopy to monitor GFP-tagged Xf.

3. Determine grape gene expression changes in transgenic compared with non-transgenic plants in response to Xf infection
by differential transcriptional profiling using quantitative PCR.

4. Produce grape transgenic plants with modified candidate anti-apoptotic genes designed to enhance systemic movement
in planta.

5. Secure patent protection as intellectual property for those genes that prove to be capable of blocking PD in grape.
6. Graft the resistant transgenic Cv Freedom  rootstocks of PR1 and cDNA 456 onto untransformed scions of Thompson

Seedless and Chardonnay to monitor movement of either expressed proteins of these genes that contain a secretory
leader on VVPR1  or the RNA derived from the 3’UTR from the ortholog of the potato p23 gene that shares stem and
loop homology to the Bcl 2 3’UTR. The transformed grafted plants will be inoculated with Xf and scored for disease
reaction in the untransformed scion.

Table 1. Thompson Seedless now available with putative
anti-PCD genes under control of the 35S promoter.

Genotype # Lines or Independent
Transformants # of Plants

TS – CBP14B 24 30
TS - CBP14LD 27 27
TS - CB376 28 29
TS - CB456 27 31
TS - I35 14 15
TS - CBMT 22 24
TS - CBWG23 23 25
TS - CBWG71 20 23
total 185 204

RESULTS
Genes identified as potential anti-PCD genes from the conditional life-death screens.
Previous funding on this project led to the development of a functional cDNA screen to identify plant genes, which when
over-expressed as transgenes, suppress cell death triggered by chemical inducers of PCD.  The genes in Table 1 have been
described in earlier reports to this symposium and the results of inoculation of the first set of transgenic plants of Cv Freedom
was reported in 2007 (8).  In summary of the 2007 Cv Freedom results, resistance against PD was observed in the susceptible
grape rootstock by two anti-apoptotic transgenes (P14LD and MT) and one 350 bp DNA sequence associated with a
nematode up-regulated gene designated p23.  Furthermore, the  expression of these three sequences, not only protected the
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transgenic plants against PD symptoms and plant death but maintained the population of Xf at  four orders of magnitude
below the level observed in untransformed plants that died within two months (108 bacteria per gram of stem tissue)
compared with the asymptomatic transgenic plants that  carried a level of 104 cells/gm stem tissue in the most resistant lines
that were alive at nine months.  Interestingly, the 104 titer is equivalent to what we observed in the asymptomatic host V.
californica 12 months after inoculation.  In 2008,  we began testing the anti-PCD genes expressed in Cv Thompson Seedless
and report the early results of two inoculations of the Thompson Seedless transgenics bearing the CBP14LD and the CB456
genes.

Thompson Seedless grape plants expressing anti-apoptotic genes.
After creating clones of these transgenic lines, the plants were trained to grow as two or three canes and maintained by
periodic pruning of side and top branches (Figure 1).  Half of the transformed plants were individually inoculated November
and December of 2007 and the second half in April and May of 2008.  The inoculation method was the same for both sets
however the concentration of Xf bacteria was 1000 fold less for the second set.  The inoculation method was by needle
puncture of the stem to allow uptake of 10-20 µl of Xf at 2x108 cfu of the GFP-tagged Xf /ml for the 2007 inoculations and a
1000 fold less at 2x105 cfu of the GFP-tagged Xf /ml for the 2008 inoculations.  The plants were monitored visually for
symptoms and by quantitative PCR (qPCR) for bacterial movement and multiplication.  They were scored for disease
severity in May 2007 (first set) and in October 2008 (second set), using a five point scale (1=dead and 5= asymptomatic) and
photographed.  Representative control (scored as 1) and transgenics from the second set (scored as 5) are shown in Figures 1,
2, and 3).

9353 Control 456-1 Uninoculated
Control

P14LD-19

Figure 2. PD assay on the first set of inoculated Thompson Seedless plants
transformed with anti-PCD transcripts P14 and 456 were inoculated with 20µl
of 2x108 Xf/ml and photographed three months later. The protected plants are
compared with  9353, an Xf-inducible promoter fused to GFP, and an
uninoculated untransformed Thompson Seedless plant.

Figure 1. Five point Rating scale for PD
symptoms on transformed grape plants,
compared with untransformed  plants
and GFP-transformed controls,
following inoculation with 40 µl 108

cells/ml of GFP-tagged Xf by stem
puncture. The plants pictured were rated
six months after inoculation at which
point all the inoculated control plants
(transformed with GFP and
untransformed) were dead (category 1).
Stem death began to appear within four
months in the GFP transgenic control
plants. Plants rated in categories 4 and 5
at six months were unchanged at nine
months, after which parent plants
discarded. Ramets of all protected plants
are maintained for future experiments.
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P14LD-12 P14LD-5Control
9353-6

456-8 456-24

Figure 3. PD assay on the second set of Transgenic Thompson Seedless plants inoculated
in 2008 with 20µl of 2x105 Xf/ml and photographed three month later.  This inoculum is
1000-fold less than that used for the inoculations shown in Figure 1.  The 9353 control
plant has a PD disease score of 1 and all others were scored as 5 on a 5 point scale.

The effect of anti-apoptotic transgenes on Xf bacterial populations was measured by RealTime quantitative PCR (qPCR)
(Table 2).  Analysis of Xf inoculated plants revealed that although bacteria can be detected everywhere in a infected plant,
the inoculated cane samples are more consistent than the cane of the stem of primary branches.  It is essential to determine
the effect of blocking PCD-based symptoms in the transgenic plants on the bacterial multiplication and spread in terms of the
overall impact of the transgenes.  Based on initial experiments to ascertain which tissue to sample for Xf quantization, we
sampled the stem of primary branches or petioles of individual plants.  Although, this would allow repeated sampling of an
individual plant over the course of the experiment, we found that it is not a reliable indicator of the overall bacteria level and
could vary by as much as six orders of magnitude.  These results indicate that equivalent results were obtained at the two
inoculum concentrations.  In both cases the mean bacterial load of unprotected control plants reached the same level (108)
after two-three months at which point the plants began to die.  The transgenic plants remained healthy appearing (categories
4-5) after assaying at six and nine months with bacterial titres ranging from 102to 104 in the main canes of the inoculated
plants (Table 2).  Representative images of plants in the first inoculation with 20 µl at 2X108 are shown in Figure 2 with
equivalent images of the second inoculation with 20 µl at 2X105 are shown in Figure 3.

Table 2. Thompson Seedless Transgenics Genotype analyzed to date.

Thompson Seedless Transgenics
Genotype analyzed to date

# of Lines
evaluated

to date

Percent of plants
rated as Figure 1

categories 4 and 5
and protected as in

Figures 2 and 3

Mean bacterial
load per 0.1 gm of

stem in each
respective line

Inoculation 1 @ 2X108 cfu
TS - CBP14LD 4 3/4 104

TS - CB456 4 3/4 104

TS - 9353 (control) 6 0/6 108

Inoculation 2 @ 2X105 cfu
TS - CBP14LD 23 20/23 102

TS - CB456 26 23/26 102

TS – 9353 (Control) 6 0/6 108
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Bacterial plating for determination of bacterial viability in the control and transgenic plants.
The pathogenic Xf used to inoculate the plants shown in Figures 1, 2, and 3 and Table 2 were obtained from Dr. Steven
Lindow.  These bacteria-expressed GFP and were resistant to Kanamycin. Stems sections from the tissue used to generate the
data in Table 2 were further sectioned, incubated in water and centrifuged to pellet the bacteria, re-suspended in water and
plated on Xf media containing Kanamycin.  Bacteria expressing GFP were obtained from the control and transgenic protected
plants as shown in Figure 4.  The schematic illustrations indicate the relative amounts of bacteria estimated by qPCR and the
color plates indicate representative fields on the media plates with colonies of GFP-expressing bacteria.  These data confirm
that many more bacteria were present in the control cane sections and that the bacteria recovered on the plates were viable
progeny cells of the inoculated Xf. In summary, the qPCR and plating data indicate that the two anti-PCD genes analyzed to
date suppress symptoms of PD, do not eliminate the bacteria from the tissue but do reduce the bacterial titre to a level that,
while detectable, is orders of magnitude lower than the untransformed control plants.

CONCLUSIONS
In the past year, we successfully demonstrated resistance against PD in the susceptible grape rootstock cv. Freedom by two
anti-apoptotic transgenes (PR1 and MT) and one 350 bp DNA sequence associated with a nematode up-regulated gene
designated p23.  All three cDNAs were recovered anonymously from the plant-based cDNA screen and all have functional
links with conserved domains to anti-apoptotic orthologs in the animal kingdom (1,18).  We further demonstrated that
expression of these three sequences, not only protected the transgenic plants against PD symptoms and plant death but
maintained the population of Xf at four orders of magnitude or greater below the level observed in untransformed plants that
died within two months (108 bacteria per gram of stem tissue) following controlled inoculations in the greenhouse.  The key
point is that altered expression of the anti-apoptotic transgenes does not kill the bacteria but does restrain the titer in the
asymptomatic transgenic plants from a lethal level of 108 to a level of 104 to 102 cells/gm stem tissue in the most resistant
lines; the 104 titer is equivalent to that which we measured  in the asymptomatic host V. californica 12 months after
inoculation.  Interestingly, the 104 cells/gm stem tissue titer level in the asymptomatic transgenic plants and V. californica is
equivalent to that observed by Dr. Lindow in his rpfF transformed plants that also are asymptomatic suggesting that
susceptible grape plants can tolerate a bacterial population at the 104 without showing PD symptoms. Hence, the current
experiments indicate that the effect of the anti-PCD genes suppresses symptom expression but does not exert a direct
inhibiting effect on the bacteria.  The symptom suppressive genes do not act as antibiotics and do not affect the natural
endophytic ecology of the bacteria in the xylem.  In essence, an endophyte gone bad has been returned to the state of a benign
endophyte.
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ABSTRACT
In response to the strategy recommended by the Advisory Board, to express plant genes for particularly effective
polygalacturonase inhibiting proteins (PGIPs) or other inhibitors of Xylella fastidiosa (Xf) polygalacturonase (PG) in
transgenic grape rootstocks, this approach was adopted to enhance grapevine Pierce's disease (PD) resistance.  This proposal
describes integrated studies aimed at the eventual deployment of that strategy.  To ease the path to commercialization, PIPRA
investigators will examine relevant Intellectual Property and regulatory issues associated with the use of this strategy.  A
reliable source of recombinant Xf PG will be developed and the PG will be used to screen diverse PGIPs for their ability to
effectively inhibit the Xf PG enzyme.  Grape rootstock lines will be transformed with the most effective PGIPs and signal and
target sequences that maximize PGIP expression in the rootstock and its export to the non-transgenic scions.  At the
conclusion of the project, the capacity of the non-transgenic vines grafted on the transgenic rootstock to resist PD and
produce high quality grapes will be tested.

INTRODUCTION
Xylella fastidiosa (Xf), the causative agent of Pierce’s disease (PD) in grapevines, has been observed in infected portions of
vines.  Several lines of evidence support the hypothesis that Xf uses cell wall-degrading enzymes (CWDEs) to digest the
polysaccharides of plant pit membranes separating the elements of the water-conducting vessel system of plants (Thorne et
al., 2006). Xf CWDEs breakdown and thereby increase the porosity of these these primary cell wall barriers, allowing the
systemic expansion of the pathogen.  The genome of Xf contains genes putatively encoding a polygalacturonase (XfPG) and
several ß-1,4-endo-glucanases (EGase), CWDEs that digest cell wall pectin and xyloglucan polymers, respectively.  These
CWDEs are good candidates as factors that facilitate Xf systemic movement and PD development.  To demonstrate this,
Roper et al. (2007) developed a PG-deficient strain of Xf and showed that the mutant bacterial strain was unable to cause PD
symptoms, thus identifying the pathogen's PG as a PD virulence factor. Labavitch et al. (2006) reported that introduction of
PG and EGase into explanted stems of uninfected grapevines caused breakage of the cell wall of the PM and, subsequently
(Labavitch, 2007), demonstrated that substrates for these enzymes, pectins and xyloglucans, are present in grapevine PMs.

PG-inhibiting proteins (PGIPs) produced by plants limit damage caused by fungal pathogens (B. cinerea, the gray mold
pathogen) as well as by insects (Lygus hesperus, the western tarnished plant bug) (Powell et al., 2000; Shackel et al., 2005).
PGIPs have been shown to be selective inhibitors of PGs produced by some fungal pathogens and insects, but were reported
to be ineffective in inhibiting bacterial PGs (Cervone et al., 1990).  However, Agüero et al. (2005) by introducing a pear fruit
PGIP gene (Stotz et al., 1993; Powell et al., 2000) into transformed grapevines demonstrated that transgenic vines expressing
the pear PGIP exhibit decreased susceptibility to both fungal (B. cinerea) and bacterial (Xf) pathogens.  This result implied
that the pear PGIP provided protection against PD by inhibiting the Xf PG virulence factor, and in vitro assays using purified,
recombinant XfPG expressed in E. coli, Roper (2006) demonstrated that XfPG was inhibited by the pear PGIP (Labavitch,
2006).  In addition, Agüero et al. (2005) demonstrated that transgenic pear PGIP could be transported across a graft junction
of genetically engineered grapevines into the aerial portions of wild-type scions.

The overall goal of the project is to develop transgenic grape rootstock lines that optimally express PGIPs that most
effectively inhibit XfPG.  The project is designed to identify PGIPs that most effectively inhibit XfPG and to optimally
express that PGIP in grape.  The optimization of expression includes the use of transformation components with defined
Intellectual Property (IP) and regulatory characteristics, as well as sequences that result in the maximal expression of the
PGIPs in rootstocks and the efficient transport of PGIP proteins through the graft junctions to inhibit Xf PG produced by the
pathogen in scions.
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OBJECTIVES
1. Define a path for commercialization of a PD control strategy using PGIPs, focusing on IP and regulatory issues

associated with the use of PGIPs in grape rootstocks.
2. Identify plant PGIPs that maximally inhibit Xf PG.
3. Assemble transcription regulatory elements, Xf-inducible promoters and signal sequences that maximize PGIP

expression in and transport from roots.
4. Create PGIP-expressing rootstocks and evaluate their PD resistance.

RESULTS AND DISCUSSION
Research Objectives for Year 1-
A. Use existing pear PGIP-expressing grapes, test PD susceptibility of normal scions grafted to PGIP-expressing and -
exporting roots.
Agüero et al. (2005) described the use of transgenic 'Thompson Seedless (TS)' and 'Chardonnay (Ch)' grapevines expressing
the pear fruit PGIP in experiments that showed that (1) high level PGIP expression in grape tissues slows the development of
PD symptoms in needle-inoculated vines and (2) PGIP expressed by a transgenic rootstock is transported via the xylem
through the graft junction and into the stems of untransformed TS and Ch scions.  The inoculation tests were performed on
non-grafted transgenic vines, thus both root and shoot tissues would have been expressing the pear PGIP-encoding transgene
(PcPGIP).  However, to date, we have not shown that PGIP expressed in and translocated from roots into non-transgenic
shoots can provide PD protection.  Initial tests of this idea will use grafted portions of the transgenic TS and Ch vines that
were generated by Dr. Agüero.

We (Greve and Labavitch) have maintained several of these transgenic grape lines and have increased the number of plants
available vegetatively.  In addition, we have confirmed that they still transport PGIP in the xylem sap.  Zac Chestnut, a
graduate student funded through this project, also has analyzed the plants by PCR to confirm PcPGIP expression.  We are
now planning our grafting strategy in consultation with Dr. Andy Walker.  Over the Fall and Winter, we will generate plants
with pear PGIP-expressing lines as rootstocks and non-transgenic lines as scions.  These will be managed in the greenhouse
over the Winter and the expression and transport of pear PGIP will be confirmed in early Spring.  In Spring, we will do
inoculations of these plants and comparable plants with non-transgenic roots and scions and follow the development of
disease symptoms and, near the end of the incubation of these inoculated plants, use destructive sampling to determine the
extent to which the Xf population has spread in the vine.  We will use both the virulent "Fetzer" Xf strain and the "Fetzer"
strain whose single PG-encoding gene was knocked out (Roper et al., 2007).  Dr. Roper used the PG knock-out line to
demonstrate that the pathogen's PG is a PD virulence factor.

B. Express PGIPs in Arabidopsis and test for optimal inhibition of Xf PG.
Our strategy is to identify plant PGIPs that are maximally effective in inhibition of the Xf PG and identifying that optimal
PGIP is another objective of the first year's work. Arabidopsis lines have been transformed through the floral dip technique
using Agrobacterium-mediated transformation vectors (Clough and Bent, 1998).  Transformation vectors were assembled
using pCAMBIA vectors (http://www.cambia.org.au/daisy/cambia/585.html) that are free from intellectual property
restrictions.  We have successfully expressed sequences encoding five fruit PGIPs (one from pear and four from tomato)
using the CAMBIA vector p1301, linking the PGIPs to the poly-His tag with an intervening protease Xa cleavage site
(Figure 1).  To prepare the transformation vectors, we removed the GUS coding region from p1301 and replaced that
sequence with the PGIP full-length coding sequences including the signal peptide sequences for extracellular targeting.  We
have self-crossed these lines and obtained homozygous progeny identified by resistance to the selectable marker and by PCR
for the transgenic sequences.  We are evaluating whether the PGIPs we have expressed in Arabidopsis using the modified
p1301 and the CaMV 35S promoter are active and have appropriate inhibition specificities, and we will continue to include
the intervening protease Xa cleavage site so that, if it is necessary for obtaining active inhibiting protein, the poly-His tag
used for affinity purification of the expressed PGIPs can be removed by protease Xa after purification.  We also have
identified three M. truncatula PGIP-like sequences and are in the midst of preparing Arabidopsis transformation vectors for
their expression.  For this proposal, we would like to add to the collection 5-6 other PGIP-like sequences that we have
identified based on phylogenetic comparisions and charge comparisons of PGIPs (Tables 1 & 2; Figure 2).

The total charge on proteins is determined by pH and the sequences of each protein.  The total charge of the proteins may
serve as a general guide towards predicting whether PGs and PGIPs interact and therefore whether a specific PGIP is likely to

Figure 1. Schematic diagram of constructs for PGIPs
and PGIP-like proteins linked to the cleavable poly-His
tag and expressed in Arabidopsis.

Protease Xa site Poly-His tagPGIP sequence
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inhibit specific PGs.  Certainly, the specific local chemistry is most important, but the total charge may serve as a deal
breaker, so to speak, of the possibility that a PG interacts with a PGIP.  Dan King (Taylor Univ.) is beginning to examine the
XfPG protein, as it is quite unusual.  The charge of the XfPG is unusually positive (+22).  The only PGs King has come across
with such positive charges are putative plant PGs, such as a grape PG (AAK81876).  Interestingly, the grape PGIP is
particularly positive as well (+19).  Regardless of local chemistries, it would be hard to imagine the XfPG and the grape PGIP
proteins having a strong interaction for each other.  From another point of view, the pear PGIP has shown some ability to
inhibit the XfPG, and the pear PGIP has a particularly small charge (+9). Table 1 shows some examples of the total charges
of PGs and PGIPs at six pH values.

Table 1. Total Protein Charge vs. pH of selected PGs and PGIPs
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This total charge analysis has suggested to us that by examining PGIPs that have been identified in other plants, we can select
PGIPs that are likely to be good candidates for inhibiting XfPG and express these PGIPs in Arabidopsis for evaluation.  To
accomplish this, we have identified 52 non-redundant PGIPs in GenBank (Table 2) and we have evaluated their sequence
similarities (Figure 2).
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Table 2. List of PGIP sources.
Common name Species Protein a Accession Numberb

Common bean, pinto bean Phaseolus vulgaris cv. Pinto PvPGIP1 AJ864506
Common bean, pinto bean Phaseolus vulgaris cv. Pinto PvPGIP2 AJ864507
Common bean, pinto bean Phaseolus vulgaris cv. Pinto PvPGIP3 AJ864508
Common bean, pinto bean Phaseolus vulgaris cv. Pinto PvPGIP4 AJ864509
Soybean Glycine max cv. Williams 82 GmPGIP1 AJ972660
Soybean Glycine max cv. Williams 82 GmPGIP2 AJ972661
Soybean Glycine max cv. Williams 82 GmPGIP3 AJ972662
Soybean Glycine max cv. Williams 82 GmPGIP4 AJ972663
Ume (Japanaese apricot) Prunus mume cv. Dali PmuPGIP DQ364056
Chinese plum, Japanese plum Prunus salicina cv. xiaohuangli PsaPGIP DQ364055
Common pepper Capsicum annum cv. arka abhir CaPGIP AM181174
Chinese cabbage Brassica rapa subsp. pekinensis BrPGIP AY964100
Granny Smith apple Malus x domestica cv. Granny Smith MdPGIP DQ185063
Peach Prunus persica PpePGIP AY903218
Wild plum, American plum Prunus americana PamPGIP AY883418
Flemish Beauty pear Pyrus communis cv. Flemish Beauty PcFPGIP AY333105
Asian pear Pyrus pyrifolia cv. Kinchaku PpyKuPGIP AY333103
Potato Solanum tuberosum cv. Istrinskii StPGIP AY662681
Wild carrot Daucus carota DcPGIP AY081214
False Spiraea Sorbaria sorbifolia SsPGIP AF196947
Chinese Firethorn Pyracantha fortuneana PfPGIP AF196929
Taiwanese Photinia Photinia serratifolia PsePGIP AF196907
Oneseed Hawthorne Crataegus monogyna CmPGIP AF196881
Mahaleb cherry Prunus mahaleb PmaPGIP AF263465
Bartlett pear Pyrus communis cv. Bartlett PcBPGIP L09264
Thale cress Arabidopsis thaliana (Col.) AtPGIP1 NM_120769
Thale cress Arabidopsis thaliana (Col.) AtPGIP2 NM_120770
Bowman's root Gillenia trifoliata GtPGIP AF196915
Flowering Quince Chaenomeles speciosa CspPGIP AF196871
Rape Brassica napus cv. DH12075 BnPGIP1 AF529692
Rape Brassica napus cv. DH12075 BnPGIP2 AF529694
Rape Brassica napus cv. DH12075 BnPGIP3 AF531456
Rape Brassica napus cv. DH12075 BnPGIP4 AF531457
Apricot Prunus armeniaca cv. Marille Bauer ParPGIP AF020785
Cherry tomato Solanum lycopersicum cv. VFNT

Cherry
LePGIP L26529

Kiwi Actinidia deliciosa cv. Hayward AdPGIP Z49063
Iyokan Citrus iyo CiPGIP1 AB016205
Iyokan Citrus iyo CiPGIP2 AB016206
Rough lemon Citrus jambhiri CjPGIP1 AB013397
Rough lemon Citrus jambhiri CjPGIP2 AB015198
Sweet orange Citrus sinensis cv. Hamlin CsiPGIP Y08618
Mikan Citrus unshiu CuPGIP AB016204
Carrot Daucus carota cv. Autumn King DcAFP AF055480
Red River Gum Eucalyptus camaldulensis EcPGIP AF159168
Rose gum (Flooded gum) Eucalyptus grandis EgPGIP AF159167
Shining gum Eucalyptus nitens EnPGIP AF159171
Sydney Blue Gum Eucalyptus saligna EsPGIP AF159170
Timor White Gum Eucalyptus urophylla EuPGIP AF159169
Kumquat Fortunella margarita FmPGIP AB020529
Trifoliate orange Poncirus trifoliata PtPGIP AB020528
Asian pear Pyrus pyrifolia cv. Kikusui PpyKiPGIP AB021791
Red raspberry Rubus idaeus cv. Autumn Bliss RiPGIP AJ620336
aProtein names given to match abbreviations used in Figure 2.
bGenBank nucleotide accession numbers.
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XfPG Sequence

Figure 3.  Schmatic diagram of the pMTBiP vector used to transform
Drosophila cells for XfPG expression

C. Optimally express Xf PG, using recombinant
protein expression systems
Since previous E. coli PG over-expression studies
resulted in significant amounts of protein but little
activity (Roper, 2006), we (with co-PI Booth at
Texas State U. - San Marcos) will utilize a
Drosophila expression system.  For expression in
Drosophila, we probably want two versions of the
XfPG, if possible; one with the antibody epitope and
one without (in case the epitope causes trouble).
The XfPG gene will be ligated into pMTBiP/V5-
HisA (Figure 3) and transformed into Drosophila
Schneider 2 cells using protocols provided by
Invitrogen and modified by Prof. Booth.  Existing
cloned XfPG will be reamplified by PCR to create an
NcoI site at the N terminus and probably an XhoI
site at the C terminus.  The sequence of the XfPG
will be checked and the C terminus of the inserted
XfPG will be modified by PCR to produce an in-
frame fusion to C terminal additions (V5 (the epitope
for detection) + 6xHis (for affinity purification with
Ni)) without an intervening stop codon.  A second
expression construct will also be prepared that
includes the XfPG stop codon before the C terminal
additions in case they interfere with protein folding.
More detailed assays of active preparations (Gross,
1982; Roper et al., 2007) will be done at UC Davis

to characterize the expressed recombinant Xf PG.  Once enzyme activity is confirmed, expression will be optimized by
varying the concentration and time of exposure to the inducer followed by purification with nickel affinity chromatography.

D. Evaluate IP and licensing status of the plant expression construct components for the PGIP-based rootstock strategy.

For this project, we proposed to
develop a PGIP plant transformation
construct that optimally confers
tolerance to PD AND that has
maximum legal freedom-to-operate
(FTO) with respect to the underlying
intellectual property, thus providing the
maximum potential to gain regulatory
approval.  The results of a preliminary
IP audit of the original PGIP expression
construct (see Agüero et al. 2005)
revealed the DNA module contained a
number of proprietary components
including: the CaMV35S promoter and
the nptII (kanamycin) selection marker
patented by Monsanto Company, the
GUS marker gene patented by
CAMBIA, and the pear PGIP gene
patented by the University of
California. Licensing these proprietary
technologies, particularly from the
private sector, may prove to be a hurdle
for commercial deployment.
Furthermore, this analysis also noted
the presence of the GUS-marker gene
and His tags, which although necessary
during the proof-of-concept phase, may
compromise downstream regulatory
approval of commercial transgenic
plants.  To advance this project beyond

Figure 2. Unrooted phylogenetic tree of PGIPs.
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the “proof of concept” stage, the Public Intellectual Property Resource for Agriculture (PIPRA) is conducting an in-depth
analysis of all component technologies that will be integrated into the PGIP gene construct as well as the enabling
technologies required to transfer the PGIP construct into a grape rootstock.  This analysis also will assess the likelihood that
components of the PGIP gene construct will be able to gain regulatory approval for commercialization.

CONCLUSIONS
1. Because of the limited time that the funds have been available for this project (2 months), this report documents only the

activities accomplished in that time.
2. XfPG protein has an unusually high positive charge at the pH expected in plant tissue.
3. The sequences for currently available PGIPs have been collected and compared so selections of additional PGIPs to be

expressed in Arabidopsis represent the diversity of PGIP sequences.
4. The total charge of the PGIP proteins can be used as an indicator of the likelihood of interaction with and inhibition of

the XfPG.
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ABSTRACT
The overall goal of the work in this project is to characterize the role of the pit membranes (PMs) of grapevine xylem vessels
in limiting the systemic movement of Xylella fastidiosa (Xf).  Work carried out in the project in previous years has made use
of monoclonal antibodies that recognize specific cell wall polysaccharides (pectins with varying degrees of methyl
esterification and xyloglucan [XyG]) and this work has revealed the presence of these polysaccharides in grapevine pit
membranes.  The demonstration that these polysaccharides are present is consistent with earlier observations indicating that
polygalacturonase (PG) and endo-b-1,4-glucanase (EGase) are used by the pathogen to digest pit membranes as its
population expands and spreads systemically because these enzymes would be expected to digest pectins and XyG.  We now
report on tests showing that PG and EGase introduction into grape stem explants is sufficient to open the PMs so that Xf can
freely traverse the stem explants containing several internodes.  In addition, several groups, including our own, have reported
that tyloses, induced barriers to pathogen movement in the grapevine xylem system, also are important in limiting Pierce’s
disease (PD) spread but are also an important cause of the breakdown in water movement through infected vines.  Other
studies have suggested that ethylene synthesis by grapevines may be an important factor in PD development and tylose
formation.  In this report we describe an experiment that may pave the way for testing the extent to which ethylene produced
by an infected vine is responsible for the full development of PD symptoms.

INTRODUCTION
For several years, Labavitch and the listed collaborators have been testing a model proposed to describe the development of
Pierce’s disease (PD) in grapevines (Labavitch et al., 2001, 2002; Labavitch and Matthews, 2003; Labavitch et al., 2004,
2005; Pérez-Donoso, 2006; Pérez-Donoso et al., 2006).  Findings reported in the last four PD Symposia indicate that PG and
EGase enzymes, likely produced by Xf resident in xylem water-conducting cells (also Roper et al. 2007) are important
contributors to the escape of the pathogen from the vessels into which it has been introduced by GWSS, thus initiating its
systemic spread through the vine and the subsequent development of PD symptoms.  However, observations made only in the
past year have suggested that seasonal changes in normal grapevine development may also contribute to the systemic spread
of Xf, beginning in late Spring.  These observations may be linked to those made by Rost, Matthews et al. (Thorne et al.,
2006) suggesting that relatively long xylem conduits, likely to be of primary xylem origin, may allow relatively long distance
passage (i.e., the length of two-three internodes) of Xf into grape leaves.  While this pathway is not likely to facilitate long
distance systemic spread of the pathogen through stems, it may facilitate rapid movement from stems into which Xf has been
introduced, into leaves where disease symptoms then become evident.  Work in this project will examine aspects of these
reports, with a strong focus on factors that might affect the integrity of the pit membranes in grapevine xylem water conduits.
In this report, we report on work that may have identified a way to test the role of ethylene produced by Xf-infected vines in
the development of tyloses, vessel blockages that are likely to be more permanent barriers of Xf movement in grapevines
which also are barriers that reduce nine water movement and, thus, may play an important role in the vine decline that
accompanies PD.

OBJECTIVES
1. To characterize the biochemical action of Xf EGase, in vitro and in planta and determine if it is inhibited by plant

proteins that have been identified as xyloglucan-specific endoglucanase (EGase)-inhibiting proteins.
2. To examine the full range of effects on grapevine pit membrane porosity that result from introduction of cell wall-

degrading polygalacturonase (PG) and EGase.
3. To repeat our 2005 observations of a late Spring, dramatic increase in the porosity of grapevine pit membranes.
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RESULTS AND DISCUSSION
Objective 2. In previous PD Research Symposia (Labavitch et al., 2006, 2007), we reported observations suggesting that that
the Xf PG and EGase play important roles in digestion of PMs so that the pathogen can spread through infected grapevines
via the xylem.  However, we had not shown that the combined actions of the two pathogen enzymes did, in fact, open a
pathway that Xf could use to move through PMs.  We have now used our grapevine xylem flushing system (Labavitch, 2006)
to introduce PG and EGase to the lower (proximal) end of explanted stems and then followed enzyme introduction with cells
of the Xf 'Fetzer' strain.  Then the stem was continuously flushed with water and fractions of the water eluted from the distal
stem end were collected.  These fractions were then assayed for Xf presence by PCR.  This experiment was replicated and in
each case, PCR revealed the pathogen's presence in collected fractions.  Thus, the PG and EGase open up PMs so that they no
longer block pathogen movement.

A continuing objective. Remaining from another project that has ended and also to the overall interest in barriers that serve to
limit pathogen spread that is a theme of this current project was an experiment to determine whether the production of
ethylene plays a role in PD symptom development in Xf-inoculated grapevines.  A key to performing that experiment has
been the need to have a way to block the grapevine's responses to ethylene.  Earlier, inconclusive tests were based on spray
applications of the ethylene receptor-blocking compound 1-methylcyclopropene (1-MCP).  These did not suppress the vine's
ethylene response.  However, earlier this year we obtained a new, sprayable formulation of 1-MCP.  Postdoctoral researcher
(now Asst. Prof.) Qiang Sun had reported that grapevines respond to Winter pruning by producing tyloses in vessels near to
the pruning cuts (within two-three cm of the cuts), thereby blocking the vessels and showed that this was a response to the
ethylene made by the cut grapevine stem tissues (Sun et al., 2006, 2007).  We therefore carried out a test of the ability of the
new 1-MCP spray to block pruning-induced tylose formation.  Sets of 'Chardonnay' vines were used for the test.  One set of
six vines (the test vines) was sprayed with a solution of the new 1-MCP formulation at a concentration calculated to provide a
1-MCP concentration of 200 ppm.  The other set of vines (control vines) was not treated.  On the following day, the test vines
were again sprayed with 1-MCP and all control and test vines were pruned. Dr. Sun's study (Sun et al., 2006) had reported
extensive tylose formation in pruned vines within one week of pruning.  Therefore, seven days after pruning, the terminal
three cm of each of the pruned stems in the control and test vines was removed and fixed for histochemical examination of
tylose development.  Sections from the distal five mm of these stem explants were cut, stained with toluidine blue, and
examined with the light microscope (Shackel and Labavitch, 2006).  These observations indicated that there was extensive
tylose development near the tips of pruned stems that had not been treated with 1-MCP and that the 1-MCP treatment had
dramatically reduced tylose formation.

This result per se demonstrates that grapevine responses to ethylene that affect vessel function can be inhibited.  The pruning-
induced tylose formation is a response to ethylene produced by wounded grapevines.  However, we presume that the inhibitor
will also influence a vine's response to infection-promoted ethylene.  Thus, we are now in a position to test the possible role
of inoculation/infection-induced ethylene production in PD symptom development.  This test will be carried out in the
Spring/Summer, 2009.

CONCLUSIONS
1. The introduction of pure PG and EGase, two enzymes produced by Xf within the grapevine xylem system, into grapevine
stem explants will introduce a pathway through the vessels (presumably via their pit membranes) that permits free passage of
the pathogen.
2. 1-MCP sprays can block grapevine responses to vine-produced ethylene, paving the way to studies that test the role of
ethylene in PD symptom development.
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ABSTRACT
The development of Pierce’s disease (PD) in grapevines depends, at least in part, on the ability of the Xylella fastidiosa (Xf)
pathogen to spread from the point of infection and ultimately develop a population that is systemic in the infected plant.  This
systemic spread of the pathogen is limited by the pit membranes (PMs) that separate one xylem water conduit from its
neighbors and, perhaps, by the production of tyloses and polysaccharide-rich gels that are produced in and block xylem cells
following infection.  The work in this proposal will describe the polysaccharides of PMs, tylose cell walls and gels by using
immunohistochemical tools and determine whether situations in which grapevine infection with Xf does not result in PD are
situations in which PM integrity is not disrupted by the pathogen so that pathogen spread is limited by intact PMs and/or
production of tyloses or gels.

INTRODUCTION
The introduction of Xylella fastidiosa (Xf) to grapevine xylem tissues often results in Pierce's disease (PD) and, ultimately, to
vine death.  Several studies over the past five years have indicated that the expansion of the locally introduced, relatively
small population of Xf cells throughout the vine, creating a systemic infection, is the cause of vine death (Krivanek and
Walker, 2005; Labavitch, 2007; Lin, 2005; Lindow, 2006a, b, 2007a, b; Rost and Matthews, 2007).  The individual elements
of the water-conducting tubes in xylem are separated from one another by the so-called pit PMs, primary cell wall "filters"
whose meshwork is too small to permit Xf passage (Labavitch et al., 2004).  Thus, it has been generally believed that the
pathogen uses cell wall-degrading enzymes (CWDEs) to digest the polysaccharides of the PMs, opening the primary cell wall
barrier and permitting the systemic expansion of the pathogen population.

The genome of Xf contains genes encoding polygalacturonase (PG) and a few ß-1,4-endo-glucanases (EGase), CWDEs that
digest cell wall pectin and xyloglucan polymers, respectively. Such enzymes are good candidates for pathogen factors that
facilitate Xf systemic movement and PD development.  This supposition has been supported by several studies performed
over the past several years.  Roper et al. (2007) reported the generation of a PG-deficient strain of Xf and showed that it was
unable to cause PD symptoms, thus identifying the pathogen's PG as a PD virulence factor. Labavitch et al. (2006) reported
that introduction of PG and EGase into explanted stems of uninfected grapevines caused the breakage of the PM cell wall
network and, subsequently (Labavitch, 2007), that substrates for these enzymes, pectins and xyloglucans, are present in
grapevine PMs.

Research in the laboratory of the PI on the present proposal has shown that PG-inhibiting proteins (PGIPs) limit the
development of PD in grapevines (Agüero et al., 2005).  Research in Cooperator Steve Lindow's program has focused on the
role of a diffusible signal factor produced by Xf in controlling the pathogen's expression of virulence functions that affect
whether the pathogen spreads systemically in grapevines and causes PD or does not (Lindow, 2007a, b).  Cooperator Andy
Walker and his colleagues have identified a grapevine quantitative trait loci (QTL) that contains the PD resistance (PdR1)
locus (Walker and Riaz, 2007) that eventually will be deployed in grapevine genotypes that will have enhanced resistance to
PD.  Walker, Lindow and Cooperator Hong Lin (Lin, 2007), have all made use of natural variations in the PD
resistance/susceptibility of different grape germplasm in order to understand the factors that influence Xf movement in
grapevines and, therefore, PD development. It is reasonable to assume that differential PD susceptibility of grape genotypes
is determined by (1) genetic variation in PM barriers to pathogen movement; differences in porosity, polysaccharide
composition or susceptibility to Xf's CWDEs or/and (2) the post-infection deployment of tyloses and gels, factors that could
restrict the pathogen to the few vessels into which it has been introduced.

While the production of gels and tyloses in response to infection has been examined in several programs (e.g., Lin, 2005;
Stevenson et al., 2004), this has not been done using techniques that can specifically identify the polysaccharides that make
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up the gels and tylose walls.  The utility of immunohistochemical techniques in identifying the polysaccharides of grapevine
PMs has recently been demonstrated by Co-PI Sun (Labavitch, 2007).  These techniques may contribute to an understanding
of the differences in xylem water-conducting cell structures that have been thought by many to hold the key to grapevine
resistance to PD.  This proposal will use these techniques in several systems where differential resistance to PD have been
shown in order to obtain the detailed structural and spatial information that may help explain why some grapevine genotypes
are resistant to PD while others are not.  It is important to note that while the research in this program is likely to enhance our
understanding of grapevine PD resistance it will not lead immediately to new approaches to PD control.

OBJECTIVES
1. Determine if the development of xylem obstructions (tyloses and pectin-rich gels) and the polysaccharide structure and

integrity of pit membranes are affected by Xf inoculation of grapevines transformed to express the PGIP from pear and
other plant species in rootstocks and in scions.

2. Determine whether there are differences in pit membrane porosity or polysaccharide structure between resistant and
susceptible grapevines.  To what extent are these PM characteristics and the production of tyloses and gels modified by
introduction of Xf to PD-resistant and -susceptible genotypes?

3. Determine the extent to which changes in pathogen virulence resulting from altered production of diffusible signal factor
(DSF) correlate with the appearance of tyloses, gels and damaged PMs in inoculated vines.

4. Determine whether the impacts of inoculation on PM integrity and the production of vascular system occlusions
identified in tested greenhouse-cultured vines also occur in infected vines growing in the field.

RESULTS AND DISCUSSION
The primary work on this project will be performed at the University of Wisconsin-Stevens Point, where Co-PI Dr. Qiang
Sun is an Asst. Professor.  The project is currently funded only for the first of the two years of work that were proposed in
January, 2008.  Unfortunately, because Dr. Sun did not have a history of funding from the CDFA at his university, he could
not be "advanced" research support from his Office of Research, thus his full effort at Wisconsin could not be started until the
sub-contract could be established with UC Davis and UCD could not establish that until funding was available from the
CDFA (mid-August).  Nevertheless we have made considerable progress, primarily in developing the techniques required for
addressing our four objectives in several grape genetic backgrounds.  We have shown that PMs of these different grapes
contain homogalacturonans, the target cell wall substrate for the Xf PG "PD virulence factor,” setting the stage for the
detailed studies identified under Objective 1.  We have also begun describing variations in the gross vascular system
architectures of the different grape germplasms.

The following five grape species/cultivars of different susceptibilities to PD have been selected for our experiment: Vitis
vinifera cv. Chardonnay (susceptible), V. vinifera cv. Riesling (less susceptible), Muscadinia rotundifolia (highly tolerant),
89-0908 and 89-0917 (both are selected from V. arizonica x vinifera and are resistant to PD).  We have succeeded in using
two monoclonal cell wall antibodies (JIM 5 and JIM 7) to distinguish pectin wall components of the living parenchyma cells
adjacent to water-conducting vessels of the secondary xylem tissue (wood) in Chardonnay and Riesling (Figure 1).  Our
results indicate that homogalacturonans (HGs) with different levels of methyl esterification are present in PMs between
vessels as well as between vessel and axial parenchyma cells (Figure 1A-C).  Cell walls of developing tyloses (Figure 1D)
and inner secondary wall of xylem fibers (Figures 1C and D) also contained the HGs. In our next step, the protocols
established will be used to identify HGs in the other grape species/cultivars, particularly in PMs that are thought to be the
barriers that should limit systemic spread of Xf in grapevines.  Some other wall antibodies (CCRC-M1 and 2F4 etc.) will also
be tested to detect other possible cell wall components (pectins and xyloglucans) in all the five grape groups.  Our ultimate
goal is to use these tools for localized cell wall component visualization to determine whether the post-inoculation integrity
of pit membranes differs between PD-susceptible, -tolerant and -resistant grape germplasm (Objectives 1 to 3).

Understanding vessel morphology is essential to elucidate any possible differences in susceptibility of these grape groups,
thus we have also made some anatomical analyses of secondary xylem. Our results indicate that there are major differences
among these groups in the arrangement, density and diameter of vessels. In Riesling (Figure 2A and E) and Chardonnay
(Figure 2D), vessels are relatively evenly distributed in xylem, are mostly solitary and have less difference to one another in
size.  Vessel density is also close in these two cultivars (34.6/mm2 in Chardonnay and 30.7/mm2 in Riesling).  However,
vessel diameters in Chardonnay (68.2 μm) are generally smaller than those in Riesling (84.7 μm).  In 89-0917, vessels are not
uniformly distributed in xylem tissue with a density of 42.8/mm2.  They are usually solitary or in multiples of 3-5 cells.
Solitary vessels are usually larger while most vessels in multiples are much smaller.  Vessels in 89-0908 are more or less
evenly spread through the secondary xylem and usually form radial chains of 3-6 cells.  Vessels have an average diameter of
66.4 μm, but individual vessels show large size differences. In Muscadinia rotundifolia, vessels usually forms radial chains of
2-5 cells and individual vessel sizes (56.5 μm diameter, at average) vary less than in some other groups.  The vessel density is
highest (53.1/ mm2) among the five groups.  Morphological analysis of pits and pit membranes on lateral vessel walls has
also been made (Figure 3).  Two types of pits (intervessel pits and vessel-parenchyma pits) are common in all the five grape
groups (Figure 3A).  As for vessel parenchyma pits, PMs are intact in all groups (Figure 3E), except for 89-0917 in which
PMs that are broken in a relatively regular pattern are common.  No other obvious differences have been found in the
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structures and distributional patterns of pits on vessel walls (Figure 3B-D).  Further investigation is still needed to clarify any
interconnection between these anatomical characteristics and susceptibility.  As for vessel-parenchyma pits, PMs are intact in
all the groups (Figure 3E) except 89-0917 in which PMs that are broken in a relatively regular pattern are common.

Figure 1.  Cell wall composition revealed by JIM 5 (A) and JIM 7 (B-D) in Chardonnay, a susceptible cultivar. JIM 5 and
JIM 7 can be used to distinguish weakly methyl esterified homogalacturonans (Me-esterified HG) and heavily Me-esterified
HGs, respectively.  A. Green fluorescence from the rows of pit membranes  (PMs) between a vessel and axial parenchyma
cells indicates the presence of weakly Me-esterified HGs. B. Image of xylem tissue under transmission illumination, showing
vessels, parenchyma cells surrounding vessels, and fiber cells. C. Image of xylem tissue under both transmission light and
fluorescent light. Green fluorescence is emitted from parenchyma cell walls, PMs between vessel and parenchyma cells and
fiber inner wall layers, indicating the presence of heavily Me-esterified HGs in these locations. D. Transverse section of a
vessel containing tyloses, showing HG presence in tylose cell walls.

Figure 2.. Differences in the distribution, arrangement and sizes of vessels among grapes of different PD susceptibilities. A
and E. Riesling. Vessels are larger in diameter than other grape groups and mostly solitary, occasionally in groups of up to 3
vessels. B and G. 89-0917 grape. Vessels are usually in multiples of 3 – 5 and individual vessels differ in size. C and H.
Muscadinia rotundifolia. Vessels of similar size are usually in radial chains of 3-5 cells. D. Chardonnay. Vessel arrangement
is similar to Riesling. F. 89-0908 grape. Radial chains of 3-6 vessels are common and vessels differ in size.
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Figure 3. Pits and pit membranes in lateral vessel walls in grapes of three different susceptibilities. A-C. Muscadinia
rotundifolia (highly resistant grape species). A. Two types of pits are present on vessel lateral walls: vessel-axial parenchyma
pits (the vessel on the left) and intervessel pits (the vessel on the right). B. Vessel-axial parenchyma pits. Vessel secondary
walls have been partially peeled on the right. C. Pit membranes between vessel and axial parenchyma cells are in a ladder-
like arrangement (scalariform) along the vessel axis.  D and E. Riesling (less susceptible vinifera cultivar), showing that
scalariform intervessel pit membranes are arranged tightly. E. Bordered vessel-axial parenchyma pits, showing intact pit
membranes. F. Bordered vessel-axial parenchyma pits in tolerant 89-0917 grape (V. vinifera x arizonica, tolerant grape).
Many pit membranes are broken in a more or less regular way.

CONCLUSIONS
1. Because of the limited time that the funds have been available for this project, this report documents only a small portion

of the work planned for year 1.
2. Immunohistochemical studies indicate the presence of simple homogalacturonan pectins in the cell wall fabric of pit

membranes from PD-susceptible, -tolerant and -resistant grape grapevines.
3. Xylem vessel diameters and distribution patterns of vessels within the secondary xylem tissues of PD-susceptible, -

tolerant and -resistant grape grapevines are described.
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ABSTRACT
Specific strains of the bacterium Xylella fastidiosa are economically important plant pathogens and cause scorch diseases in a
variety of plants.  One of these strains causes a scorch disease known as Pierce’s disease (PD) of grapevine.  This disease has
caused significant disruption to the wine industry centered in the Temecula, California region; at the height of the most recent
PD epidemic in the late 1990’s, 25% of the grapevines in this area were lost before emergency quarantine and control
measures could be instituted.  Under these circumstances, the 2006 discovery of a population of apparently PD-resistant
grapevines in the area was of particular interest.  The vines were all located in a single vineyard, which had total PD-related
losses of approximately 10%, while a neighboring vineyard suffered a nearly 100% loss of the same variety.  In addition, a
similar phenomenon was observed in a grapevine population located on the Agricultural Operations grounds at the University
of California, Riverside.  While the cause of this apparent resistance is unknown, one possible explanation for this resistance
is that it is being conferred by bacteria present in resistant vines but not in susceptible vines.  In order to test this hypothesis,
cane samples from both the apparently susceptible populations and the apparently resistant populations were surface
sterilized and plated onto standard microbiological media.  Any observed bacterial growth was diluted into standard liquid
media and then streaked out in order to obtain pure cultures, which were identified using 16S sequencing. Current results
show that multiple Paenibacillus species are present more often in asymptomatic plants than in symptomatic plants at both
locations.

INTRODUCTION
Specific strains of the bacterium Xylella fastidiosa (Xf) cause disease in almonds, grapevines, and a variety of other
economically important plants (Davis 1978, 1980 and Purcell 1999). Xf is spread by the glassy-winged sharpshooter
(GWSS), Homalodisca vitripennis, formerly known as H. coagulata (Redak et al. 2004 and Takiya et al. 2006).

In grapevines, one strain of this bacterium is the cause of Pierce’s disease (PD).  Since the preferred host of GWSS is citrus,
vineyards close to a citrus grove are at increased risk for the development of PD (Perring et al. 2001). In addition,
Chardonnay vines are known to be more susceptible to PD than other varieties (UC IPM).  The Weaver vineyard is planted
with Chardonnay vines and is immediately across from two citrus groves, meaning that it is at high risk of developing PD.
However, while adjacent Chardonnay vineyards suffered catastrophic crop failure, the Weaver vineyard had a PD-related loss
of far less, approximately 10%.  This observation was of special interest since many of the plants in this vineyard were old
enough to have survived the initial PD epidemic that occurred after the GWSS was accidentally introduced into California.
The Agricultural Operations vineyard at the University of California, Riverside contains both symptomatic and asymptomatic
Chardonnay vines in close proximity.  These vines are younger than the ones at the Weaver Vineyard.

One possible explanation for this phenomenon is that it is being conferred by bacterial endophytes that live inside the
apparently resistant plants but not in the more susceptible plants.  The endophytic bacterium, Curtobacterium flaccumfaciens,
has already been shown to confer resistance to Xf in sweet orange plants (Lacava et al. 2004).

To test this hypothesis, cane samples from asymptomatic and symptomatic grapevines at both locations were surface-
sterilized and then plated on microbiological media.  The genus of any resulting bacterial growth was then identified using
16S gene sequencing.  The 16S gene has been widely used to classify unknown organisms (Turner 1997).  Because this gene
evolves very slowly, it is most useful for classifying organisms at the genus level, but not at the species or subspecies level
(Weisburg et al. 1991).  Even so, it is widespread practice to include a species name when identifying bacteria based on this
sequence.  These designations can be considered putative in nature.

OBJECTIVES
The primary goal of this research was and continues to be to test the initial hypothesis through isolating bacterial endophytes
from symptomatic and asymptomatic grapevines at both locations and using 16S analysis to identify them.

RESULTS AND DISCUSSION
A comparison of the endophytes isolated from the vines at both locations showed that members of the genus Paenibacillus
occurred more frequently in asymptomatic vines than in symptomatic vines (Table 1) (Parker 2008).  This observation was
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of special interest since it is already known that Paenibacillus polymyxa can confer resistance to the bacterial plant pathogen
Erwinia carotovora in gnotobiotic Arabidopsis thaliana plants (Timmusk and Wagner 1999).  It is possible that
Paenibacillus could be playing a similar role inside the asymptomatic grapevines, since one of the Paenibacillus isolates
tested in the laboratory was found to retard the growth of the PD strain of Xf in both co-culture and in grapevines (A. Arora,
personal communication). In addition, it has recently been shown that other members of Paenibacillus can reduce the growth
of Xf or even clear it altogether on microbiological media (Kirkpatrick and Wilhelm 2007).

In addition, the presence of certain endophytes within the plants (most notably Bacillus) appeared to be dependent on the
time of year the plants were sampled (Parker 2008).  In the Weaver vineyard, Bacillus was most commonly isolated in May.
However, in the Agricultural Operations vineyard, Bacillus was most frequently in May and October (see Tables 2 and 3).
The reasons for this are not yet clear.

Table 1.
Symptomatic

Code Genus Bit Score E-value Plant Date Collected

45V16 1F C1 Achromobacter 2039 0 No 4-May-06
45V16 2D C1 Bacillus 863 0 No 4-May-06
45V16 2E C1 Bacillus 2771 0 No 4-May-06
46V16 2D C1 Bacillus 500 7.00E-138 No 4-May-06
46V19 1C C7 Bacillus 2454 0 No 27-Jul-06
46V19 2D C1 Bacillus 2736 0 No 4-May-06
46V19 2F C1 Bacillus 2605 0 No 4-May-06
47V1 1A C1 Paenibacillus 2789 0 No 4-May-06
47V1 1B C1 Bacillus 1844 0 No 4-May-06
47V1 1C C2 Bacillus 2389 0 No 18-May-06
47V1 1E C1 Bacillus 1162 0 No 4-May-06
47V1 1F C1 Bacillus 2365 0 No 4-May-06
47V1 2B C1 Paenibacillus 293 1.00E-75 No 4-May-06
47V1 2C C3 Bacillus 2692 0 No 31-May-06
47V3 1B C1 Bacillus 2351 0 No 4-May-06
47V3 1C C2 Bacillus 1015 0 No 18-May-06
47V3 1E C12 Bacillus 401 2.00E-108 No 5-Oct-06
47V3 2D C13 Bacillus 1009 0 No 19-Oct-06
47V3 O C3 Planococcus 2609 0 No 31-May-06
47V8 1A C9 Bacillus 2561 0 Yes 24-Aug-06
47V8 R6 Bacillus 2627 0 Yes 4-May-06
48V10 1B C1 Bacillus 2591 0 No 4-May-06
48V10 1B C2 Bacillus 2407 0 No 18-May-06
48V15 1C C3 Bacillus 1084 0 No 31-May-06
48V15 1D C2 Bacillus 2605 0 No 18-May-06
48V15 2A C7 Bacillus 910 0 No 27-Jul-06
48V19 2F C2 Bacillus 2379 0 No 18-May-06
49V9 1A C2 Bacillus 979 0 No 18-May-06
49V9 1C C2 Bacillus 2533 0 No 18-May-06
49V9 1C C3 Bacillus 2670 0 No 31-May-06
49V9 1D C3 Bacterium 880 0 No 31-May-06
49V9 1F C1 Bacillus 1203 0 No 4-May-06
49V9 1F C2 Bacillus 2660 0 No 18-May-06
49V9 1F C7 Bacillus 1154 0 No 27-Jul-06
49V9 2B C1 Bacillus 2577 0 No 4-May-06
49V9 2C C1 Bacillus 650 0 No 4-May-06
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Table 2. Presence of Bacillus in Grapevines in the Weaver Vineyard, by Month.
May June July August September October November December

Plant

45V16 X
46V16 X
46V19 X X
47V1 X
47V3 X X
47V8 X
48V10 X
48V15 X X
48V19 X
49V9 X

Table 3. Presence of Bacillus in Grapevines in Agricultural Operations, by Month.

May June July August September October November December
Plant

A-4 X X
B-3 X X
C-1 X X X
D-7 X
E-1
F-15 X
G-6 X X
H-11 X X
I-6 X
J-9 X   X  X
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ABSTRACT
The goal of this project is to evaluate the importance of many common weed, agricultural, and cover crop plants that are
found in close proximity to vineyards as sources of Xylella fastidiosa (Xf) from which glassy-winged sharpshooter (GWSS)
and smoketree (STSS) sharpshooters can acquire and transmit Xf into grapevines.  In our studies, we were unable to recover
Xf from bell pepper, cotton, sunflower, horseweed, annual fescue ‘Zorro’, birdsfoot trefoil, or sudangrass plants. Xf was
successfully isolated from needle-inoculated alfalfa, basil, lima bean, tomato, goosefoot, Spanish broom, tree tobacco, annual
ryegrass, black mustard, Blando brome, New Zealand white clover, Hykon rose clover, cowpea, fava bean, field pea, meadow
barley, and California red oats.  We have determined that STSS can transmit Xf between fava bean plants, between alfalfa
plants, and from alfalfa to grapevines.  We were unable to detect successful transmission from fava bean-to-grapevine,
tomato-to-tomato, tomato-to-grapevine, cowpea-to-cowpea, or cowpea-to-grapevine.  All 36 STSS died on goosefoot before
the end of the 48-hr acquisition access period, indicating that goosefoot is a poor host for STSS.  Goosefoot also appears to
be a poor host for Xf. We have confirmed successful transmission of Xf by GWSS for cowpea-to-cowpea and tomato-to-
tomato tests (Table 3).  GWSS transmission of Xf from cowpea-to-grapevine or tomato-to-grapevine could not be detected.

INTRODUCTION
Over 140 plants are known to host Pierce’s disease (PD) strains of Xylella fastidiosa (Xf) (Costa et al. 2004, Freitag 1951,
Raju et al. 1980, 1983, Shapland et al. 2006, Wistrom and Purcell 2005,
http://www.cnr.berkeley.edu/xylella/temp/hosts.htm).  Many of these plants are found in close proximity to vineyards, and
some are even used as cover crops in vineyards (Statewide IPM Program 2007).  While considerable research has identified
Xf hosts, little work has been done to determine if sharpshooters can acquire the bacteria from these hosts and transmit it to
grapevines.  If this does not occur, then the alternate host is of little consequence in PD epidemiology.  Conversely, plants
that contribute inoculum for sharpshooter acquisition and transmission to grape should be removed if growers wish to reduce
primary spread into their vineyards.

To successfully implement a program to remove pathogen sources, we first must identify those sources.  The introduction
into California of GWSS, an insect with a broad host range, theoretically increases the probability of disease spread from the
these alternate host plants to grape.  For this to occur, GWSS must feed on the infected plant in such a way to acquire Xf from
plant, and successfully transmit the acquired pathogen to grapevines.  While studies have shown mechanical and insect
transmission to wide variety of alternate hosts (Freitag 1951, Purcell and Saunders 1999), they have demonstrated
transmission from only a handful of alternate hosts to grapevines (Hill and Purcell 1995, 1997). We are unaware of research
published on transmission of Xf, PD strain, from alternate hosts into grapevines using GWSS or STSS, a native California
sharpshooter also found in grape growing regions, as the vector.

OBJECTIVES
Using GWSS and STSS vectors:
1. Evaluate the acquisition and transmission of Xf to grapevines from agricultural crop plants known to be PD hosts that are

grown in the vicinity of vineyards.
2. Evaluate the acquisition and transmission of Xf to grapevines from weed plants known to be PD hosts that are grown in

the vicinity of vineyards.
3. Evaluate the acquisition and transmission of Xf to grapevines from vineyard cover crop plants.

RESULTS AND DISCUSSION
Twenty-four of 42 proposed plant species have been needle-inoculated with Xf (Table 1). Xf does not appear to be able to
survive in bell pepper, cotton, sunflower, horseweed, annual fescue ‘Zorro,’ birdsfoot trefoil, or sudangrass plants.  A few
positives were detected at two weeks post-inoculation with ELISA for bell pepper, cotton, and horseweed, but no plants
tested positive by ELISA at four-weeks, nor were they positive by culture, indicating a possible transient infection or
detection of dead Xf cells by early ELISA.  Cultures were clean and negative for Xf. Sunflower tested positive by ELISA for
all 20 plants, but the cultures were clean and negative.  However, the sunflower also died very quickly, which may explain
why it was not detected by culture.  We will repeat needle inoculations for this plant species this winter.  Final tests are
pending for birdsfoot trefoil and annual fescue before we can comfortably say they are not hosts for Xf.
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Xf was successfully isolated from needle-inoculated alfalfa, basil, lima bean, tomato, goosefoot, Spanish broom, tree tobacco,
annual ryegrass, black mustard, Blando brome, New Zealand white clover, Hykon rose clover, cowpea, fava bean, field pea,
meadow barley, and California red oats.  We did not isolate Xf from basil until 16 weeks post-inoculation.  All ELISA tests
for Basil were positive, including for the negative controls, indicating that the commercial kit for Xf from Agdia, Inc., is not
suitable for testing this plant species.  The cultures for the negative controls were always negative, including at 16-weeks
post-inoculation when the other cultures were obtained.

Table 1. ELISA and culture results for plant species needle-inoculated with Xf.

*        False positives.
**      Most or all positives in 2-week ELISA test; possible transient infection or dead cells detected.
***    Very slow-growing Xf, detected well after 4-weeks.
****  Fava bean contains many other microorganisms that contaminate and probably obscure positive culture results.

Also, fava bean   occasionally produces false positives by ELISA.

Insect transmissions have been done for both vectors on alfalfa, cowpea, fava bean, tomato, basil, and goosefoot (Tables 2
and 3).  We confirmed successful transmission of Xf by STSS for fava bean-to-fava bean, alfalfa-to-alfalfa, and alfalfa-to-
grapevine (Table 2).  Therefore, STSS can transmit Xf between fava bean plants, between alfalfa plants, and from alfalfa to
grapevines.  We were unable to detect successful transmission from fava bean-to-grapevine, tomato-to-tomato, tomato-to-
grapevine, cowpea-to-cowpea, or cowpea-to-grapevine.  All 36 STSS died on goosefoot before the end of the 48-hr
acquisition access period (AAP), indicating that goosefoot is a poor host for STSS.  Goosefoot also appears to be a poor host
for Xf, as few cultures were obtained from needle-inoculated plants, and all were extremely slow growing, except for one.
Transmission tests using STSS on basil are underway at the time of this writing and results are not yet available.
We have confirmed successful transmission of Xf by GWSS via culture for cowpea-to-cowpea and tomato-to-tomato tests
(Table 3).  GWSS transmission of Xf from cowpea-to-grapevine or tomato-to-grapevine could not be detected.  Transmission
tests for GWSS on alfalfa are underway and the results are pending.  Only four of 24 GWSS survived the 48-hr acquisition

Type Common Name Scientific Name ELISA + Culture + Xf
Recovered?

Agriculture
Crops

Alfalfa

Basil

Medicago sativa

Ocimum basilicum

20/20

20/20*

14/20

10/20

Yes

Yes

Bell Pepper Capsicum annuum 5/20** 0/20 No

Cotton, Upland Gossypium hirsutum 2/15** 0/15 No

Lima Bean, Fordhook 242 Phaseolus lunatus 2/18 1/18 Yes

Tomato, Rutgers Solanum lycopersicum 15/39 8/38 Yes
Weeds Common Sunflower

(commercial variety) Helianthus annuus 20/20* 0/20 No

Goosefoot Chenopodium sp. 7/40*** 5/33 Yes

Horseweed Conyza Canadensis 2/20** 0/20 No

Spanish Broom Spartium junceum 17/20 17/20 Yes

Tree Tobacco Nicotiana sp. 12/20** 2/20 Yes
Cover
Crops

Annual Ryegrass

Annual Fescue, Zorro

Festuca sp.

Lolium multiflorum

6/20

0/20

6/20

0/20

Yes
Final test
pending

Black Mustard Brassica nigra 17/20 13/20 Yes

Blando Brome Bromus hordeaceus 16/20 13/20 Yes

Birdsfoot Trefoil Lotus spp. 10/20 0/20 Final test
pending

Clover, New Zealand White Trifolium repens 15/20 2/20 Yes

Clover, Hykon Rose Trifolium hirtum 16/20 10/20 Yes

Cowpea, California Blackeye Vigna unguiculata 22/40 16/35 Yes

Fava Bean, Windsor Vicia faba 30/40 7/20**** Yes

Field Pea, Miranda Pisum sativum 14/39 3/11 Yes

Meadow Barley Hordeum brachyantherum 9/20 4/20 Yes

Oat, California Red Avena sativa 12/20 2/20 Yes

Sudangrass Sorghum bicolor var. sudanense 0/20 0/20 No
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access period (AAP) on goosefoot. The surviving four insects were placed on a clean grapevine test plant, although they
appeared to be in the process of dying.  Results for the single goosefoot-to-grapevine test will be available by the December
meeting.  Goosefoot appears to be a poor host for Xf, STSS, and GWSS, and is probably insignificant in PD epidemiology.
Transmission tests for basil using GWSS have been completed, but results are not available at the time of this writing.

We had established clean, captive-reared GWSS and STSS for experiments.  However, they were decimated by an infestation
of the parasitoid wasp, Gonatocerus ashmeadi early this year. We determined the source of infestation, corrected it, and have
been rebuilding the colonies since Spring 2008 by regularly collecting adults from the field for oviposition in captivity.  Eggs
produced are collected from field colonies and hatched in the laboratory, and then transferred to clean plants. We currently
have a few hundred captive-reared nymphs of each species, and several mating pairs and gravid females still producing eggs.
We resumed insect transmission experiments in early September 2008, and we are in the process of conducting transmission
tests as the current captive-reared nymphs reach maturity.  In the meanwhile, we have continued to grow, needle-inoculate,
and evaluate potential PD hosts from the list.

Table 2. STSS transmission results for cowpea, fava bean, tomato, and alfalfa.

Transmission Test ELISA + Culture + Successful
Transmission?

Cowpea-to-Cowpea 5/5 0/5 Not detected
Cowpea-to-Grapevine 2/5 0/5 Not detected
Cowpea Group Grapevine-to-Grapevine Controls 3/6 0/6 Not detected
Fava Bean-to-Fava Bean 1/5 1/5 Yes
Fava Bean-to-Grapevine 4/5 0/5 Not detected
Tomato-to-Tomato 1/5 0/5 Not detected
Tomato-to-Grapevine 3/5 0/5 Not detected
Fava Bean/Tomato Group Grapevine-to-Grapevine Controls 2/4 0/4 Not detected
Alfalfa-to-Alfalfa 3/5 2/5 Yes
Alfalfa-to-Grapevine 2/5 2/5 Yes
Alfalfa Group Grapevine-to-Grapevine Controls 1/5 1/5 Yes
Goosefoot (none survived AAP) 0/0 0/0 No
Basil-to-Basil Pending Pending Pending
Basil-to-Grapevine Pending Pending Pending
Basil Group Grapevine-to-Grapevine Controls Pending Pending Pending

Table 3. GWSS transmission results for cowpea, fava bean, tomato, goosefoot, and basil.

Transmission Test ELISA + Culture + Successful
Transmission?

Cowpea-to-Cowpea 4/5 2/5 Yes
Cowpea-to-Grapevine 3/5 0/5 Not detected
Cowpea Group Grapevine-to-Grapevine Controls 3/5 0/5 Not detected
Fava Bean-to-Fava Bean 2/5 0/5 Not detected
Fava Bean-to-Grapevine 1/5 0/5 Not detected
Tomato-to-Tomato 3/5 1/5 Yes
Tomato-to-Grapevine 2/5 0/5 Not detected
Fava Bean/Tomato Group Grapevine-to-Grapevine Controls 2/10 0/10 Not detected
Basil-to-Basil Pending Pending Pending
Basil-to-Grapevine Pending Pending Pending
Basil Group Grapevine-to-Grapevine Controls Pending Pending Pending
Goosefoot-to-Grapevine Pending Pending Pending
Alfalfa-to-Alfalfa Pending Pending Pending
Alfalfa-to-Grapevine Pending Pending Pending
Alfalfa Group Grapevine-to-Grapevine Controls Pending Pending Pending

CONCLUSIONS
This project addresses the 2006 Scientific Summit category of “Understanding transmission of the disease,” and relates
directly to the acquisition and transmission of Xf by GWSS.  It also has relevance to several of the recommendations
developed by the National Academy of Science, National Research Council (2004).  First and foremost, the definition of the
Category 1 research option is that it “holds a reasonable promise of generating successful tools for management of
PD/GWSS, either in the short term or the long term.”  By determining the plants that truly contribute to primary spread by
sharpshooters, we can give growers another strategy (i.e. removing those plants) in an effort to reduce bacterial inoculum
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around their vineyards.  This proposal also meets the general criteria defined in the NRC report in recommendation 2.2, of
“contributing to PD/GWSS management and its sustainability,” and it applies specifically to recommendation 3.9 of
examining plants “for effective transmission rates from host to grape.”

Bell pepper, cotton, horseweed, and sudangrass did not sustain infection after needle-inoculation with Xf, indicating that these
plants are very unlikely to harbor Xf infection in the field.  This is especially good news about horseweed since it is an
extremely common weed in vineyards and is reported as resistant to herbicides.  It appears that Xf is also unable to infect
annual fescue or birdsfoot trefoil via needle-inoculation, although results from the 16-week (final) test are still pending.
Sunflower has been reported as a host by other researchers and we were surprised that we did not obtain any Xf isolates from
it.  We used a commercial variety, which we grow for our insect colonies, while obtaining seed from wild sunflower.  We
will test the wild sunflower along with the commercial variety again.

We obtained Xf isolates from alfalfa, basil, lima bean, tomato, goosefoot, Spanish broom, tree tobacco, annual ryegrass, black
mustard, Blando brome, New Zealand white clover, Hykon rose clover, cowpea, fava bean, field pea, meadow barley, and
California red oats.  We recovered Xf from at least 50% of test plants for alfalfa, basil, Spanish broom, black mustard, Blando
brome, and Hykon rose clover, indicating that these are likely hosts for Xf in the field.  Although we obtained some isolates
from lima bean, tree tobacco, annual ryegrass, New Zealand white clover, field pea, meadow barley, and California red oats,
further testing is required to gain a better understanding of their potential as alternative hosts for Xf in the field, since needle-
inoculation is a severe and unnatural form of infection that is unlikely to happen in the field.  As in the case of the goosefoot,
we found that we could obtain isolates from a needle-inoculated plant, but that it was a poor host overall for PD and both
vectors tested.  Therefore, goosefoot is unlikely to serve as a source or reservoir of Xf in the field.  If these plants have natural
defenses against acquiring or sustaining a Xf infection when needle-inoculated with millions of bacteria, it is likely that an
infection by a vector transmitting far fewer bacterial cells would not be sustained either.  However, there are insect-pathogen-
plant interactions involved that must be tested before such a conclusion can be made definitively.  Further studies mimicking
more natural acquisition and transmission using insects should be done for a more complete understanding of the roles each
plant and vector species might play in the field.
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ABSTRACT
Twenty-two seedless x seedless crosses to develop additional BC2 and BC3 V. arizonica and BC1 SEUS BD5-117 families
were made in 2008.  Powdery mildew resistance was included in five of these crosses.  These crosses produced 5,148 berries,
8,824 ovules and 1,861 embryos.  Nine seeded BC1 crosses based on V. arizonica and SEUS PD resistance sources were
made, resulting in 1,393 seed. Two BC2 and 12 BC3 families (V. arizonica source of resistance) consisting of 1,191
individuals were screened at the seedling stage in the greenhouse with SSR markers for resistance.  A total of 363 were
resistant and planted in the field.  Greenhouse screening was completed on 57 selections and 20 of the 21 resistant individuals
were from V. arizonica.  Twelve resistant selections have been planted in the field at Weslaco, Texas to determine their field
resistance.  An additional 89 plants and 692 embryos have been produced to increase the size of the C33-30 x BD5-117
family for molecular maker development.  A total of 105 SSR primers are polymorphic between the parents and screening of
the first 154 individuals to develop a framework map has started.  Greenhouse testing of 75 individuals was completed with
21 being resistant.  An additional 49 are currently in greenhouse tests.

INTRODUCTION
Pierce’s disease (PD) has existed in California since the late 1800’s when it caused an epidemic in Anaheim.  A number of
vectors for PD already exist in California, and they account for the spread and occurrence of the disease.  The introduction of
the glassy-winged sharpshooter to California in the 1990’s significantly increased the spread and damage caused by PD.
Other vectors exist outside California and are always a threat.  All of California’s commercially grown table and raisin grape
cultivars are susceptible to PD.  An effective way to combat PD and its vectors is to develop PD resistant cultivars so that PD
epidemics or new vectors can be easily dealt with.  PD resistance exists in a number of Vitis species and in Muscadinia.  PD
resistance has been introgressed into grape cultivars in the southeastern United States, but fruit quality is inferior to V.
vinifera table and raisin grape cultivars grown in California.  Greenhouse screening techniques have been improved to
expedite the selection of resistant individuals (Krivanek et al. 2005, Krivanek and Walker 2005).  Molecular markers have
also been identified that make selection of PD resistant individuals from V. arizonica in these families even quicker
(Krivanek et al. 2006).  The USDA, ARS grape breeding program at Parlier, CA has developed elite table and raisin grape
cultivars and germplasm with high fruit quality.  Embryo rescue procedures for culturing seedless grapes are being used to
help introgress the seedless trait with PD resistance quickly (Emershad et al. 1989).  This collaborative research gives the
unique opportunity to develop high quality PD resistant table and raisin grape cultivars for the California grape industry.

OBJECTIVES
1. Develop PD resistant table and raisin grape germplasm/cultivars with fruit quality equivalent to standards of present day

cultivars.
2. Develop molecular markers for Xf/PD resistance in a family (SEUS) other than those from V. arizonica.

RESULTS
Objective 1
This year the seedless embryo culture crosses concentrated on using V. arizonica and SEUS (BD5-117) sources of resistance.
Twenty-two crosses were made and produced 5,184 berries, 8,824 ovules and 1,861 embryos (21% embryos/ovules)
(Table 1).  Five of the seedless crosses combined V. arizonica PD resistance with powdery mildew resistance.  Nine seeded
crosses from V. arizonica and SEUS sources of resistance were made (Table 2).  Fruit has been harvested and 1,393 seeds
extracted for germination in January.

Two BC2 and twelve BC3 families (89-0908 V. arizonica source of resistance) produced in 2007 and growing in the
greenhouse as small plants this spring were tested for molecular markers associated with the PdR1 locus on chromosome 14
(Table 3).  A total of 1,191 individuals were tested with SSR markers and 1,121 showed markers on both sides of the PdR1
region as expected.  Eighty-seven percent had either resistant or susceptible bands, similar to 2007 results, which makes
selection for resistance effective.  A total of 363 individuals (32% of those showing markers) were resistant and planted to
the field from the greenhouse.  The susceptible individuals were discarded making use of field space much more efficient.
Greenhouse testing of 57 selected individuals from BC2 V. arizonica and SEUS populations was completed and 21 identified
as resistant.  All resistant individuals were from V. arizonica except one from SEUS, showing the high level of resistance
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passed on by V. arizonica.  Another 70 selections are in greenhouse tests that will be completed this fall.  Greenhouse testing
is absolutely necessary to make the final decision about resistance of individual selections.  Because the highest levels of
resistance are being obtained from V. arizonica and BD5-117, we have and will continue to emphasize their use over other
sources of resistance in the breeding program.  Fruit samples have been taken from four populations observed last year to
continue comparing fruit quality between resistant and susceptible seedlings to verify that fruit quality is segregating
independently from PD resistance.  Raisins are being produced from the resistant V. arizonica with small aborted seeds.
Evaluation of over 2,000 fruiting seedlings in the field is being conducted this year to determine those with fruit quality good
enough to consider as parents or potential cultivars.  Twelve advanced selections that were rated as resistant in the
greenhouse have been planted in a replicated plot at the USDA ARS research station, Weslaco, Texas.  This is an area with
high levels of PD and glassy-winged sharpshooters and is being used to determine field resistance of these selections.

Table 1.  2008 table and raisin grape PD resistant seedless crosses and the number of ovules and embryos produced.
Female Male Type No. Emas-

culations
No. berries
Opened

No.
Ovules

No. Embryos

89-0908 V. rupestris x V. arizonica
05-5502-05 A 85- 40 Table      BC3 2,691 452 650 147
Scarlet Royal 05-5502-42 Table      BC3 3,860 92 127 19
04-5554-8 A63-85 Raisin    BC3 a7 bags 296 650 173
05-5555-108 A56-92 Raisin     BC3 2,054 306 525 114
05-5551-49 Selma Pete Raisin     BC3 3,897 487 556 49
05-5502-05 Y315-400 PM Table BC3 2,529 443 795 72
Y314-360 05-5502-05 PM Table BC3 2,310 59 54 11
04-5554-19 Y313-137 PM Raisin BC3 800 94 136 26
04-5554-8 Y313-137 PM Raisin BC3 7 bags 440 882 230
05-5551-108 Y313-137 PM Raisin BC3 2,435 129 154 8
Total 20,576 2,798 4,529 849(18.7%)
B43-17 V. rupestris x V. arizonica
04-5002-42 Y129-161 Table      BC1 2,902 264 675 189
04-5051-14 A56-92 Raisin     BC1 4,168 345 700 177
04-5051-4 A63-85 Raisin     BC3 6 bags 333 434 159
Total 7,070 942 1,809 525(29.9%)
SEUS source of resistance BD5-117
C33-30 BD5-117 Genetic family 10 bags 1,847 2,350 692
01-5026-20 B28-128 Table BC1 7 bags 165 350 31
01-5026-28 B28-126 Table BC1 7 bags 285 328 73
01-5026-31 C62-109 Table BC1 7 bags 149 350 126
01-5026-20 01-5026-8 Table F1 sib 7 bags 152 207 7
01-5026-20 01-5026-33 Table F1 sib 7 bags 206 375 52
01-5026-10 A56-66 Raisin BC1 2,602 188 350 91
01-5026-20 A56-92 Raisin BC1 7 bags 140 351 51
01-5026-20 A51-55 Raisin BC1 7 bags 16 11 0
01-5026-10 Y313-137 PM Raisin BC1 2,683 143 164 56
Total 5,285 3,291 4,836 1,179(24.4%)

aParents with female flowers were not emasculated, only bagged and pollinated.
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Table 2.  2008 table and raisin grape PD resistant seeded x seedless crosses and the number of seeds produced.
Female Male Type No.

Emasculations
No.

Seeds
89-0908 V. rupestris x V. arizonica
05-5501-26 C45-64 Table BC3 a3 bags 41
05-5501-26 A40-93 Table BC3 3 bags 12
04-5554-1 A56-94 Raisin BC3 800 385
05-5501-26 Y315-400 PM Raisin BC3 3 bags 29
05-5501-26 Y314-360 PM Raisin BC3 3 bags 10
B43-17 V. rupestris x V. ariconica
04-5001-11 C58-37 Table BC1 3 bags 334
04-5001-8 C61-123 Table BC1 5 bags 191
SEUS BD5-117 source of resistance
01-5026-11 C45-64 Table BC1 3 bags 15
01-5026-21 A50-33 Raisin BC1 3 bags 376
Total 800 + 26 bags 1,393

aParents with female flowers were not emasculated, only bagged and pollinated.

Table 3. Determination of seedling resistance based on molecular markers for 89-0908 BC2 families made in 2007.
Family Type Cross aNo. Resistant bNo. Susceptible No. Recombinants cNo data Total
07-5001 Table BC3 1 78 39 2 120
07-5002 Table BC3 0 15 4 0 19
07-5003 Table BC3 3 58 5 0 66
07-5006 Table BC3 0 1 0 0 1
07-5051 Raisin BC3 13 23 1 1 38
07-5052 Raisin BC3 72 90 14 10 186
07-5054 Raisin BC3 5 20 2 1 28
07-5055 Raisin BC3 1 7 1 2 11
07-5056 Raisin BC3 3 2 4 0 9
07-5057 Raisin BC3 14 17 5 1 37
07-5058 Raisin BC3 27 49 8 5 89
07-5059 Raisin BC2 111 108 25 12 256
07-5060 Raisin BC2 60 95 21 2 178
07-5061 Raisin BC3 53 48 18 34 153
Total 363 611 147 70 1,191

aResistant = marker on both sides of PdR1 region.
bSusceptible = no PdR1 markers.
cNo data = genotypes that amplified with one marker, off types and that failed with both markers

Table 4. Results of greenhouse test for determination of PD reaction.
Population Resistance

Source
Total
sent

Testing Compete
No. tested       No. resistant

Test pending
No. tested

Total
Tested

No. to
repropagatea

BD5-117 BD5-117 154 75 21 49 124 30
map
Arizonica PdR1 113 28 20 70 98 24
Other PD SEUS 65 29 1 16 45 20
Total 332 112 42 135 267 74

a Not all selections had enough replications in greenhouse for definitive results.

Objective 2
The PD resistant grape selection BD5-117 from Florida was hybridized with the seedless table grape selection C33-30 and
154 individuals have been produced that are fruiting.  BD5-117 has given the highest number of resistant offspring of any of
the SEUS resistant selections to date and makes an excellent choice for study for molecular markers.  The fruit of these
seedlings is being evaluated for berry size, fruit quality and seed/aborted seed size.  Cuttings of all 154 were made for
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evaluation of PD resistance in the greenhouse.  Testing is complete on 75 individuals, with 21 being resistant.  An additional
49 are currently being tested and 37 need to be repropagated for testing (Table 4).  Additional plants are being made to
increase the family size to at least 500 individuals.  In 2006, 65 plants were produced.  In 2007, an additional 89 plants were
produced and planted in the field.  This year 1,847 berries were produced for this cross from which 2,350 ovules were
cultured and 692 embryos produced.  In 2008 SSR primers that have shown polymophism are being tested on all 154
individuals to develop a framework map.  A total of 105S polymorphic markers have been identified to date.

CONCLUSIONS
Families for the development of PD resistant seedless table and raisin grape cultivars continue to be produced.  Emphasis was
placed on making additional V. arizonica BC3 crosses (93% V. vinifera)and BC1 crosses of BD5-117.  The use of molecular
markers has simplified and sped up the identification of PD resistant individuals from V. arizonica. Seedless table and raisin
grape selections with PD resistance and improved fruit quality have been made in both BC2 V. arizonica and F1 BD5-117
families.  One hundred five polymorphic SSR primers have been identified in the BD5-117 family in the search for molecular
markers from sources of resistance other than V. arizonica.  SSR primers are now being tested on all 154 individuals from the
BD5-117 family to develop a frame work map.  The development of PD resistant table and raisin grape cultivars will make it
possible to keep these grape industries viable in PD infested areas.  Molecular markers will greatly aid the selection of PD
resistant individuals from SEUS populations.

REFERENCES CITED
Emershad, R. L., D. W. Ramming and M. D. Serpe.  1989.  In-ovulo embryo development and plant formation from

stenospermic genotypes of Vitis vinifera.  Am. J. Bot. 76:397-402.
Krivanek, A.F. and Walker, M.A.  2005. Vitis resistance to Pierce’s disease is characterized by differential Xylella fastidiosa

populations in stems and leaves.  Phytopathology 95:44-52.
Krivanek, A.F., Stevenson, J. F. and Walker, M.A.  2005.  Development and comparison of symptom indices for quantifying

grapevine resistance to Pierce’s disease.  Phytopathology 95:36-43.
Krivanek, A. F., S. Riaz, and M. A. Walker. 2006.  Identification and molecular mapping of PdR1, a primary resistance gene

to Pierce’s disease in Vitis.  Theor. Appl. Genet. 112:1125-1131.

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program, and the Consolidated
Central Valley Table Grape Pest and Disease Control District.



- 239 -

ASSESSMENT OF THE IMPORTANCE OF ALFALFA TO THE EPIDEMIOLOGY OF
XYLELLAE DISEASES IN THE SAN JOAQUIN VALLEY OF CALIFORNIA

Principal Investigator:
Mark Sisterson
SJV Ag. Sciences Center
USDA, ARS
Parlier, CA  93648
mark.sisterson@ars.usda.gov

Co-Principal Investigators:
Russell Groves
Dept. of Entomology
University of Wisconsin
Madison, WI  53706

Kent Daane
Division of Insect Biology
University of California
Berkeley, CA  94720

Shyamala Thammiraju
Division of Insect Biology
University of California
Berkeley, CA  94720

Cooperators:
Hong Lin
SJV Ag. Sciences Center
USDA, ARS
Parlier, CA  93648

Rodrigo Almeida
Division of Insect Biology
University of California
Berkeley, CA  94720

Jianchi Chen
SJV Ag. Sciences Center
USDA, ARS
Parlier, CA  93648

Edwin Civerolo
SJV Ag. Sciences Center
USDA, ARS
Parlier, CA  93648

Carol Frate
University of California
Cooperative Extension
Tulare, CA  93274

Shannon Mueller
University of California
Cooperative Extension
Fresno, CA  93702

Charles Summers
Department of Entomology
University of California
Davis, CA  95616

Larry Teuber
Dept. Agron. & Range Sci.
University of California
Davis, CA  95616

Reporting Period: The results reported here are from work conducted October 2005 to October 2008.

ABSTRACT
The role of alfalfa in the epidemiology of xylellae diseases in the San Joaquin Valley of California was assessed.  Alfalfa was
investigated as it is a known host of Xylella fastidiosa (Xf) and often harbors large populations of a native vector,
Draeculacephala minerva. Laboratory inoculation of 14 cultivars of alfalfa indicated that all cultivars tested were suitable
hosts.  The persistence of infections in alfalfa was followed in four cultivars over one year.  For plants held outdoors,
detection of Xf via PCR declined during the winter and increased again during the summer, suggesting that cool winter
temperatures decreased titers of Xf. Sampling of alfalfa fields seasonally found that incidence of Xf in alfalfa was low with
only six positive samples detected out of >4,000 screened.  All positive samples were collected in summer agreeing with
seasonal trends in Xf detection observed in controlled studies.  Abundance of D. minvera in alfalfa was high, although the
highest numbers were caught on traps located on weedy field margins.  Preference of D. minerva for weeds in alfalfa fields
would limit the spread of Xf in alfalfa.  The results indicate that alfalfa can serve as a source of vectors, but its role as an
inoculum source is unclear.  Future work should determine the incidence of Xf in weeds commonly found in alfalfa fields that
are preferred feeding hosts of D. minerva.

INTRODUCTION
Pierce’s disease of grape and almond leaf scorch disease has been chronic problems in California’s San Joaquin Valley.  In
the San Joaquin Valley of California, the green sharpshooter (Draeculacephala minerva) is thought to be the most important
vector.  Green sharpshooters are often abundant in alfalfa fields and alfalfa is a known host of Xylella fastidiosa (Xf). Alfalfa
is thought to play an important role in the epidemiology of xylellae diseases because alfalfa is often planted in proximity to
almond and grape and clusters of diseased almond trees and grape vines are often observed on orchard or vineyard edges
which border alfalfa.  Due to the large acreage planted with alfalfa in the San Joaquin Valley, its potential to serve as a host
of Xf, and its propensity to harbor vectors, we initiated studies to assess the role of alfalfa in the epidemiology of xylellae
diseases.

OBJECTIVES
1. Estimate Xf incidence in forage alfalfa planted adjacent to grape and/or almond.
2. Characterize the seasonal abundance and dispersal of green sharpshooters present within and emigrating from alfalfa.
3. Determine the relative susceptibility of selected alfalfa cultivars to infection by Xf.

RESULTS
Objective 1.  Estimate Xf incidence in forage alfalfa planted adjacent to grape and/or almond. We sampled alfalfa fields in
Fresno, Tulare, and Kern counties seasonally (winter, spring, summer & fall) to estimate incidence of Xf starting in summer
of 2005 to present.  To date, >4,000 samples have been screened for the presence of Xf using conventional PCR (Minsavage
et al. 1994).  Of those samples, six have been confirmed positive.  Two positives came from a collection in Fresno County
during the summer of 2005 (Figure 1).  The other four positives came from another collection in Fresno County during the
summer of 2007.
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Objective 2.  Characterize the seasonal abundance and dispersal of green
sharpshooters present within and emigrating from alfalfa. The abundance and
spatial distribution of the green sharpshooter was monitored in alfalfa fields in
Fresno, Kern, and Tulare counties throughout 2006, 2007, and 2008.  Four
transects of yellow sticky traps were placed in each field.  Traps were counted
and replaced biweekly.  Preliminary analysis of the distribution of green
sharpshooter within alfalfa fields indicates some important trends.  First, green
sharpshooters were more abundant on field edges than in the middle of fields
(Figure 2A).  Similarly, the number of insects caught per trap was often
associated with the percentage of ground cover that was weeds (Figure 2B).
Together, this indicates that D. minerva adults prefer weeds that are found along
field margins.

Objective 3.  Determine the relative susceptibility of selected alfalfa cultivars to
infection by Xf. Fourteen alfalfa cultivars were screened to determine their
relative susceptibility to infection by four different Xf strains (Temecula, Dixon,
M12, and M23).  Plants were screened for infection using conventional PCR
methods 12 weeks after inoculation. Xf was detected in at least three out of 24
plants for each cultivar and the percentage of plants infected averaged across the four
strains varied from 13 to 48%.

0.0

0.4

0.8

1.2

1.6

0 60 120 180 240 300 360

Edge
Middle

Trap locationA

Julian date

M
ea

n 
tr

ap
 c

at
ch

(lo
g1

0 
+ 

1)

y = 0.009x + 0.9121
R2 = 0.3399

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100

B
N

um
be

r 
pe

r 
tr

ap
(lo

g1
0+

1)

Weeds (%)
Figure 2. Examples from preliminary analysis of trap catch data.  A) Mean number of D. minerva caught on sticky traps
located on the edge of an alfalfa field verses the middle of an alfalfa field in Fresno County during 2007.  B) Association of
the number of D. minerva caught per trap between January 8, 2007 and August 3, 2007 and the percentage of ground cover
surrounding a trap that was weeds for an alfalfa field in Kern County.
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Figure 3. Incidence of Xf in needle-inoculated plants held in
the greenhouse versus outdoors.  All plants were inoculated on
the same date in July of 2007.

For 5 cultivars (CUF 101, Moapa 69, WL 530 HQ, WL 625 HQ, and WL 342 HQ) a more detailed experiment was
conducted to determine the seasonal fate of Xf in alfalfa.  Approximately 20 plants of each cultivar were needle inoculated in
July of 2007.  Half of the plants were held outdoors in a screen cage and the other half were held indoors in a greenhouse.
Plants were screened for the presence of Xf regularly using standard PCR methods.  Screening of samples in October of 2007
indicated no differences between plants held outdoors versus those held in the greenhouse (Figure 3).  However, by January
of 2008 all samples from plants held outdoors were negative for Xf whereas most samples from plants held in the greenhouse
were positive (Figure 3).  This suggests that cool winter temperatures reduced the titer of Xf in plants held outdoors.   By
July of 2008, the incidence of Xf was the same for both sets of plants suggesting that cool winter temperatures did not
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eliminate infections from plants held outdoors, but simply reduced Xf titers to levels that were not detectable via PCR.  These
results indicate important seasonal fluctuations in Xf titer.

CONCLUSIONS
All alfalfa cultivars tested were suitable hosts for Xf and green sharpshooters were abundant in alfalfa fields (Figure 2).
Incidence of Xf in field collections averaged over all sites and dates was low (six out of >4,000 samples tested) and all Xf
positive samples were collected during the summer.  Monitoring of needle inoculated plants held throughout the year suggest
that Xf titers decline during the winter (Figure 3), supporting the observation that Xf positive alfalfa samples were collected
only in the summer.  Trapping of D. minerva in alfalfa fields indicates that they prefer weedy field margins and likely feed
preferentially on weeds versus alfalfa. If true, this would limit the spread of Xf in alfalfa.  The results suggest that alfalfa can
serve as a source of vectors, but that the role of alfalfa as an inoculum source is unclear.  Future work should focus on
examining the incidence of Xf in weeds commonly found in alfalfa fields that are preferred feeding hosts of D. minerva.
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ABSTRACT
This report presents updated results of refined mapping of the Pierce’s disease (PD) resistance locus, PdR1, in the 04190 (397
plants) and 9621 population (433 plants) (both with resistance from V. arizonica b43-17). The PdR1 locus is 0.38 and 0.97
cM from flanking markers in 9621 population and 0.39 and 0.23 cM in the 04190 population. Positioning of resistance locus
has slightly changed, but marker-assisted screening and physical mapping efforts have not been affected.  Between July 2007
and July 2008 two BAC libraries, each with one restriction enzyme (Hind III and Mbo I), were completed and we initiated
the screening of the Hind III BAC library with flanking markers and identified 24 positive BAC clones.  BAC end
sequencing was carried out on 14 of BAC clones and complete sequencing of two clones (H23P13 and H64M16) that
represented two haplotypes (either allele) of b43-17 was initiated. With the availability of new greenhouse screen data from
both 9621 and 04190 populations and utilization of new SSR markers from chromosome 14 to refine marker data, the
placement of PdR1 locus was slightly shifted.  The new flanking markers are VVCh14-56 and VVCh14-70, instead of
VVCh14-56 and VVCh14-10.  We then began using the Pinot Noir genome sequence to develop homologous markers that
could be used for BAC library screening, and developed a set of nine markers (without SSR repeats) for BAC library
screening.  We are in process of isolating the BAC clones that represent VVCh14-70 end of the genomic sequence.

INTRODUCTION
Previous reports have described the mapping of resistance to Xylella fastidiosa (Xf) based on b43-17 in four (9621, 04191,
04190, and 04373) populations (Doucleff et al. 2004; Riaz et al. 2006).  A complete report on the origin of the “89 group”
seedlings, two of which, D8909-15 and F8909-17, are the parents of the 9621 population has been published (Riaz et al.
2007).  The genetic mapping of the Pierce’s disease resistance locus, PdR1, in three populations (04190, 04373 and 9621
populations) with emphasis on chromosome 14 and an explanation of segregation distortion mechanism was also completed
(Riaz et al. 2008).  A manuscript describing marker-assisted screening for breeding table and wine grape cultivars is in final
revision (Riaz et al. 2009) and a report on the multigenic resistance from V. arizonica b42-26 is in preparation.  We have
recently refined the position of PdR1a and PdR1b in the 9621 and 04190 populations by increasing the number of
recombinants that were generated from the ongoing wine and table grape breeding program and the addition of new markers.
Greenhouse screening of 64 genotypes in the 04373 population showed that all plants are resistant verifying homozygous
resistance in b43-17.  We also completed the development of a BAC library from the resistant b43-17 and started BAC
library screening with tightly flanking markers.  Mapping populations were developed from b40-14 and b42-26 background
to allow mapping of PD resistance from these two additional sources.  Greenhouse screening of selected F1 genotypes
containing b40-14 as a male parent verify b40-14 is homozygous resistant.

This report details three genetic maps (9621, 04190, and 04373), the initial screening of the 07744 and 04191 populations,
the development of new markers from the Pinot Noir genome sequence, and most importantly the development,
characterization and screening of the b43-17 BAC library.  The initial physical mapping in conjunction with the genetic map
is also reported and will lead to understanding how these resistance genes function.

OBJECTIVES
1. Completely characterize and refine the Xf resistance locus on chromosome 14 by genetic mapping in four populations

04190 (V. vinifera F2-7 x F8909-08), 9621 (D8909-15 x F8909-17), 04191 (F2-7 x F8909-17), and 04373 (V. vinifera
F2-35 x V. arizonica b43-17).

2. Study the inheritance of PD resistance from other genetic sources (b42-26 and b40-14).
3. Develop a BAC library for the homozygous resistant genotype b43-17 (parent of F8909-08 and F8909-17) and screen the

library with closely linked markers.
4. Complete the physical mapping of PdR1a and PdR1b and initiate the sequencing of BAC clones that carry PdR1a gene

candidates.

RESULTS AND DISCUSSION
Objective 1. As mentioned in the previous report, the resistant genotypes F8909-17 and F8909-08 inherited different sister
chromatids (haplotypes) from the homozygous resistant parent b43-17.  It was noted that F8909-08 has a 50 cM region in
which marker segregation is distorted and the same markers are distorted in b43-17 indicating a region with suppressed
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recombination.  However, the same markers on the F8909-17 map were not distorted in this region (Riaz et al. 2008).  This
report presents an updated map of the 9621 population developed with 433 genotypes and additional markers.  The genetic
position of the PdR1a resistance locus is slightly shifted and it is between marker VVCh14-56 and VVCh14-70 (Figure 1).
Table 1 shows the key recombinants from this population.  We also marker screened a total of 458 additional plants from the
9621 population with linked markers (VVIP26 and VMC2a5) and a subset of 49 recombinant plants were selected to
greenhouse screen, which are key to fine-scale positioning of PdR1.  Tightly linked markers were added to the set of
recombinant plants and three key recombinants were detected. Greenhouse screen results will be available next year.  The
F8909-17 resistance source was also used in breeding PD resistant grapes and 24 recombinant plants were selected from five
different crosses (180 plants) and are being greenhouse screened which result in updates of these genetic maps.

Previously, the 04190 population consisted of 361 progeny and PdR1b mapped between markers VvCh14-02 and
UDV095/VvCh14-10 within a 0.4 cM distance.  We have completed screening and mapping of 36 additional plants from this
population.  The position of PdR1 moved from between VvCh14-02 and UDV095/VvCh14-10 to VvCh14-02 and VvCh14-
28/VVCh14-29/VVCh14-30.  These new markers were developed from the Pinot Noir genomic region that corresponded to
the VMCNg3h8 clone sequence (Table 2).  Using the cloned VMCNg3h8 sequence, we obtained a 99Kb contig and new
markers were developed.  In the previous published map, VMCNg3h8 was not polymorphic for the 04190 population and
that genomic region was not represented.  The new markers were added to the base population of 397 plants and map was
updated (Figure 1).  The greenhouse screen was repeated for key recombinants, which also helped refine the data.  In
addition, marker analysis discovered 23 recombinants from 15 different crosses (1000 plants) that contain F8909-08.  These
recombinant plants are in the process of being greenhouse screened.  Data on these recombinants is critical for fine scale
mapping, so greenhouse screens are repeated to rule out all possible mistakes.

A V. vinifera F2-35 x F8909-17 cross generated a fourth mapping population, 04191, of 153 progeny.  This population
provides genotypes with a 50% vinifera background for breeding and more recombinant plants for genetic mapping.  It also
provides a population where resistance from F8909-17 can be examined without possible confounding effects from D8909-
15 (since D8909-15 has a multigenic resistance from b42-26).  We added markers that are tightly linked to PdR1 to this set,
categorized resistant, recombinant and susceptible genotypes based on marker information, and selected recombinant
genotypes based on flanking markers.  This population will be critical for the identification of any minor genes that might
contribute to resistance.  Therefore, we are expanding the framework genetic mapping to all 19 chromosomes.  For this
purpose, we are initiating greenhouse screen of all 153 plants. The plants were propagated and results will be available by
March 2009.

Objective 2. Thus far we have used three resistance sources (b43-17, b40-14 and b42-26 – Table 3).  It is easier to breed with
single locus traits as is the identification of genes using map-based positional cloning.  Resistance from b43-17 is inherited as
a single gene while resistance from b42-26 and its offspring D8909-15 is quantitatively inherited perhaps by multiple genes
on multiple chromosomes.  We initiated genetic mapping in the F1 population from the b42-26 background (05347 –
Table 1).  Greenhouse screening of  a subset found 48 genotypes were resistant and 13 were susceptible.  A total of 337
markers were tested on small a parental data set.  Results found a high level of homozygosity for b42-26 (only 113 markers
were polymorphic); 184 markers were homozygous for the male parent b42-26, 40 markers did not amplify.  We completed
70 markers on a set of 64 genotypes and the remaining polymorphic markers are in process to develop a framework map.
This set of 64 genotypes is not an adequate number for this mapping project, and this cross was repeated in Spring 2008 to
produce at least 188 plants in the core population.

Previous results determined that V. arizonica b40-14 is a promising homozygous resistant genotype.  We screened 45
genotypes from an F1 cross of V. rupestris x b40-14 and all were resistant except three genotypes with intermediate results.
In Spring 2007, these resistant F1 genotypes were crossed to other susceptible and resistant genotypes to verify the single
dominant gene mode of inheritance (07744 and 07386 – Table 1).  We completed DNA extractions from 122 seedlings from
07744 and 105 seedlings for 07386.  Marker testing is in the process to create a framework map of the 19 chromosomes, and
polymorphic markers will be added to the 07744 population. Greenhouse screening results from these plants will be
completed by March 2009.  Initially framework genetic maps in F1 and BC1 populations will be developed utilizing 96 to
188 genotypes.  Once the resistance locus and QTLs are localized, markers will be added to saturate the linkage groups where
the resistance loci reside.

Objective 3 and 4. Two BAC libraries (each with a different restriction enzymes) from the homozygous resistant b43-17 were
developed.  Library screening was carried out twice with two markers (VVCh14-10 and VVCh14-56), both tightly linked to
PdR1.  This identified 24 positive clones– four of the positive clones were positive with both markers: H23-P13, H34-B5 and
H64-M16 and H45-J22.  The inclusion of new marker and greenhouse screen information moved the PdR1 locus between
markers VVCh14-56/VVCh14-02 and VVCh14-70 (Figure 1 and Table 2), which required the BAC library be screened to
find the clones in the genomic region at the end of  VVCh14-70 marker.  The 14 positive BAC clones that were selected with
flanking marker were amplified with marker VVCh14-56, which is polymorphic (with two alleles) for b43-17 and can be
used to distinguish and group clones.  In an attempt to develop more markers, we utilized the 695Kb region from the Pinot
noir genome sequence that covers the marker VVCh14-56 and VVCh14-27/VMCNg2b7.2 (Figure 1).  It is important to note
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that this region is from two different scaffolds (9 and 21). A total of 10 primers were developed that spread across 60 to
80Kb of the 695Kb sequence from Pinot noir.  Nine of these markers amplified successfully (Figure 2).  We also developed
SSR markers from this region that were placed in between the screening markers (Figure 2).  Currently the resistance locus
resides between Ch14-56 and Ch14-70; a physical distance of 340Kb.  Based of the genetic map from 9621 population, the
physical and genetic distance correlates as 1cM is equal to about 216Kb.  Based on the previous reported position of the
PdR1 locus, we initiated shotgun sequencing of the H23P13 and H64M16 clones.  These clones represent two haplotypes of
b43-17.  A total of 173Kb region of H23P13 clone was assembled after primer walking.  Given the new position of PdR1, we
will be able to utilize the 35Kb region that spans the region from marker VVCh14-56 and beyond, and rescreen the BAC
library.

CONCLUSIONS
Results from this project have allowed us to: 1) understand the segregation of PD resistance in two different backgrounds; 2)
develop a framework genetic map for Xf resistance; 3) select markers for effective marker-assisted selection (MAS) in grape
breeding; and 4) begin development of a physical map of genomic fragments that carry the PdR1 locus, leading to map-based
positional cloning of PD resistance genes. MAS has allowed the generation of PD resistant BC3 progeny with 94% of their
parentage from elite V. vinifera wine grapes in a dramatically shortened time period. We have also constructed a BAC library
for b43-17 to isolate the PdR1a gene candidates. In order to expand the range of PD resistances by exploiting other resistant
accessions, we are studying the inheritance of PD resistance in two other backgrounds.  Resistance in V. arizonica b40-14 is
inherited as a single gene.  We are using quantitative trait loci (QTL) analysis in the 0023 and 05347 populations to study PD
resistance from V. arizonica b42-26 whose resistance is controlled by several genes.  The genetic mapping, placement of a
variety of resistance genes/traits will allow MAS to broaden resistance and make it more durable.  Map-based efforts will
also enable us to characterize the variants of PD resistance genes.
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Table 1. The key recombinants from the 9621 population. The genotypes in bold red font are key recombinants with a
recombination event between the marker and the PdR1a resistance locus. “0” indicates a susceptible allele and “1”
indicates a resistant allele.

9621
Genotype UDV095 A0101 VVCh14-56 PdR1a VVCh14-70 VVCh14-29 VMCNg

3h8
VMCNg

2b7.2
-36 0 0 0 0 0 1 1 1
-45 0 0 0 0 0 1 1 1
-259 0 0 0 0 0 1 1 1
-320 0 0 0 0 0 1 1 1
-363 0 0 0 0 0 1 1 1
-376 0 0 0 0 0 1 1 1
-400 0 0 0 0 0 1 1 1
-416 0 0 0 0 0 1 1 1
-426 0 0 0 0 0 1 1 1
-470 0 0 0 0 0 1 1 1
-08 0 0 0 0 1 1 1 1
-194 0 0 0 0 1 1 1 1
-554 0 0 0 0 1 1 1 1
-629 0 0 0 0 1 1 1 1
-28 0 0 0 1 1 1 1 1
-38 0 0 0 1 1 1 1 1
-15 - 1 1 1 1 0 0 0
-23 1 1 1 1 1 0 0 0
-31 1 1 1 1 1 0 0 0
-337 1 1 1 1 1 0 0 0
-345 1 1 1 1 1 0 0 0
-360 1 1 1 1 1 0 0 0
-337 - 1 1 1 1 0 0 0
-397 1 1 1 1 1 0 0 0
-409 1 1 1 1 1 0 0 0
-428 1 1 1 1 1 0 0 0
-505 - 1 1 1 1 0 0 0
-595 1 1 1 1 1 0 0 0
-697 1 1 1 1 1 0 0 0

Table 2.  List of new markers that were developed from Pinot noir genome sequence and were utilized on 4
different populations.
Name PN contig id New marker Amp size 04190 9621 04373 04191
A010 VV78X214158.8 VVCh14-02 170 Y Y N Y

VVCh14-56 Y Y
UDV095 VV78X004565.11 VVCh14-09 170 Y Y

VVCh14-10 210 Y N Y N
VMCNg2b7.2 VV78X072246.8 VVCh14-27 193 Y Y Y Y
VMCNg3h8 VV78X190796.4 VVCh14-28 167 Y Y Y Y

VVCh14-29 200 Y Y N Y
VVCh14-30 206 Y Y N Y
VVCh14-70 193 Y Y N Y
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Table 3. Parentage and species information for populations and genotypes being
used to map PD resistance.
Population / Genotype Species / Parentage
b42-26 V. arizonica/girdiana
b43-17 V. arizonica/candicans
b40-14 V. arizonica
D8909-15 V. rupestris A. de Serres x b42-26
F8909-08 and F8909-17 V. rupestris A. de Serres x b43-17
F2-7 and F2-35 (females) V. vinifera (Carignane x Cabernet Sauvignon)
9621 D8909-15 x F8909-17
0023 F8909-15 x V. vinifera B90-116
03300/5 101-14Mgt (V. riparia x V. rupestris) x F8909-08
04190 F2-7 x F8909-08
04191 F2-7 x F8909-17
04373 F2-35 x b43-17
05347 F2-35 x b42-26
07744 R8918-05 x V. vinifera Airen
07386 R8917-02 x V. vinifera Airen

Figure 1. SSR-based genetic map of chromosome 14 from the 9621 (left) and 04190 (right) populations.
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Fig. 2. Detail of physical map of chromosome 14 for the region that harbor resistance to PD.  Preliminary screening was carried out with Ch14-10
Ch14-56. Currently the PdR1 locus reside between Ch14-56 and Ch14-70.  Five clones are also positive with screening marker Ch14-58 (in green).
Only Ch14-70 marker was polymorphic and could be mapped  in three populations.
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ABSTRACT
The use of marker-assisted selection (MAS; see our companion report) and our acceleration of the seed to seed breeding
cycle to three years have allowed very rapid progress towards our goal of Pierce’s disease (PD) resistant winegrapes.
Populations from the 2007 crosses were screened with MAS for both PD and powdery mildew (Run1) where appropriate and
only those with the markers were planted in the field.  The 2008 crosses were made to: 1) Use the PdR1 allele from 8909-08
to broaden the vinifera winegrape lines at the 93.75% vinifera level; 2) Combine PdR1 with the powdery mildew resistance
gene Run1 at the 90.6% vinifera level; 3) Combine PdR1 with the LG13 powdery mildew resistance gene REN1 at the 87.5%
vinifera level; 4) Use 8909-17 based resistance with diverse vinifera winegrapes to produce resistant progeny at the 87.5%
vinifera level; 5) Use the F1 progeny of the homozygous PD resistant b40-14 V. arizonica to produce a breeding and
mapping population that is 75% vinifera; 6) use elite winegrapes to broaden and expand the V. shuttleworthii breeding lines
producing progeny that are 75% and 87.5% vinifera; and 7) Produce rootstocks with PdR1 and broad-based nematode
resistance.  Inoculations were made to selections with PdR1 and either 87.5% and 75% vinifera at our Beringer, Napa County
trial.  Finally, small-scale wine lots were made from five 87.5% vinifera PdR1 selections from wine grape backgrounds.
Fruit evaluation and must analysis were performed on numerous other promising progeny at this level.

INTRODUCTION
The Walker lab is uniquely poised to undertake this important breeding effort, having developed rapid screening techniques
for Xylella fastidiosa (Xf) resistance (Buzkan et al. 2003, Buzkan et al. 2005, Krivanek et al. 2005a 2005b, Krivanek and
Walker 2005), and in possession of unique and highly resistant V. rupestris x V. arizonica selections, as well as an extensive
collection of southeastern grape hybrids, to allow the introduction of extremely high levels of Xf resistance into commercial
grapes.  They have produced plants that are 93.75% V. vinifera, from winegrape cultivars, with resistance from our b43-17 V.
arizonica/candicans resistance source.  There are two sources of PdR1, 8909-08 and 8909-17, both siblings of b43-17.  These
selections have been introgressed into a wide range of winegrape backgrounds over multiple generations, and resistance from
southeastern United States (SEUS) species is being advanced in other lines.  However, the resistance in these later lines is
complex and markers have not been developed to expedite breeding.

OBJECTIVES
1. Breed Pierce’s disease (PD) resistant winegrapes through backcross techniques using high quality V. vinifera winegrape

cultivars and Xf resistant selections and sources characterized from our previous efforts.
2. Continue the characterization of Xf resistance and winegrape quality traits (color, tannin, ripening dates, flavor,

productivity, etc.) in novel germplasm sources, in our breeding populations, and in our genetic mapping populations.

RESULTS AND DISCUSSION
Objective 1 – The breeding cycle for the development of PD resistant grapes has been reduced to three years (seed to seed)
using marker-assisted selection (MAS) with the b43-17 resistance sources and their progeny.  Our goal at this point is to
introgress our PD and PdR1 resistance sources into a large number of V. vinifera winegrapes backgrounds.  Until we get to
the backcross 4 (BC4) (96.8% V. vinifera), there is not much point to growing very large numbers of progeny from any given
cross.  With the 3-year seed-to-seed cycle, we will plant BC4 progeny in 2010. Table 1 presents the crosses made in Spring
2008 with the numbers of seeds produced.  The goals of this years crosses were: 1) Use the PdR1 allele from 8909-08 to
broaden the vinifera winegrape lines at the 93.75% vinifera level; 2) Combine PdR1 with the powdery mildew resistance
gene Run1 at the 90.6% vinifera level; 3) Combine PdR1 with the LG13 powdery mildew resistance gene REN1 at the 87.5%
vinifera level; 4) Use 8909-17 based resistance with diverse vinifera winegrapes to produce resistant progeny at the 87.5%
vinifera level; 5) Use the F1 progeny of the homozygous PD resistant b40-14 V. arizonica to produce a breeding and
mapping population that is 75% vinifera; 6) Use elite winegrapes to broaden and expand the V. shuttleworthii breeding lines
producing progeny that are 75% and 87.5% vinifera; and 7) Produce rootstocks with PdR1 and broad-based nematode
resistance.

To date, three groups of plants have been greenhouse screened for Xf resistance in 2008 (Table 2).  Group A tests were done
to verify the expression of PdR1 from b43-17 in the 04190 (V. vinifera F2-7 x 8909-08) population.  This group also tested
advanced 87.5% V. vinifera PdR1 carrying parents, which were used in the 2007 crosses to create 94% V. vinifera progeny
with PdR1.  This group also included the parents of new mapping populations:  one based on single gene resistance from V.
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arizonica b40-14 (R89); and the other based on multigenic resistance from V. arizonica/girdiana b42-26 (05347).  The Group
B tests examined progeny of Midsouth and BD5-117 crossed to advanced vinifera wine types. Both of these parents continue
to produce resistant progeny, but very few and in ratios that suggest a complex inheritance; the use of BD5-117 produced
seven resistant plants in population of 18 and none in an additional population of eight.  The use of Midsouth and a V.
smalliana x vinifera parent both resulted in one resistant plant of six progeny.  All 13 progeny from a cross using Haines City
had lower ELISA values than the known resistant Blanc du Bois in the greenhouse screen.  Two of these progeny were used
as parents in the 2008 crosses (Table 1e) and greenhouse tests found them to be as resistant as parents carrying PdR1,
although Haines City does not contain PdR1.  Eight promising rootstocks based on PdR1 were also tested in this group and
all were resistant.  Group C tests focused on recombinants from our 2006 breeding populations to aid fine-scale PdR1
mapping efforts and on the F1 progeny of b40-14 crossed to V. vinifera discussed below.

Objective 2 – Although resistance from other backgrounds is complex and quantitative, which results in few resistant progeny
from crosses to vinifera cultivars, we continue to advance a number of lines.  In order to better understand the limits of other
PD resistance sources, the following resistance sources are being studied:

V. arizonica b42-26 – Xf resistance in the 0023 (D8909-15 (V. rupestris x b42-26) x V. vinifera B90-116) population is
strong, but is quantitatively inherited. Quantitative trait locus (QTL) analysis has identified a major QTL that accounts for
about 20% of the variability (preliminary results).  Previous efforts with the 0023 were focused on table grape breeding, and
found that the 0023 population (F1, 1/4 b42-26) had about 30% resistant progeny. This population has a large number of
weak genotypes, few females with viable seeds, and generally lacks fertility. The progeny of a cross of a resistant 0023
genotype crossed back to vinifera (BC1) were tested and only 7% were resistant.  Greenhouse testing of 05347 (vinifera F2-
35 x b42-26) to examine the b42-26 resistance source in a less complex background (without the confounding effect of V.
rupestris) was completed last year.  In 2007, crosses using elite V. vinifera wine type pollen were made to a number of
females in this population and 140 genotypes were planted this spring for future evaluation.  This spring the cross 05347 was
repeated to expand this mapping population (Table 1e).

V. arizonica b40-14 – Over the last seven years, we have greenhouse tested 45 F1 progeny of PD susceptible V. rupestris
Wichita Refuge crossed with PD resistant b40-14 (R89 series).  Only one genotype has failed to test resistant over that time
period (data not shown).  In 2006, we crossed V. vinifera F2-35 x b40-14 and established 198 seedlings for testing.  In 2007,
we crossed the V. vinifera variety Airen onto two of the PD resistant R89 genotypes and planted a total of 163 genotypes in
Spring 2008.  We have initiated greenhouse screening of these two populations for initial mapping of a new PdR locus.  From
our previous R89 testing, we expect the F1 progeny of b40-14 crossed to V. vinifera to all be PD resistant.  To date, we have
completed greenhouse testing of seven genotypes. Lack of PD phenotypic symptoms on all seven and very low mean cfu/ml
ELISA values for the first three give some credibility to that expectation.  We are planning on using the progeny of the 06339
crosses made this year (Table 1e) for further mapping efforts to better characterize this very strong, and morphologically and
genetically different source of PD resistance.

V. shuttleworthii Haines City – Based on the encouraging greenhouse screen results for this resistance source as reported
above, in 2008 we made the BC1 (75% vinifera) and BC2 (88% vinifera) using a BC1 from our earlier table grape work that
tested particularly well and had reasonable wine grape characteristics (Table 1e).

Given that low levels of Xf exist in resistant plants, it will be important to also have PD resistant rootstocks to graft with
resistant scions and prevent them from dying on susceptible rootstocks.  We completed screening of eight promising progeny
from crosses of 101-14 x F8909-08.  Evaluation for grafting ability and testing against phylloxera and nematodes and finally
field testing will follow.  In 2008, we made additional PD resistant rootstock crosses resulting in 1397 seeds (Table 1f).

Field and Wine Evaluations – The A81 series (BC1, 75% vinifera) 8909-08 allele type of PdR1 is in its third year of field
testing at the Beringer Yountville test site; ELISA and visual symptom results have been consistent with greenhouse assays.
Selections from the 045554 (BC2, 88% vinifera) were grafted onto Dog Ridge (currently the only certified PD resistant
rootstock) and were planted at Yountville in Spring 2007.  These genotypes have been marker tested and their PD resistance
status confirmed by greenhouse testing.  Twelve genotypes were resistant, four were recombinants (one resistant and three
susceptible in the greenhouse test).  These were needle inoculated for the first time on May 22, 2008.   The A81 series was
inoculated at the same time for the second time.  Both groups will be sampled for ELISA testing this fall.

Three of eight advanced red wine selections (U0501-12, U0502-01 and -10) containing PdR1 that are 87.5% vinifera from
crosses with Syrah and Chardonnay were replicated for small-scale fermentation in 2006 and wines made again this fall.
Between four and 20 liters of wine from each were produced along with similar amounts of Barbara and Zinfandel as V.
vinifera controls and Lenoir as the standard PD resistant control to standardize these very small-scale fermentations.  Two
additional wines were made for the first time this year from siblings of the above crosses: U0502-20 (white) and U0502-26
(red).  All these selections were evaluated for their productivity, flowering and ripening dates, and berry and cluster weights.
Vine, fruit and juice analyses are presented in Tables 3a and 3b, and images of the leaves and fruit are in Figure 1.
Numerous other genotypes from crosses involving elite vinifera wine cultivars were examined for fruit evaluation and must
analysis.  ETS Laboratories (www.etslabs.com) of St. Helena kindly donated their fruit analysis and phenolics panel, which
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uses a wine-like extraction to model a larger fermentation. Surprisingly, none of the U05 series analyzed contained
significant levels of diglucoside anthocyanins, which are negative quality markers for hybrid wines with American grape
species and which would create problems with exporting wines to the EU.  Cuttings of the best of these were established in
our Davis vineyard this spring so that we can get small-scale wine lots made for evaluation in 2009.  A new MS student is
examining the reasons for the lack of diglucoside anthocyanins in these selections to determine whether the arizonica-
resistance sources possess these anthocyanins.

Powdery Mildew
Any new PD resistant variety should also be resistant to powdery mildew.  We have been exploring powdery mildew
resistance in a number of backgrounds including Olmo’s VR (vinifera x rotundifolia) hybrids, which form the base of
international efforts at characterizing Run1, the rotundifolia-based locus responsible for resistance to powdery mildew.  The
2008 season field evaluations of the 2006 crosses show the markers correlating perfectly with field resistance to powdery
mildew on the leaves, canes, rachis and fruit.  The goal with these individuals is to cross our advanced PD resistant selections
with selections from these powdery mildew resistant progeny (Table 1b).  This spring 537 plants of crosses between
genotypes with PdR1 and other types with Run1 were planted on 1’ x 1’ spacing in a nursery to screen for powdery mildew
resistance.  This allowed the elimination of weak plants and reduces the cost of MAS screening where we continue to see
segregation distortion against the Run1 locus in some lines.  We tested 136 plants in the nursery screen for powdery mildew
resistance celll of which are preparing for marker testing for both Run1 and PdR1 to verify the utility of MAS for the
combined traits.  Plants with both loci will go to the field for evaluation of fruit and horticultural characteristics.  In 2008 we
also made crosses to examine powdery mildew in two other backgrounds: a source of the REN1 locus (a separate powdery
mildew resistance locus on chromosome 13, from the V. vinifera table grape Karadzhandal (Table 1c) and the Chinese
species V. romanetii.  We produced 564 seeds using Karadzhandal, clusters from crosses with V. romanetii are being
processed.

CONCLUSIONS
This project continues to breed PD resistant winegrapes with the primary focus on the PdR1resistance source so that progress
can be expedited with MAS.  Populations with Xf resistance from other sources are being maintained and expanded, but
progress is slower with these sources. We continue to supply plant material, conduct greenhouse screens and develop new
mapping populations for our companion project on fine-scale mapping of PD resistance leading to the characterization of the
PdR1 resistance locus.  The first testing of small-scale wine from advanced selections with 87.5% vinifera from winegrapes
was done in Fall 2007, and they scored remarkably well. Evaluation of the 2008 wines is pending.
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Table 1. 2008 crosses and numbers of seed produced.

Resistant Type
Vinifera Parent of Resistant

Type Vinifera Types used in 2007 crosses
# Seeds

Produced
1a. Monterrey V. arizonica/candicans resistance source (F8909-08) 
parentage.

to produce progeny with 93.75% V. vinifera

U0502 Chardonnay F2-7 (Cab x Carignane) 262
U0505 Cabernet Sauvignon Tannat 694
1b. Monterrey V. arizonica/candicans resistance source (F8909-08) and Run1 powdery mildew resistance to produce
progeny with 90.6% vinifera parentage.
U0502 Chardonnay 06353, e78 allele pattern 82
U0505 Cabernet Sauvignon 06717, e78 allele pattern 138
1c. Monterrey V. arizonica/candicans resistance source (F8909-08) and a vinifera PM resistance source to produce
progeny with 87.5% vinifera parentage.
A81-17 A38-7 Karadzhandal 564
1d. Monterrey V. arizonica/candicans resistance source (F8909-17 allele) to 
parentage.

produce progeny with 87.5% V. vinifera

06324 Chenin blanc Airen, Cabernet Sauvignon, Chardonnay, Tannat 484
06372 Malaga Rosada Clairette blanche, Tannat 946
06381 F2-7 (Cab x Carignane) Tannat 151
1e. Other PD resistance sources: b40-14 V. arizonica (06339) progeny are 87.5% vinifera. The V. shuttleworthii PD
resistance sources 0098-03 progeny are 87.5% vinifera and 04394 progeny are 75% vinifera
06339 F2-35 (Cab x Carignane) Malaga Rosada, Tannat 325
0098-03 NR Cabernet Sauvignon, Chardonnay 324
04394 NR Cabernet Sauvignon, Clairette blanche, F2-35,

Tannat
1,130

b42-26 NR F2-35 827
1f. Rootstock crosses to combine PD and nematode resistance.
03300-048 06301,Wyoming Riparia,

Riparia Gloire, 44-53 mgt
1,397

Table 2. PD resistant winegrape progeny just completed or currently in greenhouse screening for PD resistance.

Group Genotypes N Inoculation
Date ELISA Date Resistance Source(s)

A 04190, 9621, 2007 parents 150 10/18/2007 1/31/2008 b43-17 (both alleles)

B
D89, R89, 9621, 03300/5 (PD
rootstocks) , 03182, 03187, 04183,
04394, 2007 parents retest

157 3/20/2008 6/26/2008 b43-17, BD5-117,
Midsouth, Haines City

C 2006 recombinants, 06339 29 5/20/2008 8/21 & 9/25/08 b43-17, b40-14

Table 3a. Phenotypic observations of reference varieties and select progeny with the PdR1 resistance source.

Genotype Parentage Percent
vinifera

2008
Bloom
Date

Berry
Color

Berry
Size (g)

Avg
Cluster
Wt. (g)

Ripening
Season

Prod
1= v low

9 = v high
Barbara Historic 100% 5/5/08 B 2.4 290 Late 6
Zinfandel Historic 100% 5/5/08 B 2.6 405 Mid 7
U0501-12 A81-138 x Syrah 87.5% 5/11/08 B 1.0 160 late 4
U0502-01 A81-138 x Chardonnay 87.5% 5/5/08 B 2.0 210 mid-late 4
U0502-10 A81-138 x Chardonnay 87.5% 5/5/08 B 1.7 275 very early 8
U0502-20 A81-138 x Chardonnay 87.5% 5/10/08 W 2.0 201 Late 8
U0502-26 A81-138 x Chardonnay 87.5% 5/9/08 B 2.1 375 mid-late 6
Lenoir V. aestivalis hybrid <50% 5/16/08 B 0.8 201 Late 6
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Table 3b. Analytical evaluation of reference varieties and advanced selections with the PdR1 resistance source.  All analysis
courtesy of ETS Laboratories, St. Helena, CA.

Genotype
L-malic

acid
(g/L)

°Brix potassium
(mg/L ) pH TA

(g/100mL)

YAN
(mg/L
(as N)

catechin
(mg/L)

tannin
(mg/L)

Total
antho-

cyanins
(mg/L)

Barbara 2.83 25.0 2170 3.36 0.87 431 31 201 300
Zinfandel 2.43 23.5 1870 3.55 0.62 191 34 322 386
U0501-12 3.22 27.2 2020 3.51 0.74 3.98 48 781 1161
U0502-01 7.36 23.3 3240 3.70 0.96 567 81 364 530
U0502-10 4.36 22.3 1800 3.47 0.82 305 73 565 828
U0502-20 4.94 24.0 2600 3.62 0.90 544 - - -
U0502-26 5.55 24.3 2420 3.64 0.91 699 65 225 811
Lenoir 5.54 28.7 3050 3.63 0.83 230 160 405 2396

Table 3c. Sensory evaluation of reference varieties and advanced selections with the PdR1 resistance source.

Genotype Juice Hue Juice
Intensity Juice Flavor Skin Flavor Tannin

(1=low,
Color
(1=gr, Seed Flavor Tannin

(1=high,
4= high) 4= br) 4= low)

Barbara pink-brown low neutral, acidic jam, berry 2 4 nutty,spicy 3
Zinfandel orng-brown medium jam, hay fruity 2 4 nutty,bitter 1
U0501-12 red med-dark fruity fruit jam 2 4 neutral 2
U0502-01 pink-brown medium fruity-PN sweet fruit 1 3 spicy 1
U0502-10 pk-red-orng med-dark slight vegetal mildly fruity 1 4 nutty,spicy 1
U0502-20 green medium neutral, fruity fruity 1 4 spicy,bitter 1
U0502-26 pink medium bright, spicy fruity 2 4 nutty 3
Lenoir red dark mildly fruity fruity 1 4 nutty 4

Skin Seed Seed
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Figure 1.  Pictures of the 87.5% vinifera PD resistant wine grape selections used for small-scale winemaking at UCD in
2008.
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ABSTRACT
The goal of this research project is to estimate the medium to long-run economic impact to growers and consumers of
California’s diverse agricultural crops, and to taxpayers from the establishment of the glassy-winged sharpshooter (GWSS) in
California, and to estimate how different public policy responses affect the costs and benefits to growers and consumers.  The
costs and benefits to consumers, producers and taxpayers will be estimated using market models that take into account
changes in the costs of production, total production by newly infested growers in California and all other growers, trade, and
consumer demand.

INTRODUCTION
In 1989, a pest new to California, the glassy-winged sharpshooter (GWSS), was collected in Irvine, CA.  Since then the
GWSS has spread throughout most of southern California and limited infestations of the GWSS are found as far north as the
southern San Joaquin Valley counties of Kern and Fresno (CDFA 2008).  Initially thought to mimic the feeding patterns of
native California sharpshooters, by the late 1990s it became apparent that the GWSS was a more deadly vector of the
bacterium Xylella fastidiosa (Xf) than native sharpshooters because of its wide host range and ability to feed on and transmit
the pathogen to older grape wood.  Pierce’s disease (PD) has been endemic to California since the 19th century.  However,
because the GWSS is a more deadly vector of the bacterium, its establishment in southern counties has led to an increase in
both the severity and incidence of the disease in infested regions.  Initial infestations in the Temecula Valley caused large
losses for growers due to vine death and the removal of vineyards. In 1999, losses to growers were estimated to be $46
million (Brown et al. 2002).

In 2000, soil applied imidacloprid (Admire®) was granted a Section 18 emergency use permit (Jetter et al. 2001) and has
since proven to be the most effective chemical treatment of GWSS (Barry Hill, CDFA, 2008, personal communication;
Jennifer Hashim-Buckey, UCCE, 2008, personal communication; Judy Leslie-Stewart, Consolidated Central Valley Table
Grape Pest and Disease Control District, 2008, personal communication).  In the Central Valley, the use of Admire® replaced
the use of Provado®, a foliar formulation of imidacloprid that was less effective in controlling the GWSS.  Consequently, one
cost to the grape industry to treat GWSS is not the cost of Admire®, but the difference in cost between Admire® and
Provado®.  Manual controls include pulling out infected vines, or in some cases, vines that may be infected (Barry Hill,
CDFA, 2007, personal communication) in order to remove the bacterium from the vineyard before it can be transmitted by
GWSS or other vectors.

Public agencies, including research universities and governmental agencies, have also been conducting research on effective
techniques to manage the GWSS.  With regard to the management of GWSS and PD, universities have been engaged in
research involving the use of biological control agents for the GWSS and developing hybrid varieties resistant to PD.  For the
biological control program, a number of egg parasitoids have been imported into California and released to reduce
populations of GWSS.  To date, these parasitoids appear to be most effective in citrus, and in the coastal and interior regions
of southern California.  With regard to plant breeding, research on a new variety of PD resistant wine grapes used in the
production of blended wines is promising, but is still in the testing stage (Andrew Walker, UC Davis, 2008, personal
communication).

Governmental agencies have been involved in two control programs to manage and contain the GWSS.  One treatment
involves the control of the GWSS on citrus before it can move into vineyards and transmit the PD bacterium.  This program
overcomes the divide created between the citrus growers who are not typically affected by GWSS and would not typically
treat for GWSS, and grape growers who are negatively affected by large populations of GWSS migrating from citrus to
grapes.  Currently any citrus grove within ¼ mile of a trapped vine (i.e. a trap placed in a vineyard contains a GWSS) is
treated, unless the grove is located along the northern boundary of the infestation, in which case the barrier is ½ mile from a
trapped vine.  While some citrus growers may benefit from the control of the GWSS and other pests in their groves, chemical
treatments may also disrupt IPM pest control practices, imposing additional costs on the citrus industry.  All these effects are
important to include in any economic analysis of PD in California.

Finally, there is a state quarantine in place to limit the spread of the GWSS into uninfested grape growing areas of California.
The quarantine consists of on-site sanitation practices, inspections and surveys, and spraying plant leaves with a chemical
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such a methomyl (Lannate®) to treat difficult to detect egg masses not caught by inspectors.  As a result, management of PD
in California includes a bundle of methods that have economic impacts on the wine, table and raisin grape, citrus, and
nurseries industries.  These different methods to control GWSS and PD have significantly improved the situation, and
damages today are not as severe as initially anticipated.  Even though better methods have been developed to manage GWSS,
the costs of production for each industry have not returned to pre-GWSS infestation levels.

Due to the size of the industries affected by the control of GWSS and PD in California, even small changes in the costs of
production can have a major impact on the benefits and costs to producers, consumers and taxpayers.  The grape industry is a
major agricultural producer in California. With average annual revenues (2004-2006) to the wine, table and raisin grape
industries totaling $3 billion, grape production is the largest fruit industry in California (USDA 2006a).  When revenues from
the citrus and nursery industries are combined with the revenues from the grape industry, their total revenues of $20.8 billion
make this the second largest agricultural sector in the U.S. behind corn ($26.8 billion) and before soybeans ($18.3 billion)
(USDA 2006a; USDA 2006b; Jetter 2007).

Growers with GWSS and PD are affected economically though higher costs of production.  Given the size of the grape
industries in infested counties, higher costs of production will put upward pressure on market prices.  With higher market
prices newly infested growers are able to recoup a portion of their higher costs of production.  Higher market prices will
cause consumers to purchase less, however.  With higher prices and lower consumption, consumers are also worse off from
the establishment of GWSS.  The higher prices will make growers in uninfested areas of California, and in the rest of the U.S.
better off.  These growers receive the higher market prices, but do not incur the higher costs of production.  Additional costs
accrue to taxpayers who bear the costs of the public management programs.  An economic analysis needs to include all these
effects.

OBJECTIVES
1. Estimate the costs and benefits to wine grape, table grape and raisin growers, consumers and taxpayers from changes in

the costs of grape production due to the establishment of the GWSS.  The changes in production costs will be based on
current best practices and will include chemical treatments, removal of infested vines, quarantine restrictions and public
control programs.

2. Estimate the costs and benefits of public policies to manage and contain the GWSS.  The public control policies include
public programs to treat the GWSS in citrus to prevent its spread into grape vineyards in the spring, and the associated
containment program.  An additional public policy to contain the spread of GWSS and, thus, the transmission of PD, is a
state quarantine on the movement of nursery, citrus and other host crops out of infested regions.

3. Estimate the optimal check-off rate for the grape industries that benefit from the treatment of the GWSS on
overwintering crops.  The rate will take into account the costs and benefits to the grape growers in both infested areas
and areas that benefit from the containment of the GWSS within infested areas, and the costs and benefits to growers of
overwintering crops.  The results of the first two objectives will be used as parameters in the model that estimates check-
off rates.

Analytical Approach to Measuring the Economic Effects of Pierce’s Disease in California
The increase costs of production affect newly infested producers directly because they bear the burden of paying the
increased costs of production; however, consumers and producers are also affected through the market effects of the changes
in the costs of production.  These effects can be shown graphically. Figure 1 presents the market effects of the increased
incidence of PD due to the establishment of the GWSS on the market for grapes (here defined as wine, table and raisin
grapes) and the development of effective GWSS control methods.  The market contains suppliers, who are willing to supply
grapes and initially represented by supply curve S*.  The supply curve is upward sloping because as prices increase growers
will grow more grapes and supply more grapes to the market. The market also contains consumers who purchase grapes and
are represented by the demand curve D. The curve is downward sloping because as prices decrease, consumers will want
more grapes.  The market is in equilibrium at point d.  At point d, price is equal to P* and the quantity demanded by
consumers, Q*, is exactly equal to the quantity supplied by producers.

At the initial equilibrium point there are some consumers who are willing to pay more than P* and some producers who
could offer their products at a market price less than P* and still make a profit.  The consumers who are willing to pay more
may have more income than other consumers, or just a greater preference for grapes and grape products.  The maximum
amount that each consumer would be willing to pay for grapes is represented by the demand curve.  The difference between
what consumers are willing to pay and the actual price that they do pay is called consumer welfare.  In Figure 1, consumer
welfare is equal to area P*gd.

The producers who could profitably accept less than the market price are producing grapes at a lower cost than other
producers.  The minimum amount at which each producer would supply grapes to the market is represented by the supply
curve.  The difference between the price at which producers would offer their goods to market and the actual price they
receive is called producer welfare.  In Figure 1, producer welfare is equal to area P*ad.
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The establishment of the GWSS in select counties in California initially causes the supply curve to shift up from S* to S’.
For supply curve S’ the new equilibrium point is f.  At point f, the equilibrium price is P’, and the equilibrium quantity is Q’.
For example, this shift could represent the losses in the Temecula Valley as PD spread with the GWSS and diseased vines
were removed.

Figure 1.  Market effects for grapes produced in GWSS infested counties.

Over time, management of the GWSS improves and losses decrease.  This causes the supply curve to shift from S’ to S’’.
Thus, supply curve S’’ represents the current situation with respect to the management of GWSS and PD.  For supply curve
S’’, the new equilibrium point is e, price is P’’ and market supply is Q’’.  For example, over time growers in the Temecula
Valley learned that treating a vineyard with the Admire® formulation of imidacloprid can effectively reduce GWSS
populations and the incidence of PD.  While vineyards can now be replanted, the cost to produce grapes has increased above
the pre-GWSS environment because growers must now incur the additional expense of applying Admire®.

For Objective 1, the losses to the different grape industries in California will be estimated assuming a shift in the supply
curve from S to S’’.  The estimated losses to consumers and producers will be equal to area beda.  For Objectives 2 and 3, the
initial market equilibrium will reflect the current situation and practices in California.  In Figure 1, this is at point e, where
the demand curve, D, and supply curve, S’’, intersect.  It is assumed that should the public management of GWSS be
discontinued, the supply curve would shift upward again.  As an example, assume that the supply curve S’’ shifts back up to
S’ if the public programs are discontinued.  The estimated losses to producers and consumers would then be equal to area
cfeb.

The graphical analysis above illustrates the situation in which all grape production in a specific region is affected.  Within
that region all growers are worse off due to higher costs, but losses to some degree are minimized through higher market
prices.  Consumers are worse off due to higher prices, and lower consumption.  With regard to the case of PD in California,
growers located in regions free of the GWSS, and growers in other states where the GWSS is native, will be better off due to
the establishment and spread of GWSS in select counties of California.  Growers without GWSS receive higher prices, but do
not incur higher management costs due to control of GWSS.  Additional costs accrue to taxpayers who bear the costs of the
public management programs.  An economic analysis needs to include all these effects. Due to the relative newness of the
establishment of the GWSS, the scenarios estimated will include a sensitivity analysis that reflects the best estimates of the
range of possible effects by scientists researching and managing the GWSS.

Once all costs and benefits of the establishment of the GWSS are estimated, and the costs and benefits of the public program
to treat GWSS in citrus are estimated, the check-off rates that growers would need to pay in order to take over the citrus
GWSS control program will be determined. Because research and the most effective means to complete the public control
program is still being conducted, there is still a vital role public agencies have in reducing the short-term effects on producers
and, especially, consumers, of commodities affected by Xf and GWSS.  In the long-run though, taxpayer financed control of
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the GWSS will probably not continue.  Even though public funding will continue for the foreseeable future, this research
project will put the economic evaluation tools into place if budgetary shortfalls at the state or federal level put pressure on
policy makers to downsize the public program, and the industries affected by GWSS need to respond quickly.

RESULTS
Economic Effects in the Southern San Joaquin Valley
A meeting was held with grape growers, and public agencies involved with the public control program to determine how the
establishment of GWSS has affected different groups in this area.  Three groups are affected by control of the GWSS in the
southern San Joaquin Valley, grape growers, citrus growers and tax payers.  A majority of grape growers apply imidacloprid
annually to control GWSS and prevent the vine-to-vine transmission of PD.  Applications are typically at the maximum rate
of 14 fl oz an acre (4.6 lb ai/gal formulation) through the irrigation system.  While there is a low incidence of PD in Kern and
Fresno counties, the incidence can rapidly increase should GWSS not be controlled. The treatments with imidacloprid also
provide some benefits to the control of variegated leafhopper and are a suppressant of the grape and vine mealybug.  No
quarantine costs are incurred by grape growers as mature fruit destined for the fresh market is hand harvested and field
packed.

Citrus growers are affected by the public control program and quarantines against moving citrus out of infested areas.  With
the public control program, citrus growers are reimbursed for their treatments of GWSS.  Participation in the public program
is currently voluntary for the citrus grower.  To control for GWSS in citrus, an application of Assail is made in the fall
followed by an application of imidacloprid in the spring.  Imidacloprid is applied at a rate of 32 fl oz an acre (2 lb ai/gal
formulation) through the irrigation system.  The control program is conducted on an area-wide basis to achieve longer-term
reductions in GWSS populations.  The control in citrus occurs once every three years unless monitoring indicates an increase
in GWSS populations.  The treatments with imidacloprid may provide minor benefits to control of other pests.  Imidacloprid
may help suppress nematodes, citrus peelminer and California red scale.  Better control of these insects can be achieved by
applying an additional amount of imidacloprid when treating for GWSS; however, the grower is responsible for those costs.
The citrus industry is affected by the interior quarantine and fruit from infested areas needs to be inspected and treated before
leaving a quarantine area.  Quarantine treatments involve fumigation using EverGreen (pyrethrum + piperonyl butoxidor).
Turbocide has also been mentioned as a material that can be used as a fumigant. Taxpayers bear the costs of the public
program and the state quarantine.  These costs include the payments to citrus growers, management costs of the program, and
inspection and monitoring cots.

The remaining areas that will be included in this study are the southern California grape growing areas that also treat for
GWSS, but where the public program is less widespread, the northern San Joaquin Valley grape growing area that is
currently free of GWSS, but has a higher incidence of PD, and the major wine grape growing areas of northern California that
are also currently free of GWSS.  Growers in the areas free of GWSS do not incur any direct costs due to the presence of
GWSS.  They are also beneficiaries of the quarantine program to contain GWSS in the southern San Joaquin Valley.  Thus,
their benefits need to be included in the analysis of Objective 3.

CONCLUSIONS
The containment of GWSS affects both the grape and citrus industries, especially in the southern San Joaquin Valley
counties.  Even though grapes are treated annually and citrus once every three years, citrus receives treatments with two
pesticide applications and a greater amount of imidacloprid.  Thus, even though GWSS is a minor pest of citrus, the per acre
costs of control are similar to the costs being born by the grape growers.  While the per acre costs are similar, because the
treatments in citrus are being born by the taxpayer there are no market effects with respect to changes in market prices or
production.  In comparison, treatments by grape growers are partially passed through to consumers, making consumers worse
off.  The complete economic analysis will take all these effects into account.
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	Table 2.Summary of up-regulated and down-regulated transcripts between resistant and susceptiblegenotypes among three tissues following ofXfinfection
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	Figure 1.Functional category of putative genes of among 63 differentially expressed transcripts.
	Figure 2.Taq-Man gene expression analysis wasused to analyze expression during PD development.Here is an example of the putative pathogenesis-related gene, which increased more than 10 times thetranscriptional levels in the 8th week afterinoculation in the susceptible genotype (9621-94) ascompared to the resistant genotype (9621-67).
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	Figure 1.Vineyards (red) in the Coachella Valley,and sites where PD was confirmed in 2002, 2003, and2004.
	Spatial and temporal abundance of sharpshooters
	We discuss the trap data in two distincttime periods.  The first, from May 2001through January 2003, preceded the CDFAtreatment program in citrus while the second period from February 2003 to the present has been during the implementation ofthis areawide program.  During the early part of this period, GWSS vastly outnumbered STSS (Figure 2A).  While averagedensities did not exceed 3 GWSS per week, some sites had veryhigh GWSS catches; up to 160 insects per week weretrapped (Figure 2B).  During the second pe
	Figure 2.(A) Average number of GWSS (pink) and STSS (blue) trapped per week from2001 - 2004 in the Coachella Valley.  (B)Maximum number of GWSS (pink) and STSS(blue) trapped per week.
	Figure 4.Sites with PD and maximum GWSS numbers inthe Coachella Valleyfrom 2001-2004.
	Figure 5.Vineyards (red) in the Coachella Valley, andsites where PD was confirmed in 2002,2003,and 2004.
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	Table 2B.
	Figure 1
	Figure 1.The seasonal average for host plant preferenceGWSS adults and nymphs was clearly towards oleanderand Xylosma at this sampling site.  Data of the seasonalaverage are skewed by the large spring GWSSpopulation density.
	Figure 2.Average densities (±SEM) of GWSS(nymphs and adults) were significantlydifferent among perennial host plants, Tukey’sHSD atP< 0.05.  Data are seasonal averages,and biased towards host species preferred inJune and July, when GWSS densities were thehighest.
	Figure 2.Theefficacy of the internal (left graph) and external marking procedure (right graph) (n=8 to 16 per treatment). Allof the GWSSs assayed 3, 5, and 7 days after marking yielded positive ELISA responses for the presence of rabbit IgG.  All ofthe unmarked GWSSs yielded negative ELISA responses.
	Results indicate that the protein markingprocedure works for at least 7 days after marking GWSS.  The next phase of ourresearch (in progress) will be to mark individual GWSSs using the methods described above.  Specifically, 10 individualGWSSs will be marked, each witha unique protein (see Table 1).  The 10GWSSs will then be placed in a field cagecontaining various predator species. The predator assemblageexamined will represent those predators commonly found inareas inhabited by GWSS (JRH, pers. obs.).  A 
	Table 1.A listing of the proteins that will be
	used to mark 10 individual GWSS.
	Individual GWSSProtein marker
	1RabbitIgG
	2
	Guinea pig IgG
	3EquineIgG
	4Mouse
	IgG
	5Dog
	IgG
	6Pig
	IgG
	7Bovine
	IgG
	8Cat
	IgG
	9Rat
	IgG
	10Sheep
	IgG
	Table 2.A listing of the arthropod assemblage to be examined.
	SpeciesStage\1
	Classification\2
	Likely GWSS prey\3
	Adult/immatureCarnivoreEgg
	Zelus renardii
	Adult/immatureCarnivoreNymph/Adult
	Geocoris punctipes
	AdultOmnivoreEgg/early instar nymph
	Adult/immatureCarnivoreNymph/Adult
	Earwig
	Adult/immatureOmnivoreEgg, nymph, adult
	Chrysoperla carnea
	ImmatureCarnivoreEgg
	Preying mantis
	Adult/immatureCarnivoreNymph, adult
	Syrphid fly
	ImmatureCarnivoreEgg
	Coccinella septempunctata
	Ad
	Egg
	ult/immatureCarnivore
	3/The most likely GWSS life stage that will be attacked.
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	Table 1.Meanadevelopmental duration and size of three biometric parameters of immature stages of GWSS reared onexcised cowpea leaves.
	InstarImmature duration ± SE (days)Biometric parameter ± SE (mm)
	N
	FemaleMale
	N
	HCWBDLHTL
	Table 2.Fecundity and life table parametersof GWSS reared on excised cowpea leaves.
	Parameter
	nFecundity*rm
	R
	GDT
	λ
	Mean193.7
	0.044
	33.6
	79.3
	15.6
	1.045
	15
	95% LCI95% UCI
	Figure 2.Distribution of head capsule widths of GWSSnymphs and adults.
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	timed might drive the GWSS population below its critical density, thus leading to its local extinction.  To fulfill this goal,wepropose the following objectives:
	Valencias
	Lemons
	Figure 1.Actual adult GWSS densities (solid line)and newly produced adults per date (dotted line) in anuntreated Valencia grove.
	Figure 2.Actual adult GWSS densities (solid) andnewly produced adults per date (dotted) in anuntreated Lemon grove.
	Figure 3.Actual adult GWSS density since Fall 2003in an untreated Tangerine grove.
	Tangerines
	Figure 4.Actual adult GWSS density since Fall2003 in an untreated Grapefruit grove.
	A more interesting analysis using the population samples from Valencia and Lemon trees is presented in Figures 5 and 6.  Weplotted the total adult and the newly emerged (red-veined) adult density using a logarithmic scale. We then used a forecastingtechnique on these data for Valencia and Lemons separately, i.e. the lines in Figures 5 and 6 which show what would happenif the current trend is extrapolated untilit reaches zero.  Although it is unlikely thatGWSS will ever reach zero, we use theseplots to estim
	Figure 5.Logarithm of total and new adults in
	Valencias with trend lines showing expected “zerodensity” dates.
	Figure 6.Logarithm of total and new adults in
	lemon with trend lines showing expected “zerodensity”  dates.
	If the current trend continues for severalyears the adult GWSS will reach their minimum densities within the next three to sixyears.  However, as new data are collected and plotted on these graphs a more refined minimum density will be obtained butit is extremely unlikely that the GWSS densities will becomeextinct.  A second and even more powerful technique can beused to analyze the GWSS dynamics (figures 7 and 8).  These figures need some explanation. What they show is a plot ofGWSS adult densities at any 
	Parasitism 2004
	% parasitism
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	From March-May, each tower averaged 16.4BGSS.  Of these, 88.3% were caught at 15feet or lower.For the entire season,each tower averaged 23.5 BGSS.  Of these, 89.7% were caught at 15 feetor lower.  The patterns of trap catches for the earlypart of the season and the fullseason were nearly identical.
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	Figure 3.
	The Coast Live oak tree adjacent to Tower 10 was apparently a preferred host plant at this time.  If BGSS commonly residein tall trees during the spring, then the effectiveness of barriers will likely be reduced.  Additional studies are needed to betterelucidate the early spring host preferences of BGSS in riparian zones, especially at higher elevations in the riparian canopy.
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	Figure 1.Left. Biofilm formation bycsrA-Ecoliis suppressed byX. fastidiosa rsmAand(Right),rsmAmutant ofX.fastidiosaform more biofilm than their wilt typersmA+parents.
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	several species; however, additional studies must be completedto further elucidate the role of this pathogen in causingwidespread disease in the urban setting as well oncrops of agronomic importance in California.
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