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VIRULENCE ANALYSIS OF THE PIERCE’S DISEASE AGENT XYLELLA FASTIDIOSA

Project Leader:
George Bruening
Plant Pathology Department
University of California
Davis, CA 95616

Cooperators:
Edwin Civerolo
USDA-ARS

Bruce Kirkpatrick
Plant Pathology Department
University of California
Davis, CA

David Gilchrist
Plant Pathology Department
University of California
Davis, CA

Reporting Period: The results reported below derive from work conducted from November 1, 2001 to October 31, 2002.

INTRODUCTION
The bacterium, Xylella fastidiosa (Xf), is accepted as the causative agent of Pierce’s disease of grape.  In our survey of plants
for their reaction to Xf cell suspensions pressure infiltrated into leaves, we found that Chenopodium quinoa (Cq) developed a
chlorosis in 24-48hr that conformed to the area infiltrated with suspensions of 106 to 108 Xf cells/mL.  Comparisons of
infiltrated opposite leaf halves for the intensity of the developed chlorosis provided a useful semi-quantitative assessment of
the relative potency of Xf-derived preparations.  The chlorosis-inducing activity was associated with Xf cells, not washings of
cells, and heating Xf cells at 100°C for 6 min slightly enhanced the activity. We observed that the chlorosis-inducing activity
survived treatment with sodium dodecyl sulfate (SDS).  Although the indicated stabilities do not suggest a protein as the
active agent, the chlorosis-inducing activity was sensitive to each of three proteases and was lost after treatment with
chloroform or acetic acid. These results suggested that Xf possesses a protein elicitor that is recognized in the intercellular
spaces of Cq plants even when the protein is in a denatured state.  Presumably metabolic events of Cq, subsequent to
recognition, result in chlorosis.

Chenopodium ambrosioides (Ca) is known to be a natural host of Xf and a source of Xf inoculum that can be transmitted to
grape under experimental conditions (Freitag 1951).  We were able to infect Ca with Xf after inoculation by petiole injection.
However, infiltrated leaves of Ca failed to develop chlorosis or other reaction.  In contrast, Cq, which developed chlorosis
after infiltration, did not become detectably infected after inoculation with Xf. In several systems, a pathogen protein that acts
as an elicitor in one species may act as a virulence factor in a closely or distantly related line or species (De Wit, Joosten et al.
1994; van't Slot and Knogge 2002).  Therefore, the Xf elictor of Cq chlorosis may be a virulence factor in other, susceptible
plant species, e.g., Ca and Vitis vinifera.

OBJECTIVES
1. Identify gene product(s) and gene(s) of Xf that contribute to its virulence.
2. Exploit knowledge of Xf virulence factor(s) in strategies for control of Pierce’s disease.

RESULTS AND CONCLUSIONS
A precipitate was collected by high speed centrifugation after incubating washed and suspended Xf cells for 30 min at 30˚C in
Tris-buffered sodium dodecyl sulfate (SDS) solution at pH approx. 8.6.  Compared to intact Xf cells, the precipitate after SDS
extraction presented a greatly simplified pattern of proteins after SDS-polyacrylamide gel electrophoresis (SDS-PAGE).
Extracts of gel regions were assayed by infiltration into Cq leaves.  The bulk of the chlorosis-inducing activity was associated
with material with mobility corresponding to molecular weight of about 40K.  A prominent band (Coomassie blue stained)
from the region was excised and subjected to digestion with trypsin and analysis by mass spectrometry (Young Moo Lee, UC
Davis Molecular Structure Facility).  Peptides were identified that correspond to about 40% of the Xf outer membrane protein
mopB.  The pyroglutaminyl-terminated peptide pyro-QEFDDR mapped to the mopB gene sequence (Simpson, Reinach et al.
2000) to predict a mopB protein of molecular weight 38.5K.  Results from other experiments suggest that the pyroglutaminyl
residue is the natural end of mature Xf mopB protein and is not created as an artifact of our analysis by cyclization of an
amino-terminal glutamine residue. Edman degradation gave in very low yield the sequence MKKKILT…, consistent with a
mopB protein of molecular weight 40.7K as a minor component.  The 22 amino acid residue sequence at the amino end of the
minor 40.7K protein, and not present in the abundant 38.5K protein, has the characteristics of a signal peptide.  We conclude
from the above results that the translation product of the Xf mopB gene is the 40.7K protein and that release of its 22 residue
signal peptide results in insertion of the 38.5K mopB protein so tightly into the Xf outer membrane that it remains insoluble
during a SDS treatment that releases most other Xf proteins.

translated mop B: MKKKILTAALLGGIAIIQVASAQEFDDRWYLAGSTG…  40.7K
mature mop B: pyro-QEFDDRWYLAGSTG…  38.5K
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The Xf mopB amino acid sequence differs from the citrus strain Xf mopB at only seven sites.  The next most similar proteins
in databases form a group of more than 15 “ompA” proteins of Gram-negative bacteria.  The ompA proteins show close to
30% similarity to Xf mopB, confined mostly to the carboxyl terminal region.  The Pseudomonas fluorescens ompA protein
OprF and Xf mopB, unlike most other ompA proteins, have a proline-rich region preceding the carboxyl end region of
similarity. P. fluorescens competes against certain root-pathogenic fungi because of its ability to colonize root surfaces.  De
Mot and Vanderleyden (1991) purified OprF, a major outer membrane protein, and demonstrated that OprF binds tightly to
roots and probably is responsible for some aspect of the root-adhesion capabilities of P. fluorescens, a supposition also
consistent with mutational studies (Deflaun, Marshall et al. 1994).  Therefore, we postulate that mopB may contribute to Xf
virulence by adhering to xylem element interior surfaces.

The insoluble fraction obtained after 30˚C SDS extraction of Xf cells was solubilized in hot SDS and chromatographed on 6%
agarose beads.  As indicated in the figure, fractions (lanes 2-10) were analyzed by SDS-PAGE to identify those showing
greatest purity of Xf mopB. Pooled fractions were concentrated for production of rabbit anti-mopB.  Attempts at cloning Xf
mopB in E. coli, using constructions that encompassed the entire Xf mopB gene, including its putative promoter, were not
successful.  Therefore, the Xf mopB open reading frame (ORF) was placed under control of a bacteriophage T7 RNA
polymerase promoter in E. coli strain BL21(DE3)pLysS, which bears a a Lac promoter-driven T7 RNA polymerase gene, as
well as a T7 lysozyme gene to prevent accumulation of active T7 RNA polymerase prior to induction of the Lac promoter.
Induction of cultures with IPTG resulted in appearance of a new band with Xf mopB mobility as detected by immunoblotting
(lanes 11,12; work of Paul Feldstein), but not to levels readily detected by staining with Coomassie blue.  That is, Xf mopB
accumulation may sicken E. coli. A band (lane 11), from uninduced culture and reacting with anti-Xf mopB antibody, may be
due to cross reaction with the E. coli outer membrane protein ompA, which is slightly smaller than Xf mopB.

Purification of Xf mopB and expression of
Xf mopB in E. coli. Analyses were by 12.5%
SDS-PAGE. Insoluble material (lane 1) was
recovered after extraction of Xf cells with SDS
solution at 30°C.  Lanes 2-10: aliquots from
sequential 1mL fractions from a 120mL bed
volume column of 6% agarose beads
(Superose 6) receiving the lane 1 sample and
eluted with buffered 1mg/mL SDS.  Fractions for
lanes 5-7 were pooled and concentrated.
Lanes 11 and 12 are from a 1sec exposure of an
immunoblot (anti-Xf mopB serum, 1:5000) of
30°C SDS extract from E. coli BL21(DE3)pLysS
cells transformed with a plasmid bearing a T7
promoter and the Xf mopB ORF.  Cells were
incubated without (lane 11) or with (lane 12)
IPTG.

1        2    3    4   5    6    7   8    9   10     11   12
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FUNCTIONAL GENOMICS OF THE GRAPE-XYLELLA INTERACTION: TOWARDS THE IDENTIFICATION
OF HOST RESISTANCE DETERMINANTS

Project Leaders:
Douglas R. Cook, Francisco Goes-da-Silva, Hyunju Lim
Department of Plant Pathology
University of California
Davis, CA 95616

Cooperators:
M. Andrew Walker and Alberto Iandolino
Department of Viticulture and Enology
University of California
Davis, CA

Reporting Period: The results reported below derive from work conducted from December 2001 to November 2002.

INTRODUCTION
Pierce’s disease (PD), caused by the bacterial pathogen Xylella fastidiosa (Xf), is one of the most destructive diseases of
grapevines (Purcell and Hopkins, 1996).  All genotypes of Vitis vinifera are susceptible to the PD pathogen and only certain
non-vinifera species (e.g., V. shuttleworthii and Muscadinia rotundifolia), typically not suitable for wine production, are able
to resist or tolerate this pathogen.  Development of resistant varieties through classical breeding is complicated by the desire
to retain varietal phenotypes in cultivated species, and by the generally poor agronomic properties (e.g., fruit quality) of these
non-vinifera species.  An alternative approach for developing disease resistant germplasm is to characterize the molecular
basis of resistance and susceptibility in Vitis species, and to use this information to design rational strategies for crop
protection.  In this project we are pursuing a genomics approach to identify transcriptional pathways that are correlated with
susceptible or resistant interactions in Vitis and Muscadinia species.  The comparison of these two distinct interactions should
reveal functional elements of the host resistance response, or conversely host functions that confer susceptibility.

The experimental strategies outlined below use genomics technology (e.g., cDNA sequencing to create Expressed Sequence
Tags [ESTs] and transcriptional profiling using micro arrays) to identify genes in Vitis species that may be causal to host
susceptibility (in the case of V. vinifera) or resistance/tolerance (in the case of M. rotundifolia).  Such information will
considerably increase our knowledge of the grape-Xylella interaction and potentially provide the basis for developing
resistance to the PD pathogen in V. vinifera.  A side benefit of these activities will be derivative information, such as a public
database of grape ESTs, information for molecular marker development (e.g., SSR and SNP information), and anticipated
public access to a grape oligonucleotide microarray.

OBJECTIVES
1. cDNA libraries will be produced from infected and non-infected grape genotypes. Library construction will focus on

susceptible V. vinifera and related species (e.g., a Vitis rupestris x Muscadinia rotundifolia cross) that are
tolerant/resistant to Xylella infection.

2. Sequencing reactions will be completed for a total of 60,000 cDNA clones obtained from the above libraries (30,000
from V. vinifera and 30,000 from the V. rupestris x M. rotundifolia cross).  The resulting sequence information (i.e.,
Expressed Sequence Tags (ESTs)) will be submitted to the National Center for Biotechnology Information (NCBI).

3. An analysis pipeline and web-accessible database will be developed for the grape transcriptome.  The initial focus of the
database will be on the minimum gene set expressed during the grape-Xylella interactions.

4. Transcriptional profiling will be conducted to characterize host gene expression in susceptible and resistant/tolerant
grape-Xylella interactions.

RESULTS AND CONCLUSIONS
We are taking an EST sequencing and transcriptional profiling approach to develop a detailed picture of the molecular events
that underlie host susceptibility and host resistance to the pathogen Xylella fastidiosa in Vitis species.  Currently we have
constructed eight cDNA leaf libraries from infected and non-infected plants of Vitis vinifera at host developmental stages
corresponding to key steps in disease development and in excess of 100,000 clones have been picked and archived for further
analysis.  DNA sequencing reactions are being completed and analyzed for a total of 30,000 cDNA products from these
pathogen-related libraries. A similar strategy is being implemented to sequence and characterize an additional 30,000 cDNA
sequences from related species of grapes that are resistant to Xylella infection.  In collaboration with Dr. Andrew Walker, we
will characterize PD-resistant progeny from a cross between V. rupestris and M. rotundifolia.  In association with the
National Center for Genome Resources (NCGR) we are implementing an online relational database (the X-Genome
Initiative, XGI) as a means to organize and annotate the EST information resulting from the projects.  As a temporary
measure, we have established an in-house data analysis pipeline, consisting of EST contig assembly by means of the
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PHRED/PHRAP algorithm, and BLASTN analysis against the entire Arabidopsis coding sequence and all publicly available
sequences from V. vinifera.  BLAST reports are stored on line and provide a simple homology-based analysis of the grape
EST dataset.  Subsequent to cDNA sequencing and electronic data mining we will employ a functional genomics strategy to
monitor host gene expression during grape development using oligonucleotide microarrays.  This work will be done in
collaboration with the Department of Biochemistry, University of Nevada, Reno (as part of an NSF Plant Genome grant).
The two projects are coordinating an international effort to develop a 70-mer oligonucleotide microarray. For purposes of this
project, the array will provide a means to analyze the expression of thousands of grape genes during the grape-Xylella
interaction.  We anticipate that the strategies outlined above will define the transcriptional response of susceptible and
resistant Vitis and Muscadinia species to infection by Xylella fastidiosa.  This information will significantly advance our
knowledge of grape-Xylella interactions, and it may reveal transcriptional pathways that are causal to host susceptibility or
resistance/tolerance.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service, and the CDFA Pierce’s
Disease and Glassy-winged Sharpshooter Board.
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THE GENETICS OF RESISTANCE TO PIERCE’S DISEASE

Project Leader:
Andrew Walker
Department of Viticulture and Enology
University of California
Davis, CA 95616

Cooperators:
Alan Krivanek and Summaira Riaz
Department of Viticulture and Enology
University of California
Davis, CA

Reporting Period: The results reported here are from work conducted from December 31, 2001 to November 1, 2002.

INTRODUCTION
This project was part of the American Vineyard Foundation Long Term Project on Pierce’s Disease.  Our component of this
project focuses on understanding the genetics of resistance to Xylella fastidiosa (Xf), the causal agent of Pierce’s disease
(PD).  The studies include understanding the inheritance of resistance to Xf in Vitis rupestris x Muscadinia rotundifolia and
developing genetic markers for Xf resistance.  It integrates into two other projects – a fine-scale mapping project for Xf
resistance, and the breeding of PD resistant table and raisin grapes.

These Xf resistance studies are being carried out on potted and replicated plants under greenhouse conditions using needle
inoculation with the 'Stag's Leap' strain of Xf. The plants are grown for 12 to 16 weeks and then evaluated for the presence of
Xf and irregular shoot lignification symptoms.  ELISA is used to test stem samples from 10 cm above and 10 below and at the
point of inoculation.  This system has proved to be highly reliable, efficient and quantifiable.

OBJECTIVES
1. Complete analysis of a series of crosses (Design II mating scheme) allowing the quantitative inheritance of Xf resistance

to be evaluated.
2. Complete a genetic map of a Vitis rupestris x Muscadinia rotundifolia seedling population using AFLP (amplified

fragment length polymorphism) markers to allow the identification of DNA markers to Xf resistance and eventual
identification of Xf resistance genes and their genetic engineering into vinifera cultivars.

3. Develop and utilize genetic markers to assist and accelerate the introgression of Xf resistance into table, raisin and wine
grapes.

RESULTS AND CONCLUSIONS
Inheritance studies of Xf resistance in a M. rotundifolia background:
Last year, Alan Krivanek (PhD student) completed a broad series of crosses within a Design II mating scheme among
siblings from the 8909 (V. rupestris x M. rotundifolia) population.  From among those families he is currently screening a
total of 2,100 plants for Xf resistance under a randomized complete block design using our greenhouse evaluation system.
The crosses include 9 Resistant x Resistant families, 3 Susceptible x R families, 3 R x S families and 1 S x S family.  From
these crosses 3-4 cuttings from 20-38 seedlings from each of the 16 families have been propagated potted and inoculated
twice with the ‘Stags Leap’ Xf isolate.  Parents of the 4x4 Design II were chosen as follows:  Females – 8909-02 R, 8909-07
S, 8909-15 R, 8909-16 R?;  Males – 8909-01 R, 8909-08 R, 8909-19 S, 8909-26 R.

Genetic mapping of a V. rupestris x M. rotundifolia population (9621 – 8909-15 x 8909-17):
A genetic map of V. rupestris x M. rotundifolia has been completed and submitted for publication (M. Doucleff, Y. Jin, F.
Gao and M.A. Walker.  A Genetic Linkage Map of Vitis rupestris x Muscadinia rotundifolia.  Submitted to Theoretical and
Applied Genetics).  This map is now being expanded and fine scale mapping undertaken to better localize Xf resistance genes
and markers linked to them (Please see the report on this project by Walker and Riaz within these Proceedings).

Development of genetic markers for Xf resistance:
This study is being carried out in the 9621 mapping population (8909-15 x 8909-17, both Xf resistant).  To date, about 70
primer combinations have been evaluated out of a goal of 150 to 200 primer combinations.  It is expected that 2-4 markers
flanking the Xf resistance gene within a 2-cM window will be identified.  Several candidate markers liked to resistance in the
male parent and the female parent have been identified. Candidate markers will be confirmed by separately evaluating
marker patterns on each individual within the bulk.  SCAR primers will be developed from the tightly flanking markers and
run on the 145 genotypes previously screened for resistance.  A total of 145 genotypes with marker data should yield a
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mapping resolution of approximately 2cM.  This resolution will be used to confirm the order and distance of the SCAR
markers around the resistance locus on its linkage group.

Susceptible bulk: 9621-025, 9621-034, 9621-039, 9621-045, 9621-062, 9621-094, 9621-116, 9621-118, 9621-167, 9621-219,
and 9621-277.

Bulked segregant analysis (BSA) was also carried out on a population composed of four different populations.  The male in
all four was 8909-08 (V. rupestris x M. rotundifolia).  The females were advanced seedless V. vinifera table grape selections
from D. Ramming:  B90-116 (population 501), C63-83 (502), C33-30 (503), and P79-101 (504).  A total of 120 plants were
tested for Xf resistance under our greenhouse screen and evaluated with ELISA. From these, 14 were used in a resistant bulk
and 16 were used in a susceptible bulk. These bulks were screened with 114 different AFLP primer combinations.  Out of
these 114, 11 were primer combinations that had already been mapped (see above) in a related cross (8909-15 x 8909-17).
These primer combinations were from Group 15 of this map, as is Xf resistance.  None of these 11 markers were close
enough to show up in the BSA analysis.

Results from eight of the 114 markers tested suggest that they are candidate markers.  These markers linked with Xf
resistance in the bulk analysis, and need to be further tested on the individual genotypes.  Most of these candidate markers
were faint bands, indicating that they may not be present in all of the resistant genotypes, and therefore recombination events
prevented tighter linkages.

Genetic markers were also sought in the 0023 population (8909-15 R x B90-116 S (advanced seedless selection from D.
Ramming)).  One hundred and eight seedlings were inoculated under our greenhouse system in a randomized block design.
Plants were inoculated twice.  After 16 weeks the plants were evaluated for Xf resistance based on cane lignification ELISA.
Fifty-four of the 108 seedlings had mean bacteria numbers of less than 500,000 cfu/ml which in other populations is the cut
off point for resistance.  The genotypes: 0023-19, 0023-54, 0023-63, 0023-98 had stem bacteria numbers of less than 60,000
cfu/ml and were crossed to advanced table grape selections in order to establish a large breeding population.  Approximately
1,800 seeds have been collected.  Markers linked to resistance in the mapping and BSA portions of this project will be used
on this population.  Correlation of the markers with Xf resistance will be confirmed and calculated if different from the
original mapping population.

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board, and the USDA
Animal and Plant Health Inspection Service.
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AN EXPANDED GENETIC MAP OF VITIS RUPESTRIS X MUSCADINIA ROTUNDIFOLIA FOR FINE SCALE
MAPPING AND CHARACTERIZATION OF PIERCE'S DISEASE RESISTANCE

Project Leaders:
Andrew Walker and Summaira Riaz
Department of Viticulture and Enology
University of California
Davis, CA  95616

Reporting Period: The results reported here are from work conducted from June 1, 2002 to November 1, 2002.

INTRODUCTION
This project is funded by the UC Pierce's Disease Grant Program. It expands a genetic mapping effort originally funded by
the California Grape Rootstock Improvement Commission, the Fruit tree, Nut tree and Grapevine Improvement Advisory
Board, the California Table Grape Commission and the AVF.  That study examined the genetics of resistance to the dagger
nematode and found that this resistance segregated within several V. rupestris x M. rotundifolia F1 populations.  A resistant
and a susceptible sibling were selected from one of these populations, 8909, and they were crossed to produce the 9621 "F2"
population (8909-15 x 8909-17).  The 8909 and 9621 populations also segregate for resistance to Xylella fastidiosa (Xf).  A
genetic map of 116 individuals from the 9621 population was created primarily with AFLP markers.  The work proposed
here will increase the mapping population to 188 individuals and add at least 100 SSR markers.  The addition of SSR markers
will help to link the V. rupestris x M. rotundifolia map to other mapping efforts around the world through their universally
comparable nature.  This is a new project with funding finalized in September 2002.

OBJECTIVES
1. Expand an existing genetic map created within V. rupestris x M. rotundifolia focused on resistance to Xf by adding 100

more individuals and 100 SSR and 20 EST markers.

Completion of this objective will allow further identification of DNA markers that are tightly linked to Xf resistance so that
marker-assisted selection strategies can be employed in the breeding program.  It will also more fully support efforts to locate
and identify the gene(s) responsible for Xf resistance.

RESULTS AND CONCLUSIONS
A genetic map of the 9621 population was completed and submitted for publication (M. Doucleff, Y. Jin, F. Gao and M.A.
Walker.  A Genetic Linkage Map of Vitis rupestris x Muscadinia rotundifolia.  Submitted to Theoretical and Applied
Genetics).  This map was initiated several years ago, was based on the pseudo-testcross strategy, and used primarily AFLP
markers.  Over the past two years we have used 15 new AFLP primers, 7 new ISSR primers, and 9 new SSR primers to score
over 200 additional molecular markers for 116 F2 individuals in the 9621 population.  Ambiguous genotypes were rerun or
left as unknown.  After scoring and rechecking each marker, approximately 10% of the markers were discarded because they
were not consistently scored.  Chi-square tests found that about 20% of the markers had significantly distorted (P < 0.05)
genotype ratios.  The remaining markers with P > 0.05 (100 AFLP, 32 ISSR, and 18 SSR) combined with the existing 275
AFLP and 25 RAPD markers were used to create a framework map for each F1 parent using MapMaker UNIX 3.0 and
PGRI.

A total of 474 polymorphic markers were scored with 298 segregating 1:1 and 176 segregating 3:1.  Approximately 7.5% of
the bands displayed skewed segregation ratios (Table 1).  Of the 298 1:1 markers, 158 were heterozygous in the female
(8909-15) and 140 were heterozygous in the male (8909-17).  Overall linkages were robust with p ≤ 0.3 and X2 ≥ 0.001
(equivalent to LOD score ≥ 3).  At X2 = 0.00001 and p ≤ 0.25, 16 linkage groups were formed for 8909-15 and 20 linkage
groups for 8909-17 (Table 2).  A framework map for each parent was constructed based on a 90% confidence level for
correct order using a PGRI bootstrapping algorithm.  Markers not ordered with a confidence level ≥ 90% were added to the
framework maps as accessory markers.  Together the two framework maps covered 1630 cM. This map was based on 116
individuals with 375 AFLP, 32 ISSR, 25 RAPD and 18 SSR markers.  Two measures of Xf resistance (ELISA values
indicating limited Xf movement beyond the point of inoculation; and the uneven lignification) both map to the same general
area on the same Linkage Group.
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Table 1. Data on mapping markers within the 8909-15 x 8909-17 mapping population.
1:1 8909-15 1:1 8909-17 Male

Marker Information Female Markers Markers 3:1 Markers
Total markers scored 158 140 176
Percent distorted 10.8 3.6 7.4

AFLP markers 125 111 160
ISSR, RAPD markers 25 21 14
Microsatellite markers 8 8 2
Framework markers 90 101 NA
Accessory markers 51 30 NA
Missing data % 3.8 5.4 4.0

Table 2. Data on linkage groups on the genetic maps
Framework Map Linkage Group Information 8909-15 Female Parent 8909-17 Male Parent
Total number of groups 16 20
Total size (cM) 730 900
Avg. group size (cM) 45.6 45.6
Avg. distance between markers (cM) 11.0 8.8
Avg. PCO 91.6 ± 4.7 95.5 ± 4.0

Before efficient efforts to locate Xf resistance genes can be undertaken, more individuals and markers are needed on the map.
We are now in the process of adding this data.  Thus far, DNA has been extracted from 188 individuals and we have
produced the some marker data (Table 3).

Table 3. Data on number of markers tested and useful for the 8909-15 x 8909-17 mapping population.
Markers Tested Amplified Useful for Map
SSR 111 92 65
EST (D. Adams) 20 14
Total 131 79

We are continuing to add SSR markers and are preparing to retest the entire population for AFLP markers.

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board, and the
University of California Pierce's Disease Grant Program.
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APPLICATION OF AGROBACTERIUM RHIZOGENES-MEDIATED TRANSFORMATION STRATEGIES FOR A
RAPID HIGH THROUGHPUT SCREEN FOR GENETIC RESISTANCE TO PIERCE’S DISEASE IN GRAPE

THAT MAINTAINS THE CLONAL INTEGRITY OF THE RECIPIENT HOST

Project Leader:
David Gilchrist
Department of Plant Pathology
University of California
Davis, CA 95616

Cooperators:
James E. Lincoln
Department of Plant Pathology
University of California
Davis, CA

Andrew Walker
Department of Viticulture and Enology
University of California
Davis, CA

Bruce Kirkpatrick
Department of Plant Pathology
University of California
Davis, CA

Reporting Period: The results reported here are from work conducted from April 2002 through November 2002.

INTRODUCTION
The goal of this project is to identify novel genes from either grape or heterologous plants that, when expressed in grape, will
lead to disruption of infection, spread or symptom development of the xylem-limited bacteria, Xylella fastidiosa. There is no
useful genetic resistance in commercially preferred grape clones, and introgression of resistance from grape relatives by
sexual crossing introduces substantial genetic variation. Introgression of resistance would be most useful if it were introduced
directly into vegetative tissue without requiring recurrent selection to attempt to return to the original host genotype.  We
have developed a functional screen for cDNAs that block either bacterial multiplication, movement or symptom expression
using an Agrobacterium rhizogenes mediated transformation strategy.  This system enables the direct introgression of cloned
resistance genes into a susceptible host plant while maintaining the clonal integrity of the recipient plant following
transformation. In working with symptomatic grape leaf tissue for isolation of RNA for development of cDNA libraries, we
examined the pattern and form of symptom development cytologically.  The cytological pattern of symptom development
suggested a similarity to tissue death in other plant systems that we have been studying for several years.  As a consequence
of our preliminary cytological studies we concluded that the death that was occurring in the pre-symptomatic and
symptomatic areas of leaves on infected plants borne changes that we associate with the activation of a programmed cell
death process that exhibits the morphological hallmarks of apoptosis, a widely studied gene mediated fundamental process of
development and disease in animals and in plants.  We have therefore included as a second objective an examination of the
molecular basis of cell death in pre-symptomatic and symptomatic tissues along with the immediate assessment of the effect
of expressing anti-apoptotic transgenes in Pierce’s disease (PD) infected tissues on the development of death related
symptoms in grape.  The research plan includes a rapid functional screen for genes that confer resistance to PD in
transformed grape tissue.  The goal is to rapidly identify resistance genes in grape genotypes that block any one of several
required steps in the infection and spread of X. fastidiosa in the xylem.

OBJECTIVES
1. Transformation of grape with Agrobacterium rhizogenes for cDNA library screening.
2. Construction of a series of cDNA libraries from healthy and infected grape tissues exhibiting foliar symptoms.
3. Examine the morphological and cytological features of cell death in symptomatic leaves.
4. Investigate the potential of blocking PD symptom expression with anti-apoptotic transgenes.

RESULTS AND CONCLUSIONS
Transformation of healthy grape with A. rhizogenes:
The method of delivery of the cDNA libraries into grape is now established in our laboratory.  We have confirmed that grape
is readily transformed by A. rhizogenes and that foreign genes (e.g. GFP) and our new cDNA libraries, can be expressed
readily in grape by this method.  The proof of concept in the case of the roots expressing GFP driven by the 35S promoter, all
roots were highly fluorescent when viewed under a fluorescence microscope.

Transformation of infected grape with A. rhizogenes:
We have established Xylella infections in the xylem of V. vinifera (Chardonnay) and transformed the GFP gene into roots
derived from infected stem sections by A. rhizogenes.  Transformed root induction occurred equally well on both infected and
healthy stem sections.  Interestingly, and perhaps fortuitously, the roots from the healthy stem sections remain alive and
growing after 2 months, however the roots that emerged from the infected stem sections appeared normal for 10 days but
then they stopped growing and eventually died with the death beginning at the root tip.  We have now repeated this result
numerous times and conclude that it constitutes a direct assay for genes from the resistant background that block movement
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into or accumulation of bacteria in the very young roots that leads to root death, due either to signals from the bacteria or
plant-expressed signals triggered by the presence of the bacteria in the vascular system of the root.

The pattern of death in the root tips is identical to the pattern we have observed and have published on in several host-
pathogen systems that is characteristic of pathogen and toxin-induced death.  This observation, which we believe is highly
significant, suggests that the mechanism of cell death in PD is a form of programmed cell death with morphological features
of apoptosis.  We also have found in several other systems that we can simultaneously block this programmed cell death and
disease using both anti-apoptotic transgenes and cell permeable chemicals (Richael et al. 2001). These results are described
in two recent reports.  The first report deals with anti-apoptotic chemicals (Richael et al. 2001), and the second report of this
approach using an anti-apoptotic transgene to engineered broad spectrum disease resistance was published recently in the
Proceeding of the National Academy of Sciences (Lincoln et al. 2002).

Construction of cDNA libraries:
The construction of a grape cDNA library proved much more difficult than originally assumed.  We have to date constructed
approximately 150,000 independent grape cDNAs cloned into a plant transformation binary vector, CB404, which is a
derivative of pBIN19 and uses the CaMV 35S promoter for high level, constitutive expression.  We will proceed to generate
the 500,000 independent grape cDNAs needed for our complete screen.  We have begun to move the cDNA library into
Agrobacterium rhizogenes to transform infected grape explants for the purpose of finding cDNAs that will block the death of
infected tissues.  We intend to screen small batches of the library at first in order to ensure that the entire procedure is as
efficient as possible.  The first library constructed is from both healthy and infected Vitis vinifera (Chardonnay) grape leaves.
Libraries are being made from Muscadinia rotundifolia (Cowart) and V.  shuttleworthii (Hanes City) as indicated in the
original proposal.  These resistant source plant materials are being used in Dr. Walker’s research and the libraries will be
available to his group.

Transformation of the baculovirus anti-apoptotic gene p35 gene into infected grape:
In order to test the hypothesis that programmed cell death (PCD) mechanisms are responsible for the death that occurs in
roots from Xylella infected grape stems, we directly transformed the baculovirus p35 gene into infected grape tissue explants
in a manner similar to that reported by Lincoln et al (2002).  Expression of p35 transgene in PD infected tissue explants
blocked the Xylella induced root death, which indicates that signals directly from the bacterium or from the plant but induced
by the presence of the bacterium trigged the root death which can be blocked by anti-apoptotic transgenes.  Based on
previous screens of cDNA libraries of tomato for endogenous anti-apoptotic genes we have 15 potential genes from tomato to
test immediately in the A. rhizogenes transformed grape systems.  Homologues of the tomato genes are currently being
cloned from grape so that we will have the authentic grape genes to use also in the very near future.

REFERENCES
Lincoln J.E., C. Richael, B. Overduin, K. Smith, B.D. Hall, R.M. Bostock, and D.G. Gilchrist. 2002. Expression of the anti-

apoptotic baculovirus p35 gene in tomato results in inhibition of cell death and a decreased susceptibility to a variety of
pathogens. Proc. Natl. Acad. Sci. (Online Early Edition, 25 October, 2002).

Richael, C., J.E. Lincoln, R. Bostock and D.G. Gilchrist. 2001. Caspase inhibitors reduce symptom development in
compatible plant-pathogen interactions and limit pathogen multiplication in planta. Physiol. Mol. Plant Pathol. 59: 213-
221.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service.
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CHARACTERIZATION OF FIMBRIAE PRODUCTION AND ATTACHMENT OF FIMA- AND FIMF-

MUTANTS OF XYLELLA FASTIDIOSA IN VITRO

Project Leader:
Steven E. Lindow
Department of Plant and Microbial Biology
University of California
Berkeley, CA 94720

Cooperator:
Alexander H. Purcell
Department of Environmental Science, Policy, and
Management, University of California
Berkeley, CA

Post-doctoral Researcher:
Helene Feil
Department of Plant and Microbial Biology,
University of California
Berkeley, CA

Reporting Period: The results reported here are from work conducted from February 1, 2002 to October 30, 2002.

INTRODUCTION
Xylella fastidiosa is a Gram-negative bacterium which causes serious diseases of plants such as Pierce’s disease (PD) of
grape (Vitis vinifera L.), citrus variegated chlorosis (CVC), and almond leaf scorch and colonizes many other plant hosts as
well as insect vectors (Purcell 1997).  The complete genome sequences of several strains of this organism are now available
and provide the base material to study the function of most genes in this organism. X. fastidiosa is known to produce
fimbriae to attach unipolarly to cell surfaces (Purcell et al. 1979, Feil et al. 2002).  The fimbrial genes are clustered in an
operon containing 6 open reading frames (ORFs) (Bhattacharyya et al. 2002).  Several of these ORFs have been identified to
have homology with genes of other organisms that were shown to be involved in the production of fimbriae (Bhattacharyya
et al. 2002).  Fimbriae- and pili-mediated attachment of bacteria to host tissues is important for bacterial colonization and
pathogenicity (Hultgren et al. 1996).  We investigated the role of fimbriae and adhesins in the virulence of X. fastidiosa to
plants such as grape.  The aim of this study was to determine the importance of fimbriae on the attachment of X. fastidiosa to
xylem vessels.  Two fimbrial mutants, FimA- and FimF- (a homolog to the adhesin MrkD) were produced and further
characterized (Feil et al. 2002).  Pathogenicity test showed that the mutants were still virulent in grapes.  Research is still
underway to determine to what extent the process of colonization of plants is altered in FimA- and FimF- mutants.  We expect
that the speed with which the cells move through the plant and the time before symptom development is altered in the
mutants; detailed measures of pathogen populations of the wild-type and mutant strains is underway in inoculated plants to
determine these features.  We described here the results of several attachment assays used to further characterize the
attachment of these mutants compared to the attachment of the wild type to various substrates.

OBJECTIVES
1. Determine the role of fimbriae in the attachment of Xylella fastidiosa to grape xylem vessels.
2. Identify compounds that either enhance or inhibit the production of fimbriae.

RESULTS AND CONCLUSIONS
The large majority of site-directed mutants in X. fastidiosa obtained after introducing FimA or FimF genes modified to
contain an insertion of a kanamycin resistance marker gene into the Temecula strain using a pUC18-based suicide plasmid
have been the result of double recombination events.  While this is a very fortuitous result given that we obtain a very high
frequency of gene knockouts in our mutagenesis strategy, such results are unexpected given that in most other bacteria gene
replacement occurs via a process that first generated single recombination events leading to cis-merodiploid strains.  We are
currently testing whether the high frequency of apparently simultaneous double recombination events is due to a linearization
of the in-coming plasmid DNA.

To further characterize the attachment of the fimbrial mutants, FimA- and FimF- we chose glass and balsa wood as substrates
for the assays.  The attachment of the mutants to these substrates was compared with the attachment of the wild-type parental
strain.  Several media were also compared to determine if attachment to substrates was dependent on the nature of aqueous
medium in which the cells were suspended.  Fluorescence microscopy revealed that adhesion to glass and aggregate
formation was greatly reduced for the mutants compared to the wild-type cells.  Wild-type cells formed aggregates of large
size at occasional sites on both glass slides and on wood surfaces. Most of the attached cells were found within such
aggregates; very few cells were attached as solitary cells to the surfaces.  In contrast, almost no cell aggregates were observed
in the FimA- and FimF- mutant strains, and few solitary cells also had adhered to the surfaces.  To determine the amounts of
cells remaining attached to glass or wood, we quantified the amount of protein as an estimate of the number of cells present
in a sample.  The greatest reduction of attachment using this assay was found when FimA- cells were grown in a low nutrient
medium, whereas in the PW medium the attachment was similar for the mutants and wild-type cells.  These results suggest
that pili play an important role in attachment of X. fastidiosa cells to each other to form aggregates, and that pili may play
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little role in attachment to other surfaces.  Since cell masses are a main feature of X. fastidiosa-infected xylem vessels, the
self-aggregation of the pathogen conferred by pili may be an important virulence factor.  The self-association of cells of X.
fastidiosa should also influence the extent to which cells move through the plant and contribute to blockage of water
movement, thus influencing symptom development.

When scanning electron microscopy (SEM) was used to examine wild-type and FimA- and FimF- mutants, we observed that
fimbriae production between the cells and the balsa wood for the wild type cells was enhanced when cells were grown in a
low nutrient medium. Examination of the FimA- mutant with SEM showed that fimbriae production was rare and that the
fimbriae length was much reduced from that of wild-type cells grown under similar conditions.

REFERENCES
Bhattacharyya, A, S. Stilwagen, N. Ivanova, M. D’Souza, A. Bernal, A. Lykidis, V. Kapatral, I. Anderson, N. Larsen, L.

Tamara, G. Reznik, E. Selkov, T. Walunas, H. Feil, W.S. Feil, A.H. Purcell, T. Hawkins, R. Haselkorn, R. Overbeek,
P.F. Predki and N.C. Kyrpides.  2002.  Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa
strains.  Proc. Natl. Acad. Sci.  99:12403-12408.

Feil, H., W.S. Feil, J.C. Detter, A.H. Purcell and S.E. Lindow.  2002.  Site-directed disruption of the fimA and fimF fimbrial
genes of Xylella fastidiosa.  Phytopathology. In Press

Hultgren, S. J., C.H. Jones and S. Normark.  1996.  Bacterial adhesions and their assembly.  In:  Neidhardt F. C. et al. (eds)
Escherichia coli and Salmonella typhiurium Cellular and Molecular Biology.  ASM Press, Washington, DC, pp 2730-
2756.

Purcell, A.H.  1997. Xylella fastidiosa, a regional problem or global threat?  J. Plant Path. 79:99-105.
Purcell, A.H., A.H. Finlay and D.L. McClean.  1979.  Pierce's disease bacterium: Mechanism of transmission by leafhopper

vectors. Science  206: 839-841.

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program.
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THE XYLELLA FASTIDIOSA CELL SURFACE

Project Leader:
Michele M. Igo
Section of Microbiology
Division of Biological Sciences
University of California
Davis, CA  95616

Cooperators:
Bruce Kirkpatrick
Dept of Plant Pathology
University of California
Davis, CA

M. Andrew Walker
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Davis, CA

Reporting Period: This project was funded with a start date of September 1, 2002.  Thus, the report will constitute our plans
and goals.

INTRODUCTION
Pierce’s disease is caused by the Gram-negative bacterium Xylella fastidiosa, which has been classified as a member of the
gamma subgroup of the Proteobacteria and is phylogenically related to the Xanthomonads. X. fastidiosa is highly specialized
and occupies two very different environmental niches.  Specifically, the bacteria are capable of multiplying in both the
foregut of xylem-feeding insects, such as the glassy-winged sharpshooter and in the xylem system of the host plant.  The
ability of X. fastidiosa to thrive in both the insect foregut and the xylem suggests that the bacterium has evolved regulatory
mechanisms that help it to cope with the unique stresses experienced in these two very different ecological niches.

A common response of Gram-negative bacteria to such stresses is to change the composition of their cell surface, particularly
the protein composition of their outer membrane.  The outer membrane is the outermost continuous structure on the bacterial
cell surface and serves as a selective barrier between the cell and the external environment. Changes in the protein
composition of the outer membrane are known to have a profound effect on the sensitivity of Gram-negative bacteria to
detergents, antibiotics, and bacteriophages. Therefore, in order to develop effective methods for controlling the spread of X.
fastidiosa, it is important to obtain information concerning the protein composition of the X. fastidiosa outer membrane in
general and how the composition of this membrane changes in response to environmental signals.  The overall goal of this
proposal is to identify the major outer membrane proteins of X. fastidiosa, to assign the individual proteins to specific genes
on X. fastidiosa chromosome, and to determine how the relative abundance of these proteins changes in response to
environmental signals.

OBJECTIVES
1. Identify the major outer membrane proteins of Xylella fastidiosa and assign them to a specific gene on the Xylella

fastidiosa chromosome.
2. Determine how the protein composition of the Xylella fastidiosa outer membrane is influenced by environmental signals

and signals from the infected grapevine.

RESULTS AND CONCLUSIONS
We have just received the funding for this project (October 2002).

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce's Disease Grant Program.
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UNDERSTANDING XYLELLA FASTIDIOSA COLONIZATION AND COMMUNICATION IN XYLEM LUMINA

Project Leaders: Cooperator:
Harvey C. Hoch and Thomas J. Burr James N. Turner
Department of Plant Pathology New York State Department of Health
Cornell University Cornell University
NYSAES NYSAES
Geneva, New York 14456 Albany, NY

Reporting Period: This project was funded with a start date of October 1, 2002.  Thus, the report will constitute our plans
and goals.

INTRODUCTION
Symptoms of Pierce’s disease of grape caused by Xylella fastidiosa are generally recognized as being caused by restricted sap
flow and resultant water stress due to plugging of xylem elements (Goodwin et al. 1988; Purcell and Hopkins 1996;
Mollenhauer and Hopkins 1974).  Such blockage is the result of massive bacterial aggregates and associated mucilage.  It is
not clear whether the extracellular polymeric mucilage is of bacterial and/or plant origin. Based on the analysis of the
complete genome sequence of X. fastidiosa, gums produced by the X. fastidiosa are similar to the ‘xanthan gums’ produced
by Xanthomonas campestris pv campestris, although they may be less viscous (Simpson et al. 2000).  In addition, tylose
development in xylem vessels in response to the presence of the bacterium further restricts sap flow (Mollenhauer and
Hopkins 1976.  These general concepts X. fastidiosa pathogenicity are readily recognized, although it is not understood how
the bacterium becomes established in the turbulent habitat of a ‘fluid conduit’ i.e., xylem vessels and tracheae.  Bacterial
spread through xylem elements is also poorly understood, albeit enzymatic degradation of pit membranes is thought to be
involved (Mollenhauer and Hopkins 1976).  Colony formation is likely to be influenced by the physical constraints of the
xylem element surface much like the formation of bacterial biofilms is influenced by surface characteristics
(microtopography, chemistry, etc.) in other aqueous and fluid environments such as medical stints and prostheses, food
handling equipment, and water supply systems (Ridgway and Olson 1981; LeChevallier et al. 1987; Caldwell and Lawrence
1988; Sternberg et al. 1999).  Surface microtopography of these environments influence the temporal and spatial aspects of
bacterial colonization (Bremer et al. 1992; Gorman et al. 1993; Korber et al. 1997; Arnold 1999).  Surfaces become colonized
as cells (in this case bacteria) attach initially via physio-chemical forces, and ultimately with extracellular polysaccharides or
ligand-mediated interactions.  The end result is the establishment of biofilms consisting of bacteria in a polysaccharide matrix
that provide a protective habitat that is conducive for continued cell growth and colony formation.

The recently completed sequencing of the X. fastidiosa genome has revealed several open reading frames with putative
functions that may be associated with bacterial colonization of xylem vessels and disease (Simpson et al. 2000).  For
example, at least one ORF with homology to the luxR family of transcriptional regulators has been identified (GenBank
accession AAF83782).  Such genes encode proteins (LuxR homologs) that when bound by acyl-homoserine lactone
autoinducer molecules (AI), regulate transcription of diverse types of genes (Fuqua et al. 1996).  Autoinducers are
synthesized by enzymes that are encoded by luxI gene homologs.  The luxI – luxR regulatory system was first discovered in
the marine bacterium Vibrio fischeri, however now related systems have been discovered in diverse species of bacteria
including plant and animal pathogens (Cha et al. 1998).  Autoinducers diffuse bi-directionally across bacterial membranes
and reach concentrations for efficient activation of LuxR regulators in environments of high bacterial density.  Thus the
ability of AI to activate the LuxR regulators is a cell density-dependent response referred to as quorum-sensing or
autoinduction.  The discovery of luxR homologs in X. fastidiosa strongly suggests that the bacterium produces AI and
regulates genes in a density-dependent manner.  This finding is intriguing because it suggests that a luxI-luxR type quorum-
sensing regulatory system may be functioning in X. fastidiosa biofilm communities in xylem vessels.

The overall goal of the proposed research is to identify factors that affect colonization and plugging of grape xylem elements
by X. fastidiosa and to use this information for development of effective control strategies for Pierce’s disease.  Our approach
is to determine physical and chemical factors that influence X. fastidiosa attachment and colony development using an in
vitro system, and to establish whether genes associated with these activities are regulated by quorum-sensing.  The in vitro
system that we propose has several advantages.  It will allow the direct observation of bacterial community development in
‘artificial’ vessels microfabricated to possess topographies and chemistries similar to ‘real’ in planta vessels.  We will be able
to determine how physical and in some cases biological parameters affect biofilm formation and plugging induced by virulent
and avirulent or weakly virulent strains.  Furthermore, it will be possible to differentiate between plant-induced responses and
those induced specifically by the pathogen.
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OBJECTIVES
1. Understand how the physical parameters of xylem tracheae and vessels influence Xylella fastidiosa colonization.

Toward this, we will evaluate colony formation, mucilage production, biofilm development and  flow rate during and
following colonization

2. Determine whether X. fastidiosa produces acyl-homoserine lactone autoinducer molecules that are involved in regulation
of genes associated with ability to cause Pierce’s disease.

RESULTS AND CONCLUSIONS
We have just received the funding for this project (October 2002).
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INTRODUCTION
Endophytic bacteria such as Xylella fastidiosa (Xf) colonize the internal tissues of the host, forming a structure very similar to
a fixed biofilm inside the plant.  A key determinant of success for an endophyte is the ability to move within the plant,
sending out “scouts” to colonize new areas within the host.  We expect activities required for movement to be most
successful when carried out by a community of cells since individual cells may be incapable of completing the feat on their
own and may be detected and easily eliminated by the host.  Cells assess the size of their local population via cell-cell
communication and coordinately regulate the expression of genes required for such processes.  Our study aims to investigate
cell-cell communication in Xf to determine its role in colonization and pathogenicity in grapevines.

Xf shares sequence similarity with the plant pathogen Xanthomonas campestris pathovar campestris (Xcc). In Xcc, the
expression of pathogenicity genes is controlled by the Rpf system of cell-cell communication, enabling a population of cells
to launch a pathogenic attack in a coordinated manner (Barber et al. 1997).  Two of the Rpf proteins, RpfB and RpfF, work to
produce a diffusible signal factor (DSF; Barber et al. 1997).  As the population grows, the local concentration of DSF
increases.  Other Rpf proteins are thought to sense the increase in DSF concentration and transduce a signal, resulting in
expression of pathogenicity factors (Slater et al. 2000).

The Xf genome not only contains homologs of the rpf genes most essential for cell-cell signaling in Xcc, but also exhibits
striking colinearity in the arrangement of these genes on the chromosome (Dow and Daniels 2000).  Thus Xf likely employs a
cell-cell signaling apparatus similar to that of Xcc. Based on our knowledge of density-dependent gene regulation in other
species, we predict the targets of Rpf regulation would be genes necessary for colonizing the xylem and spreading from
vessel to vessel.  For example, expression of extracellular polysaccharides, cellulases, proteases and pectinases might be
induced by the signal.  Similarly, we would expect the density-dependent genes to be expressed during the time when a
population of Xf is ready to move into uncolonized areas.

It is conceivable that cell-cell signal interference may be used by other organisms to inhibit density-dependent behaviors,
such as pathogenicity or spreading through the habitat.  Several recent studies indicate that other organisms can disrupt or
manipulate the cell-cell signaling system of bacteria (Leadbetter and Greenberg 2000; Manefield et al. 1999).  Examination
of Xf population size in plants where Xf lives as an endophyte versus those in which Xf causes the xylem blockage symptoms
of Pierce’s disease demonstrates a positive relationship between population size and symptom development (Fry and
Milholland 1990).  We hypothesize that an interaction between Xf and other organisms, such as another endophyte or the host
plant itself, may modulate density-dependent behaviors in Xf by interfering with cell-cell signaling.

OBJECTIVES
1. Characterize cell-cell signaling factors in Xylella fastidiosa.
2. Determine role of signaling factors on virulence and transmissibility of Xylella fastidiosa.
3. Identify degraders of signaling factors of Xylella fastidiosa.
4. Identify inhibitory analogs of signaling factors of Xylella fastidiosa.

RESULTS AND CONCLUSIONS
Objective 1.  We have constructed “signal-sensing” strains of Xcc to determine whether Xf uses the same butyrolactone signal
as Xcc (Figure 1). These strains carry a green fluorescent protein (gfp) gene under the control of a promoter that is up-
regulated in response to the signal.  We have successfully detected a signal from Xf using this system, however the response
is much weaker than that of Xcc (Figure 2). We conclude that Xf may make high concentrations of the signal only under
specific conditions, such as in planta. A second possibility is that the Xf signal differs slightly from the Xcc signal and cannot
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fully activate the Xcc signal sensor except at high concentrations.  To distinguish between these hypotheses, we are
constructing signal-sensing strains of Xf using a gfp gene fused to promoters of Xf genes we believe should be up-regulated in
response to the signal. These strains can be examined in planta as well as in culture to sort out the above-mentioned
possibilities.

Figure 1. Signal sensor strain overlaid on a wild-type
Xcc colony (left) or rpfB (center) or rpfF mutants. Figure 2. Signal sensor growing to the left of PWG extract

(left) or Xf extract. Green fluorescence indicates signal.
presence.

Objective 2.  We have constructed strains of Xf Temecula in which the rpfB and rpfF genes, which are each required for
production of the signal in Xcc, are knocked out.  These mutants were constructed using exchange of the wild-type allele for a
deleted copy carrying an antibiotic resistance gene on a suicide plasmid (Figure 3).  In contrast to other reports of
recombination into the Xf genome, we obtain almost exclusively double recombinants in the primary transformants after only
7 days of incubation on plates.  We are testing rpfB and rpfF mutant strains for their ability to infect and move within host
plants and to cause Pierce’s disease symptoms.  Our preliminary evidence indicates that neither of these genes is strictly
required for virulence as mutant strains cause symptoms similarly to the wild type.  However, these genes may play a role in
modulating disease progress because the timing of symptom development differs between mutant and wild-type strains.
Further characterization of infected plants is underway to investigate the mechanism behind these differences.  We are in the
process of testing transmissibility of the mutant strains by an insect vector.  In addition, we are testing the mutants for signal
production using the Xcc signal sensor.  To better direct our analyses, we have constructed a strain of Xf that constitutively
expresses Gfp in order to bring the in planta growth habit of Xf during symptom formation into sharper focus (Figure 4).  By
observing differences in colonization between symptomatic and asymptomatic samples we will have a clearer image of the
mechanism of symptom formation and the best strategies for preventing it.

Figure 3. Gene knockout strategy using allelic
exchange.

Figure 4. Gfp-labeled Xf viewed inside the live petiole of a
grapevine by confocal microscopy.  Large arrow indicates a large
aggregate of cells.  Small arrows point to individual cells or small
groups.  Red color is due to auto-fluorescence of the grapevine.

Objectives 3 and 4.  We have collected grapevines from vineyards affected by Pierce’s disease as well as tomato and
cruciferous crop plants infected with the signal-producing pathogens Xanthomonas campestris pv vessicatoria and Xcc,
respectively.  We have recovered bacteria from inside these samples to generate a comprehensive collection of endophytes
that grew in contact with the signal molecule.  These endophytes are being tested for the ability to interfere with cell-cell
signaling in Xf in an assay using the signal-sensing strains from Objective 1.  We have thus far isolated several strains that are
weakly inhibitory and are through about one-third of our collection.
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Reporting Period: The results reported here are from work conducted from July 1, 2001 to June 30, 2002.

INTRODUCTION
Competitive exclusion of plant pathogenic bacteria with nonpathogenic strains has been demonstrated in other systems where
pathogens were excluded from either plant surfaces or vascular tissues.  The ideal situation is where the nonpathogenic
bacteria are stable derivatives of the pathogen itself, so that nutritional and other growth requirements are identical and thus
facilitate successful competition for colonization.  Our project is to construct such mutants from the Pierce’s disease (PD)
pathogen, Xylella fastidiosa, through a systematic process of identifying which virulence genes are important for disease
expression but not essential for colonization of plants in a nonpathogenic state.  We are utilizing knowledge from
comparative genomic sequence analysis with mutational studies to identify important virulence genes.  This year, we have
begun to employ an additional strategy (DNA macro/microarrays) based on analysis of differential gene expression between
the bacterium grown in culture vs. during infection of plants.

OBJECTIVES
1. Construct deletion mutations in putative virulence genes of Xylella fastidiosa.
2. Test mutant strains for virulence in grapevines.
3. Test mutant strains for biological control of pathogenic strains in grapevines.

RESULTS AND CONCLUSIONS
Macro/microarray analysis of the expression profile of select candidate pathogenicity genes in Xf:
A procedure for macroarray analysis of about 100 genes selected as possible virulence genes based on comparative sequence
analysis was developed, and this was reported at the Annual Meeting of the American Phytopathological Society in July 2002
(Hernandez-Martinez et al., 2002). To identify genes involved in pathogenicity in the PD strain, the sequence of the CVC
strain was used to select open reading frames specifying putative pathogenicity and virulence factors.  DNA fragments of
these genes were obtained by PCR amplification from the genome of the PD strain I03.  In this preliminary study, we
constructed macroarrays for the analysis of the expression profile of select candidate pathogenicity genes of Xf and to study
their expression in PD3 medium.  We have shown that these genes are expressed to varying degrees ranging from none to
very high.  These arrays are being used to analyze the gene expression profile of different Xylella strains in planta and in
vitro.  This work is following the hypothesis that genes important in virulence and symptom expression are up-regulated in
the plant.  This will help us to refine the potential target genes for construction of non-pathogenic derivatives for biological
control.

Mutational analysis of virulence genes:
Construction of several virulence gene mutants of X. fastidiosa has been done using the EZTN transposon or by insertional
cloning of antibiotic resistance cassettes to create disruptive insertions into cloned genes that were amplified by PCR based
on genomic sequence.  The mutated clones have been subcloned into pUC129 for gene knockout experiments.  Among

Figure 1. Autoradiograph of nylon filter
macroarray probed with label cDNA
from Xylella fastidiosa.
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virulence genes included in mutational studies are those of the gum operon, for which we have recently constructed
successful knockout mutations in Xylella.  Other genes we are manipulating include a number of regulatory genes that likely
control other virulence factors, such as RsmA.

We are also working to develop a more efficient transposon delivery system for Xylella especially for the analysis of the
genes of unknown functions.  Because of the high price of the EZTN system, we have cloned the 16S rRNA promoter of Xf
to drive the transposase gene in a self-cloning modular transposon, pTnModOKm (Dennis and Zylstra, 1998).  We expect
this to significantly increase the transposition efficiency, since the low level of transposase expression has often been given
as the reason for the low efficiency.  If this improves the efficiency of the transposon, we will clone a promoter-less reporter
within the transposon to be used as a measure of gene expression level of the genes to be inactivated.

Tissue culture of grape to develop in vitro inoculation system for Xylella pathogenesis:
We are working with grape tissue cultures, as well as other potential host plants that would show rapid symptoms, such as
mustard, to develop rapid assays for analysis of virulence.  The tissue culture system should also be useful in our
macro/microarray work, where gene expression profiles of the bacterium with and without contact with grape cell cultures
can be accomplished in a more controlled and sterile environment than whole plants.
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INTRODUCTION
Pierce’s disease of grapevine and other leaf scorch diseases caused by Xylella fastidiosa are associated with aggregation of
the bacteria in xylem vessels, formation of a gummy matrix, and subsequent blockage of water uptake.  In the closely related
pathogen, Xanthomonas campestris, xanthan gum is known to be an important virulence factor, probably contributing to
bacterial adhesion, aggregation, and plugging of xylem.  The recently published genome sequence of the citrus strain of X.
fastidiosa revealed that this pathogen also has genes for xanthan gum production. This project is to identify bacteria that
produce xanthan-degrading enzymes to target this specific virulence factor of X. fastidiosa.  This approach has the potential
to significantly reduce damage caused by Pierce’s disease in grapes and potentially in other hosts of X. fastidiosa, such as
almonds and oleander.  If xanthan gum is important in the aggregation of the pathogen in the insect vector, then our approach
may also reduce the efficiency of transmission of Pierce’s disease.  Our first approach will be to develop endophytic bacteria
that produce these enzymes in the xylem of grapevines, but another approach is to engineer grape plants to produce these
enzymes.  Through the cloning and characterization of genes encoding xanthases and xanthan lyases, we will facilitate
possible efforts to transform grapevines to produce these enzymes.

OBJECTIVES
1. Characterize xanthan-degrading enzymes from endophytic bacteria isolated from grape
2. Explore applications of naturally-occurring endophytic bacteria that produce xanthan-degrading enzymes for reduction of

Pierce’s disease and insect transmission
3. Clone and characterize genes encoding xanthan-degrading enzymes for enzyme overproduction and construction of

transgenic endophytes and plants

RESULTS AND CONCLUSIONS
Production of xanthan gum for enrichment of xanthan-degrading bacteria:
The sequence of the xanthan gum biosynthetic operon in the genome sequence of the agent of Pierce’s disease, Xylella
fastidiosa, is different than the bacterium from which commercial xanthan gum is prepared, Xanthomonas campestris.  This
suggests that Xylella xanthan gum is chemically different, and we therefore wished to produce xanthan gum from Xylella for
our enrichment studies.  However, as described in our original proposal, it is not feasible to produce enough xanthan gum for
our studies from the slow-growing Xylella fastidiosa.  As proposed, we instead genetically modified a strain of the fast-
growing Xanthomonas campestris to produce xanthan gum with the same chemical structure as that from Xylella.  This was
accomplished by deleting the gumI gene from the biosynthetic operon.  Our genetic construction was confirmed, and we have
produced significant quantities of xanthan gum from this mutant strain.  The modified gum is still viscous, but has a
measurable decrease in viscosity compared with gum isolated from the wild-type strain of Xanthomonas.

Enrichment for bacteria that degrade xanthan gum:
We used the modified xanthan gum from the Xanthomonas mutant described above as the sole carbon source for enrichment
culture from Pierce’s disease infected grapevines.  To isolate the endophytic bacteria, we collected 200 grapevine samples
infected with Pierce’s disease in Temecula and Bakersfield and 100 oleander samples infected with leaf scorch disease in
Riverside.  Individual tissue segments were placed into sterile test tubes with 10 ml of 1% NaOCl solution with 0.1% tween
20.  Surface-disinfected pieces were aseptically transferred through three washes of 10 ml of sterile PBS (phosphate buffered
saline).  To check for surface contamination, 0.1ml of the third wash for each sample is transferred to 5ml of Tryptic soy
broth medium and incubated at room temperature on a rotary shaker for 2 days.  Surface-disinfected pieces were macerated
with PBS with 0.1% tween 20 using mortars and pestles.  Suspensions were transferred to minimal media with xanthan gum
as the sole carbon source and incubated at room temperature on rotary shaker for 7 days.  Cultures were centrifuged, and the
viscosity of their supernatant was measured.  Cultures that had a decreased viscosity were transferred to fresh media and
incubated for 3 days.  This enrichment step was repeated twice.  Cultures were finally spread on solid media with xanthan
gum as the sole carbon source, and individual colonies were streaked to purity on fresh plates.  Pure cultures were tested for
reduction of viscosity of xanthan gum as measured with an Ostwald capillary viscosimeter.  Over 100 bacterial strains were
initially recovered from these enrichment experiments, and 11 were subsequently confirmed to effectively degrade xanthan
gum.  These strains were then tested for cellulase activity. Degradation of the cellulosic backbone of the xanthan polymer
would be desirable, but we do not want enzymes that recognize and degrade plant cellulose.   Six of the strains had low or
non-detectable cellulase activity and will be further tested for biological control efficacy in plants.
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Expression of the xanthan gum operon in Xylella fastidiosa:
To support our hypothesis that xanthan gum is produced in infected plants, we have initially tested whether the xanthan gum
operon is expressed.  RT-PCR was performed with primers directed toward the first gene of the xanthan gum biosynthetic
operon, gumB, with RNA extracted from different strains of Xylella fastidiosa. gumB mRNA was detected from some, but
not all, strains of X. fastidiosa grown in vitro.  Xanthan gum and other virulence factors may be produced at high levels only
in plants when bacterial populations have reached a high density.  Extraction of RNA from infected plants is in progress to
study expression of the xanthan gum operon in planta.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service.

gumB mRNA detected by RT-PCR
from Xylella fastidiosa culture
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INTRODUCTION
The Glassy-Winged Sharpshooter (GWSS) is the principal vector of Xylella fastidiosa, the causative agent of Pierce's disease,
in the California wine country.  One strategy to control the spread of Xylella by the GWSS is to make the insect refractory to
transmission of the bacterium. One can imagine at least two ways this can be done.  The first is to genetically engineer the
population of sharpshooters directly to become refractory.  This transgenic method is being seriously discussed by biologists
wishing to halt the spread of malaria in Africa, via the direct genetic manipulation of Anopheles gambiae populations
(Kiszewski and Spielman 1998).  This method is fraught with potential difficulties of many sorts and, in any case, has not
been tried to date.

The second method is to manipulate the insect vector indirectly by manipulating its gut flora.  This technique is termed
paratransgenesis and has many potential advantages over the direct transgenic approach.  First, bacteria are far easier to
manipulate genetically.  Secondly, bacteria can be made to secrete or carry very specific agents of control, like single chain
antibodies.  Paratransgenesis has been attempted to control Chagas' disease in S. America (Beard et al. 2001) and a form of it
is being developed to deliver therapeutic agents in mouse models of human disease, for eventual applications for humans
(Beninati et al. 2000).

In attempting to create transgenic gut symbionts of the GWSS several problems present themselves immediately.  The final
transgenic strain will need to be stable (i.e., the exogenous DNA not contained in a virus or bacterial transposon), the
exogenous DNA should be incorporated into the chromosome and not borne on a plasmid, no drug markers should be left in
the strain, and as little exogenous DNA should be transferred as possible.  We have developed a genetic modification system
that meets those requirements based on the mariner family of eukaryotic transposable elements.  These elements are active in
all domains of life when appropriately manipulated, but do not occur naturally in prokaryotes.  Thus stable strains of GWSS
gut symbionts can be created that should be suitable for release into the wild for the control of X. fastidiosa.

OBJECTIVES
1. Construct a genetic DNA insertion system for Alcaligenes sp. and Chryseomonas luteola based on mariner family

transposable elements.
2. Identify single chain antibodies that bind specifically to the surface of Xylella fastidiosa and express these on the

surface of one or more gut symbiotic bacteria of the GWSS as agents of control.

RESULTS AND CONCLUSIONS
A genetic manipulation system for GWSS endosymbionts:
We have constructed a matable transformation system for two GWSS bacterial symbionts based on the mariner transposable
element, Himar1.  Below is a figure illustrating the features of the system that help it fulfill the requirements set out in the
introduction.  All of the necessary requirements are borne on a single suicide plasmid.  The plasmid  has an RP4 origin of
transfer so it can be mated from E. coli to Alcaligenes or Chryseomonas.  It also contains a R6K origin of replication so that it
can only replicate in special strains of E. coli.  The drug marker is carried between two FRT sites, the sequences that are used
by the FLP recombinase of yeast.  Thus, once insertions of the transposon are obtained, the drug marker can be removed by
recombination.  Since the transposase gene lies outside the inverted terminal repeats (ITRs) the insertions are stable after the
plasmids are lost.

Using this system we obtained insertions at random positions in the chromosome of Alcaligenes and Chryseomonas.  Genetic
and Southern evidence showed that only the transposon inserted and not any part of the plasmid backbone.  Furthermore, we
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were able to remove the drug marker by FLP-mediated excision.  These systems were used to introduce fluorescent protein
genes into each of these species for microbial ecology studies.

Specific modifications to gut symbionts:
The goal of paratransgenesis is to indirectly modify the phenotype of the vector (or host plant) through the modification of a
symbiotic organism.  There are many traits that could be added to the symbiont, including secreted enzymes, toxins,
antibacterial peptides, or single chain antibodies (scFv's).  An alternative to secreting a factor is to express it in the outer
membrane.  We are currently screening phage display scFv libraries to identify scFv's that can bind specifically to the surface
of Xylella fastidiosa with high affinity.  Candidate scFv's will be expressed as OmpA-scFv fusions (inserted into the
chromosome with the mariner transformation system described above) that will allow the transgenic bacteria to adhere
tightly to the surface of Xylella, either preventing infection or slowing its spread.  Although we have targeted the entire
surface of Xylella initially, specific outer membrane targets identified from Xylella genome project can also be targeted
individually, particularly those that are associated with pathogenesis.

Figure 1. pSP17, a matable suicide plasmid designed to create stable transgenic gut symbiotic bacteria from the glassy-
winged sharpshooter.
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Reporting Period: The results reported here are from work conducted from December 1, 2001 to December 1, 2002.

INTRODUCTION
The glassy-winged sharpshooter (GWSS) is the principal vector of the xylem-limited bacterium Xylella fastidiosa (Xf), which
causes Pierce’s disease (PD) in grapes and oleander leaf scorch.  Limiting the spread of this pathogen by rendering GWSS
incapable of pathogen transmission is a promising method of pathogen control.

Paratransgenic approaches to pathogen control are currently being developed to deliver single-stranded antibodies to disrupt
Triatomid transmission of Trypanosoma cruzi (Beard et al. 2002), and to prevent colitis in mammals (Beninati 2000; Steidler,
2002).  Candidate paratransgenic bacterial agents must thrive in the cibarial/foregut area where they will be in close
proximity to the pathogen, Xf for a paratransgenic strategy to be applicable to the Xf/GWSS system.

Alcaligenes xylosoxidans denitrificans (Ax) was cultured and identified from the cibarium and foregut regions of GWSS’s
alimentary canal several times throughout the growing season indicating that it is a consistent symbiotic organism (Lauzon,
in preparation). Ax has been described as a non-pathogenic plant endophyte and a non-pathogenic soil-borne microbe
(Meade et al. 2001, Yang et al. 1999). This bacterium was genetically transformed with exogenous DNA being incorporated
into the chromosome to express fluorescent markers (Lampe, in preparation).  My project was to set up a disease cycle,
which would offer evaluation of paratransgenic delivery.  To do this it was important to improve detection of Xf.

OBJECTIVES
1. Develop a delivery system to re-introduce paratransgenic bacteria to GWSS and introduce Xf to GWSS to improve the

disease cycle in the laboratory.
2. Improve detection of Xf in plants and insect vectors.

RESULTS AND CONCLUSIONS
Cycling of dsRed Alcaligenes xylosoxidans denitrificans in GWSS:
I have developed a plant-based bacterial delivery system for GWSS that allows bacteria to be available for consumption by
the insect vector.  Earlier attempts to feed GWSS on varied sucrose solutions from membrane sachets were unsuccessful
because GWSS did not probe and died within 24 hr.  GWSS probed from a flowing feeding system but would not sustain
feeding and died within 24 hr.  The manipulation of the chrysanthemum xylem fluid by forcing a bacterial suspension
through a cut stem allowed a GWSS to feed on a concentrated bacterial suspension and was successful in maintaining GWSS
for up to 5 days.

GWSS were exposed to the bacterial delivery system that contained dsRed Ax (OD600=2.85) for 48 hr. then removed and
placed on “clean” chrysanthemum plants for an indefinite period of time.  At 0, 7, 14, 21, 28, and 35 days post-exposure,
GWSS were collected and inspected by fluorescence microscopy for presence of dsRed Ax.  Samples from day 0 had
individual Ax in the cibarium and foregut.  GWSS sampled at 7 days and beyond had “clumps” of Ax, indicating colonization
of the cibarium and foregut. Ax was present on all dates sampled and was independent of sex.

Evidence of horizontal transmission was also collected by introducing a single dsRed Ax-fed GWSS into a population of 10
“clean” GWSS for 14 days caged on a single chrysanthemum. Ax was detected in the cibarium or foregut of 17 of 42 GWSS
that survived to the end of the trial.
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Creating the PD disease cycle in the lab: bacterial delivery system for introduction of Xf to GWSS:
After 48 hours exposure to Xf offered through the bacterial delivery system, 100% of GWSS heads from exposed insects
tested positive by PCR for the presence of Xf.

The Scholander pressure bomb is used to extract xylem fluid from a plant (Hallmann et al. 1997), allowing collection large
amounts of fluid (Guo et al. 2001).  The use of the pressure bomb technique for detection of Xf in oleander was less sensitive
then traditional sample collection when used in conjunction with ELISA and PCR.  Attempts at culturing Xf from xylem fluid
collected using the pressure bomb was more prone to contamination then from traditionally collected samples.  The
consistency of the oleander pressure bomb xylem fluid was semi-solid making use with DNA extraction for PCR, ELISA,
and culturing difficult.  Therefore, pressure bomb collection of xylem fluid as a technique for early detection of Xf was
discontinued.

Use of the pressure bomb for improving Xf detection in grape plants was more successful.  By ELISA and PCR, pressure
bomb fluid collections almost doubled the level of detection when compared to traditional sample collection.  However, as
with oleander culturing of Xf from xylem fluid collected with the pressure bomb was prone to contamination.

Development of the Pierce’s disease cycle in the laboratory and the improvements in Xf detection provides a dependable
system to test candidate paratransgenic bacteria identified by Carol Lauzon and genetically altered by David Lampe with
toxins provided by Don Cooksey.
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INTRODUCTION
Homalodisca coagulata Say, the glassy-winged sharpshooter (GWSS) is known to transmit the etiological agent of Pierce’s
disease, Xylella fastidiosa.  A paratransgenic approach designed to disrupt the ability of the insect vector to transmit the
pathogen involves finding bacterial candidates that possess some degree of intimacy either within the insect and/or host plant
xylem.  Once a candidate(s) is/are found, then avenues open for finding strategies aimed at controlling X. fastidiosa infection
and/or transmission, such as paratransgenesis.  This report details the survey for, and isolation and identify of candidate
bacteria for use in a paratransgenic strategy to control Pierce’s disease.  It also includes information about the possible
relationship internal extracellular bacteria have with GWSS.

OBJECTIVES
1. Identify bacterial candidates for use in a paratransgenic strategy for control of Pierce’s disease.
2. Understand the relationship(s) between and among bacteria in sharpshooters and their host plant xylem.

RESULTS AND CONCLUSIONS
Glassy-winged sharpshooters, captured in nature, were aseptically dissected for their alimentary canal organs, particularly,
cibarial pumps, fore- and midguts.  Bacterial inhabitants were retrieved using dilute nutrient media held at 22-24oC.  The
lower concentration of nutrients in bacteriological media mitigated the typical problems associated with growing endophytic
bacteria under laboratory conditions (Bell et al. 1995).  Isolates were identified using standard biochemical tests and
morphological methods.  Three primary bacterial species were isolated and identified from the cibarial region and fore-and
midguts as (in order of dominance): Alcaligenes xylosoxidans denitrificans, Chryseomonas luteola, and Ralstonia pickettii.
These bacteria are typical of plants (endophytes), soil, and water (Holt and Krieg, 1992).  Two Bacillus spp., Bacillus
coagulans and Bacillus brevis were infrequently isolated from midgut samples.  Another isolate, tentatively identified as
Sporosarcina sp., and a yeast-like organism were also infrequently isolated from pump samples.

Twenty-four biochemical tests were performed on the three primary isolates.  The data suggest that these bacteria may be
participating in nitrogen and hydrogen cycling within GWSS.  To begin to determine the extent of nitrogen and hydrogen
activity within the gut of GWSS and the possible contribution of bacteria with these activities, we performed a cytochemical
assay using transmission electron microscopy (McLean et al. 1985).  We found that nitrogenous compounds are concentrated
within the midgut of GWSS  (Figure 1) and that where bacteria were present, they participated in nitrogen catabolism within
the insect gut (Figure 2).  Metabolism of nitrogenous and/or other organic compounds by sharpshooters has been examined
(i.e. Anderson et al. 1989; Brodbeck et al. 1993, 1995, 1996, 1999), however, the contribution of bacteria in xylem and/or in
sharpshooters to these processes has not been addressed.

The mouthparts and guts of wild-captured GWSS were also examined for microorganisms using fluorescent techniques.
Dissection and transection of GWSS tissues were stained using the ViaGramTM Red+ Bacterial Gram Stain and Viability Kit
(Molecular Probes Inc., Eugene, OR).  Images were obtained using fluorescent and confocal laser scanning microscopes and
revealed the presence of stationary and motile viable bacteria within the mouthparts and gut regions of GWSS samples.  In
addition, the yeast-like microorganism was found within mouthpart samples. Similar images were acquired using scanning
electron microscopy of GWSS samples.

The three primary bacterial isolates, Alcaligenes sp., Chryseomonas sp., and Ralstonia sp., were screened for their response
to a battery of antibiotics in preparation for genetic manipulation experiments performed by Dr. D. Lampe (the reader is
referred to the report presented by D. Lampe for details). Subsequently, we received numerous GWSS from Dr. B. Bextine.
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Dr. Bextine used his plant-based delivery system (the reader is referred to the report presented by B. Bextine for details) for
the introduction of DsRed Alcaligenes xylosoxidans denitrificans (RAX) to both GWSS and plants.  In both cases, we often
detected (typically in 40% of samples) RAX in treated samples with no detection of RAX in controls.  Therefore, RAX was
found to cycle from plants to GWSS and additionally, from GWSS containing RAX to plants.

We are currently engaged in experimentation designed to determine the physiological parameters that facilitate optimal
establishment and cycling of RAX in plant and insect samples.  We are working toward determining the accuracy of our
detection level of RAX in insect and plants, i.e. is our current detection methodology using fluorescent microscopy an
underestimate of the actual presence of cells within the samples?  Concurrently, we are attempting to determine the optimal
delivery dose and physiological state of RAX necessary for use in an effective paratransgenic strategy.  We aim to conduct
similar experiments using the transformed Chryseomonas sp. in the near future.

Figure 1. Midgut from a wild GWSS after partial treatment
for detection of nitrogenous compounds. Dark areas reveal
the presence of localized nitrogen.

Figure 2. Transmission Electron micrograph showing
bacteria in the same wild GWSS midgut participating in
nitrogen catabolism. Dark areas are indicative of nitrogen
catabolism and nitrogenous products.
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INTRODUCTION
Xylella fastidiosa presents a formidable challenge to the molecular geneticist.  Methods for the basic operations of genetic
exchange, mutant isolation, and complementation are in early stages of development.  The slow generation time, poor plating
efficiency and requirement for complex culture media are further complications.  Surrogate genetics (Maloy and Zahrt 2000)
provides a means to at least partially bypass these challenges.  Here, one creates a hybrid organism, transplanting genes of
interest from the poorly-studied species (e.g., Xylella fastidiosa) into a well-studied surrogate host (e.g., Escherichia coli).
Given sufficiently related hosts, one expects the transplanted genes to function in the surrogate essentially as they do in the
original.  One may then exploit the advantageous properties of the surrogate to perform a large number of experiments,
making and discarding hypotheses to define various aspects of gene function.  Once gene function in the surrogate has been
thoroughly explored, one can perform a focused set of experiments, informed by the results from the surrogate, to examine
function in the native host.  The use of E. coli as a surrogate host for studying gene regulation would open a range of
experimental approaches that are currently unavailable in X. fastidiosa, and lead to more rapid advances in understanding the
control of key pathogenicity determinants.  We are analyzing the transcriptional regulation determinants for genes whose
products may be involved in pathogenesis (e.g., pil genes, encoding type IV pili) as well as "housekeeping" genes involved in
central metabolism (e.g., amino acid biosynthesis).

OBJECTIVES
1. Apply bioinformatics to evaluate transcription control signals in silico for X. fastidiosa 9a5c
2. Construct and characterize a Φ(pilA-lacZ) operon fusion in E. coli
3. Construct and characterize a Φ(glnA-lacZ) operon fusion in E. coli

RESULTS AND CONCLUSIONS
A first approach to defining transcriptional regulatory mechanisms in X. fastidiosa is to examine visually the upstream
nucleotide sequences of genes whose regulation has been well-studied in other organisms.  Common regulatory strategies
will be revealed by common features in the sequences.  Our initial analysis has focused on the trp and his operon
transcription attenuation control regions which in enterobacteria and other species contain easily-recognized sequence
features: regulatory leader peptide coding regions that are rich in codons for the regulatory aminoacyl-tRNA; stem-loop
structures that serve as factor-independent transcription terminators; and alternative stem-loop antiterminator structures.
However, as revealed by the genome sequence of X. fastidiosa strain 9a5c (Simpson et al. 2000), the X. fastidiosa
hisGDCBHAFI biosynthetic operon upstream regulatory sequence exhibits no leader peptide or terminator structures.
Therefore, his operon expression in X. fastidiosa is regulated by a mechanism other than transcription attenuation.  The X.
fastidiosa trp biosynthetic genes are not organized in a single trpE(G)DC(F)BA operon as in E. coli, but rather in three
noncontiguous operons: trpEGDC, trpF, and trpBA, in an arrangement mimicking that of Pseudomonas aeruginosa.  Again,
however, the X. fastidiosa trp gene upstream regions do not contain apparent regulatory regions similar to those for
controlling trp gene expression in either E. coli or P. aeruginosa.  Thus, regulation of these amino acid biosynthetic pathways
must occur through other mechanisms in X. fastidiosa.

Environmental and genetic controls of exopolysaccharide (EPS) biosynthesis remain largely undefined (Rodrigues da Silva et
al. 2001).  The laboratory of Michael Daniels (John Innes Centre) has identified a cluster of linked Xan. campestris pv.
campestris regulatory genes, mutations in which affect production of several extracellular enzymes, including endoglucanases
and proteases, along with EPS.  The rpfC and rpfG genes initially were thought most likely to encode direct transcriptional
regulators of pathogenicity gene expression.  However, more recent analysis indicates that the RpfG protein is probably not a
direct (DNA-binding) regulator of gum gene expression (Slater et al. 2000).  We constructed a Φ(gumB-lacZ) operon fusion
in E. coli, in order to use LacZ expression as a measure of gumB promoter activity.  However, this construct expressed only
low levels of LacZ enzyme.  Given the uncertain nature of gum operon regulation, we elected to turn our immediate attention
to study genes whose expression is more readily predicted from sequence inspection.
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We therefore chose to study the regulation of pil gene expression.  These genes control the formation of type IV pili in a
variety of organisms, and are required for gliding motility, adhesion and pathogenesis (Winther-Larsen and Koomey 2002;
Shi and Sun, 2002).  Expression of pilA structural genes requires a specialized RNA polymerase specificity determinant (σ54))
which recognizes a strongly-conserved -12/-24 nucleotide sequence.  One of two pilA homologs (XF2542) in X. fastidiosa
contains a σ54-dependent promoter.  We constructed a Ф(pilA-lacZ) operon fusion in E. coli, and observed that it expressed
detectable levels of LacZ enzyme.  We also cloned the regulatory pilSR genes (XF2546 and XF2545) from X. fastidiosa.
However, we have not yet observed a pilR-dependent increase in LacZ synthesis, indicating that the PilSR regulators may not
function well in E. coli.

Unpublished work of others indicates that σ54-dependent activators from other species do not function well with E. coli RNA
polymerase.  To approach this question directly, we are currently studying expression of the glnA gene encoding glutamine
synthetase (XF1842).  This is the best-studied σ54-dependent gene in E. coli, and the X. fastidiosa glnA upstream regulatory
region is similar to that of E. coli.  Furthermore, X. fastidiosa encodes the NtrB-NtrC sensor-regulator system for controlling
glnA gene expression (XF1849 and XF1848).  Because E. coli also encodes NtrB-NtrC, we will be able to evaluate glnA
expression in response to both the X. fastidiosa and the E. coli regulatory proteins.
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INTRODUCTION
Genetic engineering offers the possibility of introducing genes that will improve tolerance to Pierce’s disease in existing
grape varieties without otherwise changing their viticultural or enological characteristics.

One of our target genes is a pear pgip cloned in the Labavitch lab (Stotz et al. 1993).  PGIPs are proteins containing a leucine-
rich repeat domain that are targeted to the plant cell wall and that specifically inhibit fungal polygalacturonases (PGs).  By
inhibiting PGs, PGIPs directly interfere with host cell wall degradation and may thus prevent degradation of pectic oligomeric
elicitors that are inducers of the plant defense response.  Their role in plant defense response suggests that they may be useful
for engineering transgenic plants resistant to pathogen infection.  Powell et al. (2000) showed that transgenic tomato plants
transformed with the pear pgip gene exhibited reduced susceptibility to infection with Botrytis cinerea. The fact that Xylella
fastidiosa, the causal agent of Pierce’s disease (PD) in grapevines, has genes putatively encoding PG and other cell wall-
degrading enzymes (Simpson et al. 2000) led us to hypothesize that PGIP could confer tolerance against Xylella in grapes. In
order to test this hypothesis, proembryogenic calluses originating from anthers of Vitis vinifera cvs. Thompson Seedless and
Chardonnay were co-cultivated with Agrobacterium tumefaciens strain EHA 101 harboring binary plasmid pDU94.0928 that
contains the pear pgip gene under the control of the CaMV 35S promoter.

We are also investigating the targeting of transgene products to xylem tissue.  Because X. fastidiosa is xylem limited, it will
be essential that any anti-Xylella gene product be present in the xylem in an effective concentration.  We have obtained a
xylem-specific gene from cucumber, XSP30, from colleagues in Japan (Masuda et al. 1999).  We have fused its leader
sequence to a GFP marker gene, the expression of which is readily detectable in the laboratory (Maximova et al. 1998), in
order to study its ability to target the expression of marker gene products to the xylem stream of grapevines.

OBJECTIVES
1. Evaluate the effect of PGIPs on the development of Pierce’s disease in transgenic grapevines.
2. Evaluate the effect of several signal sequences on the targeting of transgene products to the xylem.

RESULTS AND CONCLUSIONS
Effect of PGIPs on the development of Pierce’s disease in transgenic grapevines
We have produced 50 transgenic lines that have been transferred successfully to the greenhouse, all from independent
transformation events.  The presence of the gene and the protein has been confirmed by PCR and Western blotts respectively,
and high levels of enzyme activity have been found in crude extracts from leaves.

A group of lines has been tested against X. fastidiosa. Five to seven plants of each line were mechanically inoculated with the
Temecula strain of this pathogen.  Additional plants were inoculated with Xylella-free buffer or left untreated. Untransformed
plants were subjected to the same treatments.  The development of Pierce's disease symptoms was delayed in some lines by
several weeks (Figure 1).  These lines are currently being evaluated for bacterial growth by ELISA and hydraulic
conductance. Infection experiments on the rest of the lines are underway.

In addition we have found PGIP activity in the xylem sap of the transgenic plants but not in untransformed controls.  These
results suggest that the presence of PGIP in the xylem might interfere with cell wall degradation, preventing vascular
occlusion and bacteria movement and/or favoring the accumulation of elicitor-active molecules. We will carry out grafting
experiments to determine the transmissibility of the gene product in scion xylem sap.
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Effect of several signal sequences on the targeting of transgene products to the xylem:
A fusion between the leader sequence of a Cucumis sativus xylem sap protein (XSP30) and GFP was done in the Dandekar
lab. Proembryogenic calluses of cvs. Chardonnay and Thompson Seedless were transformed in May 2002 and are being
cultured in germination medium.  The strong fluorescence detected in germinating embryos and their periphery (Figure 2)
indicates high levels of enzyme synthesis and suggests that GFP is being secreted but additional analysis is needed to
determine its subcellular localization.
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Figure 1a (left). Thompson Seedless vines 3 months after
inoculation with Xylella fastidiosa.  Vine on right is
untransformed and has lost all of its leaves. Center vine is
a transgenic vine expressing pear PGIP.  Vine on left is
untransformed and was inoculated with buffer only.

Figure 1b (top). Thompson Seedless leaves 3 months after
inoculation with Xylella fastidiosa.  Leaf on right is from
an untransformed control vine.  Leaf on left is from a
transgenic vine expressing pear PGIP.

Control XS30-GFP

Figure 2. GFP fluorescence of
embryos of ‘Thompson Seedless’
transformed with 35S-XS30-gfp.
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INTRODUCTION
One of our projects involved the development of a transformation and transposon mutagenesis systems for the bacterium that
causes Pierce's disease (PD), Xylella fastidiosa (Xf).  We now have a random transposon mutagenesis system working for Xf
(Guilhabert, et al. 2001) and recently we have developed an E. coli/Xf plasmid shuttle vector.  We are currently assessing the
stability of the E.coli/Xf plasmid shuttle vector in Xf without antibiotic selection.  The results of these experiments will let us
know whether this plasmid will be stably maintained in Xf cells that are inoculated in plants, something that will be essential
for evaluating genes in planta.

Understanding the complex interactions between the plant, pathogen, and insect vector is imperative for the development of
effective disease controls. Recently, the complete genome sequence of a citrus strain of Xf was determined (Simpson et al.,
2000) and the complete sequence of a grape-infecting Xf strain (Temecula) is nearly complete.  Earlier analysis of the CVC
genome revealed important information on potential plant pathogenicity and insect transmission genes.  However, more than
half (53%) of the identified ORFs in Xf CVC encode proteins with no assignable function.  In addition, some of the putative
gene functions assigned on the basis of sequence homology with other prokaryotes may be incorrect. In order to identify and
understand the function of Xf genes, it is imperative to develop techniques to knock out and complement putative
pathogenicity or transmission genes.

OBJECTIVES
1. Development of transformation and marker-exchange systems for Xylella fastidiosa.
2. Screen Xylella fastidiosa Tn5 mutants for their ability to move and cause Pierce's disease in chardonnay grapevines

RESULTS AND CONCLUSIONS
Development of a transformation system for Xf with plasmid DNA:
The Tn903 kan-2 cassette, which we know is expressed in Xf (Guilhabert et al. 2001), was cloned in four broad host range
plasmids, pUFR027, pLAFR3, RSF1010 and pMMB622 a derivative of RSF1010, forming the plasmids pXF002, pXF003,
pXF004 and pXF005, respectively.  Plasmids pXF002 and pXF003 failed to transform the Temecula strain of Xf. However,
electroporation of Xf cells with 500 ng of pXF004 and pXF005 plasmid DNA produced an average of 131 and 208 Xf KanR

clones respectively when selected on PD3 plates supplemented with 5 µg/mL of kanamycin.  Plasmids pXF004 and pXF005
were found to be present as autonomous, structurally unchanged DNA molecules when propagated in Xf. However, neither
pXF004 nor pXF005 were stably maintained in Xf after 5 passages without antibiotic selection.  We are currently in the
process of reproducing the same experiment with one, two and three passages without antibiotic pressure.  When plasmid
DNAs were isolated from Xf or plasmid DNAs isolated from E. coli were supplemented with a TypeOneTM Inhibitor, TRI, the
frequency of transformation was increased by 13 or 5 fold, respectively.  Plasmid pXF005 was also used to transform an
additional grapevine strain of Xf.

Development of a marker exchange system for Xf:
The gene rpfF is required, together with the rpfB gene, for the production of a diffusible molecule, termed DSF, that may
represent a novel cell density-dependent signaling factor in Xanthomonas campestris pv. campestris (Barber et al. 1997).
The rpfF gene was PCR amplified from the Temecula strain, cloned and disrupted with the Tn903 Kan-2 cassette.
Replacement of the wild-type gene in the genome of the Temecula strain by the disrupted rpfF gene was accomplished by a
double crossing over event.  The disrupted rpfF Xf mutant was inoculated into Chardonnay grapevines using a pinprick
method (Hill and Purcell 1995; Purcell and Saunders 1999).  The parental Temecula wild type strain served as a positive
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control, and a water inoculation served as a negative control. The vines were observed for symptom development 16 weeks
after inoculation. No difference was noted in the symptom development of vines inoculated with the rpfF Xf mutant
compared to the plants inoculated with the parental Temecula wild strain.  The presence of the rpfF Xf mutant in the
symptomatic tissues was confirmed by immunocapture PCR (Smart et al. 1997) using the oligonucleotide primers used to
amplify the rpfF gene.  The population, systemic colonization, as well as the insect transmissibility of the rpfF Xf mutant, is
currently being determined.

Testing of Tn5 mutant strain:
The bacterial cultures were inoculated into PD3 medium and adjusted to a concentration of 108 cells/mL.  Approximately
1,000 random Tn5 mutants were inoculated each into two canes of Chardonnay grapevines using a standard pinprick method
using 20 ul of the adjusted bacterial culture (Hill and Purcell 1995; Purcell and Saunders 1999).  The parental wild type strain
served as a positive control, and a buffer inoculation served as a negative control.  The vines were observed for symptoms
development for 16 weeks.  After 16 weeks, each inoculated grapevine was sampled (0.5 g of cane tissue) 10 inches above
the point of inoculation. Xf-specific IgG was purified from Xf antiserum and conjugated with peroxidase using procedures
developed in the Walker lab.  The same ELISA procedure used by the Walker laboratory has been used to analyze each
inoculated grapevine.  The tissue was ground in ELISA buffer and approximately 300 inoculated grapevine samples have
been sampled and frozen to date.  Any mutants that seems to show altered virulence, multiplication, survival or movement
will be retested in a similar manner on 6 canes growing on 3 separate grapevines.
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INTRODUCTION
Xylella fastidiosa (Xf) causes economically important diseases of agronomic, horticultural and landscape plants (Freitag
1951; Hopkins 1989; Purcell and Hopkins 1996).  In addition to a wide diversity of Xf -host plant relationships, diseases such
as Pierce’s disease (PD) of grapevines and citrus variegated chlorosis (CVC) exhibit distinct symptoms and have different
geographical distributions.  In the previous reporting period, essentially the complete genomic sequence of an Xf strain
associated with Pierce’s disease in California was determined to help elucidate the molecular basis of Xf pathogenicity.  Here
we report the comparative analyses of the complete genome sequences and annotations of Xf-PD and Xf-CVC to provide
further insight into Xf-plant host interactions and the relationships among Xf strains.

OBJECTIVES
1. Complete the sequencing of the genome of a Xylella fastidiosa strain associated with Pierce’s disease (PD) in California.
2. Comparatively analyze the genome sequences and annotations of Xylella fastidiosa strains associated with PD in

California and CVC in Brazil.

RESULTS AND CONCLUSIONS
The Xf-PD genome is composed of a single circular chromosome (2,519,802 bp) and a small plasmid (1,345 bp) similar to
that reported in other Xf strains (Hendson et al. 2001).  The major differences between the genomes of Xf-PD and Xf-CVC
strains are the (1) 159,503 bp smaller size of the Xf-PD chromosome and (2) absence of the large pXF51 plasmid in the Xf-
PD strain.  Of the 2,066 protein coding genes annotated in Xf-PD, 2025 (98%) are also present in the Xf-CVC strain.  The
average amino acid identity of the ORF’s in both strains is 95.7%.  The most conserved Xf-PD genes include those that
determine the basic metabolism and cellular functions of the bacterium, and, we conclude, are mostly identical to those of the
Xf-CVC described previously (Simpson et al. 2000).  Genomic structural/organizational differences between these two strains
are associated with phage-mediated chromosomal rearrangements and deletions that also account for strain specific genes
present in each genome (Figure 1).  All of the rearrangements are flanked at one border by a putative phage-related integrase.
Two genomic islands (gi), one specific to each genome, are characterized by regions with marked decreases in protein
identities, different GC content and codon bias.  In Xf-PD, giPD1 is 15.7 kb long with 61.2% GC content and harbors an extra
copy of a hemagglutinin gene with a phage related integrase at one end.  In Xf-CVC, giCVC1 is 67 kb long with 63.3% GC
content and is inserted with tRNA Gly-2.  The presence or absence of giPD1 and giCVC1 was associated with different
groups of Xf strains.  Essentially, all of the differences between the genomes of these two strains can be accounted for by the
number and relative position of clusters of phage-related genes and insertion/deletion events, including giPD1 and giCVC1.
We propose that the evolutionary divergence of these two Xf strains is due mainly to the lateral gene transfer mediated mostly
by phage.  Despite the genome rearrangements, most of the genes in these two strains are highly conserved including not only
those concerned with basic cellular house keeping but also those likely to have a direct role in pathogenicity.  This suggests
that diseases caused by different Xf pathotypes most probably rely on the expression of a common set of bacterial genes to
become established in planta (i.e., plant colonization, pathogenesis) permitting convergence of functional genomic strategies.
Knowledge acquired from the comparison of the complete genomes of both Xf-PD and Xf-CVC strains has numerous
applications, including designing strain specific primers for Xf detection and differentiation to screen germplasm and in
clinical field samples to control pathogen dissemination.
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Figure 1. Chromosome alignment between Xf-PD Temecula and Xf-CVC 9a5c. Light blue dash represents colinear genes and
dark blue dash represents rearranged genes in Xf-PD and Xf-CVC genome while yellow and red dashes represent
strain specific genes some of which are highlighted.
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INTRODUCTION
The influence of xylem chemistry on the establishment, colonization and movement of Xylella fastidiosa (Xf) can be tested at
various levels.  The chemistry of xylem fluid is relatively simple compared to other plant tissues.  Xylem fluid consists of
over 98% water, and the major chemical entities monomeric (amino acids, organic acids and sugars) and inorganic ions.
Few secondary compounds are present in appreciable quantities in xylem fluid, although peroxidases are often detected in
low concentration.  We feel the contribution of plant nutrient status is an undervalued component of plant resistance.

Some research areas that we hope to make contributions including: 1) to define the chemical basis of establishment,
multiplication and spread of Xf in grape genotypes and other plant species; 2) the creation the development of a vastly
simplified chemically defined medium; 3) the elucidation of factors that promote Xf aggregation and biofilm formation; 4)
the determination of the antibacterial properties of lytic peptides; 5) the determination of the presence of peroxidases in
xylem fluid and to establish the promotion/inhibition of Xf in vitro.

OBJECTIVES
The all-encompassing objective was to establish the role of xylem chemistry on resistance/susceptibility of Vitis genotypes to
Xylella fastidiosa (Xf) and Pierce’s disease (PD).  The objectives are to determine:
1. the resistance of 10 grape genotypes to PD after mechanical inoculation with Xf and discern the relationship between

chemical profiles of xylem fluid and resistance. (Dr. Andrew Walker, cooperator);
2. the mechanism of resistance to PD of host plants that are common in riparian habitats in California. (Dr. Alexander

Purcell, cooperator);
3. validate the influence of specific chemical profiles on the growth and survival of Xf by tests in-vitro culture;
4. the naturally occurring antimicrobial peptides in in vitro experiments for efficacy against Xf and study the stability of

these peptide compounds in buffer and in xylem fluid, and;
5. the concentrations of peroxidases in xylem fluid of 10 grape genotypes.

RESULTS AND CONCLUSIONS
In  2002, we have analyzed the xylem chemistry of 10 Vitis genotypes that expressed differential rates of Xf susceptibility.
The primary organic compounds (amino acids, organic acids and sugars) and inorganic ions were genotype dependent.
Xylem chemistry was influenced by geographic location (California and Florida) and season of the year (dormant and
growing season). Very unbalanced chemical profiles occurred.  For example, in one study the concentration of glutamine
varied between 46% (Chardonnay) and 70% (Dogridge) of the total amino acids in xylem fluid.  Chemical profiles among
Vitis genotypes varied greatly when xylem fluid was collected during the dormant season. Biofilm formation is considered an
important component of colony formation of Xf and is likely involved in pathogenesis. The relationships of chemical profiles
and specific chemical entities to Xf colonization, spread and biofilm formation are being investigated. (Biofilm was
quantified in vitro by the crystal violet/ethanol elution method).

A short-term exposure to xylem fluid from grapevine genotypes caused the development of differential colony numbers and
colony size of Xf UCLA PD strain when grown on agar culture.  In most cases the effect of xylem fluid on colony number
was not greatly altered by increasing incubation time from 1 to 24 hours suggesting that the effects on Xf are rapid.
Anomalous results were obtained showing that colony number decreased with exposure to xylem fluid from PD-susceptible
genotypes of V. vinifera (Chenin blanc and Chardonnay); however these genotypes formed significantly larger colonies than
PD-resistant genotypes.  The formation of large colonies may be critical to expression of Xf virulence in-planta, in that Xf
may typically survive and persist in PD-resistant Vitis genotypes; colonies simply do not form that adhere to xylem walls and
occlude vessels.  We investigated this phenomenon again in an effort to quantify biofilm formation using Xf UCLA and STL
strains in liquid culture. Xf was incubated for 96 hours in xylem fluid of V. rotundifolia Noble and V. vinifera Chardonnay.
Xylem fluid was collected from dormant, field-grown and screen house grown vines. Xf strain and xylem fluid treatment had
a highly significant effect on subsequent colony numbers. Biofilm formation varied greatly with xylem fluid treatment.  The
highest amount of biofilm and the highest ratio of biofilm to colony numbers in solution occurred for V. vinifera Chardonnay.
These data taken collectively show that the chemistry of xylem fluid can have a profound effect on Xf colony number and
biofilm formation, and the highest tendency toward biofilm formation occurred for PD-susceptible species.
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We examined xylem chemistry throughout the year on a large variety of alternative (non-Vitis) host plants and compared
these to rates of Xf infection.  The best statistical correlation was found for percentage of plants infected and the
concentration of total amino acids when sampled during the dormant season.  This will further our knowledge of resistance
mechanisms are the same for other host species as for Vitis, and to further our knowledge of alternative hosts that may be
important in the spread of Xf.

In 2002, we completed the formulated of new chemically-defined media for Xf. Several aspects contributed to the
completion of this phase.  Several alternative methodologies were implemented to assure the complete evaluation of these
new formulated diets.  New media were evaluated on the basis of agar culture, liquid culture and biofilm formation.  The
most simple medium that was successful consisted of 4 organic compounds and 3 inorganic salts.  Other chemically defined
media were based on the chemistry of Chardonnay (a susceptible grape genotype to Xf).  The performance of Xf in different
media was dependent on the strain, the media composition and the strain X media interactions. These results support the
contention that xylem chemistry may be critical in determining pathogenesis.

The antimicrobial activity of naturally occurring lytic peptides (cecropin A, cecropin B, magainin I, magainin II, indilocidin,
lysozyme) has been investigated.  The cecropins were the most lethal to Xf. The minimum inhibitory concentration for 100%
Xf mortality in PW+ medium was as follows: cecropin A 1 µM, cecropin B 1 µM, indolicidin 10 µM, magainin II 80 µM,
magainin I 80 µM, tetracycline 100 µM, lysozyme > 1000 µM. The persistence of lytic peptides in xylem fluid V. rotundifolia
was investigated.  Xylem fluid plus cecropin  A (10 or 20 µM) and cecropin B (2, 10, 20 µM) resulted in 100% Xf (UCLA
strain) mortality for 5 hours or less of incubation. Xylem fluid of V. rotundifolia Noble and V. vinifera Chardonnay incubated
with Xf UCLA strain plus cecropin B (1 µM) resulted in high colony counts and low biofilm production for Noble, but low
colony counts and high biofilm production for Chardonnay.  A timecourse of cecropin B (1, 10, 50 and 100 µM) activity in
xylem fluid of V. rotundifolia Noble and V. vinifera Chardonnay was followed by SDS Page gel electrophoresis.  Cecropin B
showed reduced activity from 1 to 96 hours, although at a concentration of 100 µM the cecropin B band did not disappear
entirely.  The cecropin bands disappeared at lower concentrations of cecropin B indicating a loss of stability probably as a
result of proteolytic breakdown.  Lytic peptides may eventually be incorporated in control strategies for Xf via genetic
engineering or direct application of compounds into xylem fluid.

Proteins and specifically peroxidases were detected in low concentrations in xylem fluid of all 10 grape genotypes. Protein
content and total peroxidase activities varied with genotype. SDS-PAGE gels of peroxidases from the 10 grape genotypes
show a different banding pattern and banding intensities indicating that different isozyme exist in different genotypes and
also that concentrations vary with genotype.  There is ample justification for continuing this work as we feel that proteins,
and specifically peroxidase activity is important to redox reactions at the xylem vessel/bacterium interface, and as such may
be involved in some of the earlier responses of plants to PD-infection.  In addition, we feel that enzymes are involved in the
proteolytic breakdown of lytic peptides.

In conclusion, we have found that xylem fluid chemistry varies greatly with genotype, location (i.e. edaphic conditions), and
season of the year.  Even a short-term exposure to Xf to different growth media altered Xf colony number.  Exposure of Xf to
different xylem fluid or to chemically defined media can also induce biofilm formation.  The development of a 4 organic
compound based chemically defined media will now allow us to delineate the role of specific compounds in Xf colony
formation and biofilm formation.  The biological parameters of naturally occurring lytic peptides have been quantified.  We
have detected the presence of proteins (in very low concentration) in xylem fluid of all grape genotypes.  We have also
quantified peroxidase isoenzymes in xylem fluid of all genotypes by gel electrophoresis.  The role of peroxidase in early
stages of Xf colonization in planta needs to be evaluated.
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INTRODUCTION
Xylella fastidiosa is not only a bacterium that causes Pierce's disease (PD) of grapevines. It also has a number of genetically
distinct host strains (see Hopkins 1989).  These strains show varying levels of cross-host pathogenicity. For example, PD
strains do not infect peach, and phony peach disease strains do not infect grapevines. Similarly, the strains causing oleander
leaf scorch (OLS) do not cause PD in grapevines or cause infectious symptoms in a number of other species (Purcell et al.
1999).  The lack of cross-host infection means that genetic differences among the strains must encode the causes of host-
specific pathogenicity.  Identifying the genes responsible for host-specific effects is an important step in understanding how
infection might be controlled.

The genetic differences determining host-specific adaptations are probably only a small fraction of the total genetic
differences between the strains.  To facilitate identifying host-specificity candidate genes, we need some initial filter that
selects those genes most likely to be involved in host adaptation from among the approximately 2700 genes carried by X.
fastidiosa.  To this end, genomic research provides us with some extraordinarily powerful new tools for solving this kind of
applied problem.

It is self-evident that adaptive evolution depends upon changes in specific genes.  In some cases, a single base substitution in
a gene may be sufficient; however, such simple changes recur repeatedly in bacterial populations.  The apparent separation of
X. fastidiosa into stable host strains suggests host adaptations involve more complex changes.  For this reason, we believe
that the genes involved in host adaptation will be among those exhibiting the most rapid evolutionary change.

OBJECTIVES
The identification of the rapidly evolving genes in the Xylella fastidiosa genome.  This is the first step towards achieving our
four primary objectives. These are:
1. Develop a systematic multigenic method for identifying host strains of X. fastidiosa. Our objective is to develop a

method that unambiguously identifies the known host strains, and that allows researchers to efficiently recognize the
invasion of new strains.

2. Identify plant-host specificity candidate genes.  We will use our database of rapidly evolving proteins to test for evidence
of strong natural selection and for statistical links between the rapid genetic divergence of host strains and specific
biochemical functions.

3. Measurement of clonal variation within host strains.  Our objective is to assess within-strain genetic variability at rapidly
evolving gene loci and to use these results to assess the evidence that all members of a given host strain share common
ancestry.

4. Estimate the frequency of recombination.  Our objective is to look for evidence of both within- and between-strain
genetic transfer. Genetic transfer can dramatically increase the rate of evolution, and potentially can increase the rate at
which new host strains arise.

RESULTS AND CONCLUSIONS
There are estimated to be about 2700 genes in the genome of the CVC (citrus) strain of X. fastidiosa; however, many of these
genes are of unknown function.  In the first phase of this project, we have screened just over 1000 genes of known function
from the genomes of the OLS (oleander), ALS (almond) and CVC (citrus) strains.  Using a modified relative rate test (with
CVC as the outgroup), we have examined the evolutionary pattern of these genes in the OLS and ALS lineage.
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Results so far suggest that the rate of gene evolution is generally higher in the OLS strain, with 15% of the genes showing
significantly higher rates of change in OLS and 5% in the ALS strain. Since this includes synonymous (silent) and non-
synonymous (replacement) base pair substitutions, it is possible (and probable) that the bias is due to a shorter generation
time in the OLS strain.  On the other hand, we have found a slight trend for faster protein evolution in the ALS strain.  After
correcting for the underlying rate differences, we find that almost exactly 10% of the 1070 genes screened show unequal rates
of protein evolution between OLS and ALS.  Of these 106 genes, 75% show faster evolution in ALS, and 25% in OLS.
These genes are the initial candidates for being involved in host adaptation.  However, since we have done 1070 tests, we can
expect about 53 type 1 statistical errors (i.e. 5% of 1070), so that a conservative estimate is that only about 50% of our
candidate genes are "real".  However, even with this correction, it appears that more than 50 genes in our sample are likely to
be involved in adaptive differences between the OLS and ALS strains.
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FATE OF XYLELLA FASTIDIOSA IN ALTERNATE HOSTS
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Reporting Period: The results reported here are from work conducted from November 2001 through October 2002.

INTRODUCTION
This project investigated the fate of the Pierce’s disease bacterium Xylella fastidiosa (Xf) in alternate hosts from which
sharpshooters might acquire Xf by feeding.  We identified additional bacterial hosts among vineyard weeds, cover crops, field
crops and adjacent vegetation common to vineyards in California’s San Joaquin Valley. Field studies conducted at the Kern
County Agricultural Center in Bakersfield tested the survival of Xf in field conditions for five weed and cover crop species
known to be systemic hosts of Xf.

The rapid and striking emergence of Pierce’s disease of grape in the General Beale Road project area in Bakersfield during
summer 2001 showed the damage that can be done by the glassy-winged sharpshooter (GWSS).  Identification and
eradication of plants that are bacterial hosts is important where the insect vector has large populations and feeds on many
different plants. Xf survives and multiplies in an unusually large number of plants (Freitag 1951; Hopkins 1988), and
sharpshooters collected distant from agricultural habitats can be infectious with Xf (Freitag and Frazier 1954).  Previous
studies of Xf in four plant species established that Xf multiplies in plants at the inoculation site but moves systemically within
the plant in only some plant species (Hill and Purcell 1995b).  Lab and field studies of Xf in 33 species of riparian plants
commonly found in Napa Valley revealed that most plants were propagative but non-systemic hosts of the bacterium and
suggested that Xylella eventually disappears from non-systemic hosts (Purcell and Saunders 1999).

Research during 2000 and 2001 (funded by Kern-Tulare Glassy-winged Sharpshooter-Pierce’s Disease Task Force),
identified 7 species of weeds as systemic high- and mid-population hosts of Xf and that 12 other weed species were
infrequently infected, supported low Xf populations, or had limited bacterial movement beyond the site of insect feeding.  We
tested 13 additional plant species as hosts of Xf this year.  Recent studies of the effects of temperature on Xf growth in culture
or in grapevines indicated that Xf slowly dies instead of multiplying at temperatures below 10oC or above 34oC (Feil and
Purcell 2001).  To determine how well field plants support the growth of Xf during winter and summer, we followed the
population changes of Xf in systemic weed or cover crop hosts of Xf grown in Kern County in a protective cage (to exclude
vector transmission) in two cool season and two warm season trials.

OBJECTIVES
Evaluate the fate of Xylella fastidiosa in Central Valley weeds.

RESULTS AND CONCLUSIONS
We continued investigations into the fate of Xf in 13 previously untested species of weeds, field and cover crops, and
vegetation commonly found adjacent to San Joaquin valley vineyards.  We inoculated plants with blue-green sharpshooters
(BGSS) or mechanically, and tested for the presence of Xf at 1, 3 and 9 weeks after inoculation.  Culture on semi-selective
medium (PWG) estimated bacterial populations (log10 colony-forming-units [cfu] per gram) and systemic movement of the
bacteria throughout the plant beyond the inoculation site.

Recent tests showed that ‘Ace’ tomato, ‘Violeta lunga’ eggplant, black nightshade and red gum (mechanical inoculation
only) consistently developed Xf infections with populations over log106/cfu/g. Quinoa, field bindweed, yellow nutsedge, and
blue gum had high Xf populations (between log105 and log107) in plant tissue at the inoculation site but rarely developed
systemic infections in the greenhouse.  Plants with fewer than 10% of their sites infected, or that supported populations at or
below log103 cfu/g were: johnsongrass, jojoba, prostrate pigweed, annual sowthistle, southwestern cupgrass, whitestem
filaree, and watergrass.  These plants also had systemic infections at less than 10% of their inoculation sites.  Three species of
recently tested weeds: cheeseweed, sacred datura, and red gum, frequently developed infections when mechanically
inoculated but not when inoculated by insects.  Jojoba developed infections after exposure to BGSS but not after needle
inoculation. Systemic populations of Xf over log5 and especially over log 6 are most likely to be significant sources of Xf for
sharpshooters that feed on them, but this needs to be tested for representative weed species.

Bacterial survival in field conditions was tested with five species of common vineyard weeds that previously had been
identified as systemic hosts of Xf. Cocklebur, wild sunflower, and prickly lettuce were tested from July to November 2002.
Prickly lettuce, poison hemlock, and ‘Aquadulce’ fava bean (used in cover crops) were grown from November 2001 to
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March 2002.  After inoculation in the greenhouse, half the plants remained in the greenhouse, and half were planted in a
vector-proof cage outside at the Kern County Cooperative Extension office.  We sampled plants by culturing 1, 3, and 9
weeks after inoculation to estimate bacterial populations and systemic movement.

We recovered Xf less frequently and in lower populations from field-grown plants when compared to greenhouse-grown
plants during the first three weeks. In all four trials comparing Xf infections in the field and greenhouse, fewer infections
became established in field-grown plants, bacterial populations were lower, and fewer infections moved systemically beyond
the inoculation site to colonize the entire plant.  For tests done in cool weather from November 2001 to March 2002, Xf was
recovered from 26% of field-grown plants (31 of 134) and 46% of greenhouse-grown plants (50 of 109 inoculation sites). For
tests with summer weeds from July to November 2002, we recovered Xf from 35% of greenhouse-grown weeds (56 of 158
sites) and 21% (27 of 127) of field-grown weeds.  Field-grown plants also had fewer systemic infections and lower bacterial
populations.  We conclude that Xf multiplies and survives more poorly under field conditions than in ideal growth
temperatures (26-29 °C) maintained in greenhouse studies. This confirms our initial assumption that lab tests were more
suitable for initial screens of plants' abilities to support the multiplication of Xf, and is consistent with our predictions that Xf
would grow more slowly under fluctuating field temperatures that exceed or fall below permissive growth temperatures.
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Reporting Period: The results reported here are from work conducted from May 1999 to September 2002.

INTRODUCTION
Where the blue-green sharpshooter (BGSS), Graphocephala atropunctata, is the primary vector of Xylella fastidiosa (Xf),
Pierce’s disease (PD) generally occurs near the edges of vineyards.  The distribution of diseased vines matches the springtime
movement of sharpshooters from overwintering habitats into vineyards (Varela, Smith and Philips 2001).  Attempts to
manage PD often include late winter or early spring insecticide applications to the edge of the overwintering habitat in order
to limit the springtime movement of sharpshooters.  This practice may reduce PD incidence, but often fails due to limitations
in available insecticides, difficulty in timing sprays to coincide with vector movement, differences in PD susceptibility due to
variety (Purcell 1979) or vine age, and regulatory issues that prevent treatment of the overwintering habitat.

Another possible control strategy is growing a buffer of plants that are not damaged by Xf and treating them with persistent,
systemic insecticides to impede the movement of BGSS vectors into the vineyard.

We initiated this project in 1999 to examine the effects of an insecticide-treated grapevine trap crop on the incidence of PD.
We selected St. George rootstock (Vitis rupestris) for the trap crop because it buds out early in the spring, is attractive to
BGSS and is not killed by PD.  We planned to treat trap crop vines during fall or winter with soil-applied imidacloprid
(Admire, Bayer Corporation).  At the time, we believed that adult BGSSs feeding on treated trap crop vines would quickly
acquire a lethal dose of imidacloprid.

OBJECTIVES
1. Determine if insecticide treated trap crops at the ends of rows can reduce the incidence of PD.

RESULTS AND CONCLUSIONS
We established two trap crop trials in 1999 on opposite sides of a large vineyard.  Each side is bordered by riparian habitat
and has a history of PD.  One trial borders the Napa River, the other Milliken Creek.  The entire vineyard was planted in
1999, so our trap crop vines developed at a similar pace to the producing vines.

In each trial, there are three replications of trap crop plantings and controls.  Vine spacing is 9 feet between rows and 5 feet
between vines.  St. George vines are planted at the ends of adjacent rows to create the trap crop treatments.  Each replicate
trap crop planting includes the first 6 vines in 12 adjacent rows (approximately 30 feet deep by 108 feet wide).  In the control
treatments, Chardonnay or Pinot Noir vines extend to the end of the rows.  Trap crop vines have been trained up into the
trellis to produce large “hedges” in the vine row.

We selected St. George for the trap crop plantings in part because we believed it would begin to grow earlier in the spring
than the rest of the vineyard.  If it did, it would be a more effective trap crop because BGSS would likely move to it to feed
while the other vines were still dormant or just budding out.  In these trials, this has not been the case.  The St. George vines
initiate growth at about the same time as the rest of the vineyard, which is planted to Chardonnay and Pinot Noir – both early-
growing varieties.  The entire vineyard is pruned early each winter (December), which further hastens budbreak.

Admire was applied to trap crop vines in early November 2000.  Subsequent studies showed that BGSS do not readily
acquire lethal doses of imidacloprid from treated vines.  In cage studies (Purcell 2000, unpublished), BGSS greatly reduced
their feeding rate and lived for a considerable time period.  There was no rapid kill.  Therefore, our treated trap crops were
not likely to kill insects landing upon them.  We hypothesized that Admire-treated trap crops could actually increase
dispersion of BGSS if after initial probing they flew away from that vine rather than continuing to feed.  We therefore
abandoned plans for further Admire treatments.  In 2001 and 2002, trap crops vines were sprayed with imidacloprid
(Provado, Bayer Corporation) in April and May, respectively. We recognize that foliar treatments are likely to have limited
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effectiveness for a trap crop program because they are not fully systemic and actively growing vines will have untreated
tissue much of the time.

BGSS activity was monitored from 2000-2002 using yellow sticky cards placed between the riparian habitat and the end vine
of the vineyard.  Two cards were used in each replicate and were monitored weekly from March-October.  BGSS were
present in all replicates each year.

PD incidence was determined by visual assessment in September or October 2000-2002.  The first 30-40 vines in each row
were rated on a 1-3 scale, with 3 being the highest severity. In control treatments, diseased vines in the first six positions are
not considered, as these positions correlate to the trap crop vines.  In the Milliken Creek trial, only 1 vine has displayed PD
symptoms to date.   In the Napa River trial, PD has appeared only in the third replicate, in both control and trap crop
treatments.  There were more PD vines in the control treatment (Table 1), however, that plot also had more BGSS, as
determined by trap catches (Table 2).

Table 1: PD vines in Napa River trial (rep 3)
2000 2001 2002

Trap Crop 0 1 6
Control 0 3 11

Due to the small number of diseased vines, no conclusions can be drawn regarding the effectiveness of treated trap crops at
this time.  However, the lack of an effective systemic insecticide that will kill BGSS immediately upon feeding makes the
outlook for this being a successful control strategy much less likely.
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Table 2: BGSS trap counts* in Napa River trial (rep 3)
2000 2001 2002

Trap Crop 3 6 1
Control 14 23 5
* March - June
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SIGNIFICANCE OF RIPARIAN PLANTS IN THE EPIDEMIOLOGY OF PIERCE’S DISEASE
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INTRODUCTION
Past research (Purcell, 1976, 1981) has demonstrated the direct relationship between incidence of Pierce's disease (PD) in
grapevines and proximity to riparian plants bordering vineyards in the North Coastal grape-growing region of California.
Vineyard rows closest to riparian plants experience the heaviest losses, but the concentration of diseased vines decreases with
increasing distance away from riparian plants.  Riparian habitats adjacent to vineyards contain host plants that serve as
feeding and breeding hosts for Graphocephala atropunctata (blue-green sharpshooter, BGSS), the most efficient vector of
PD in the Napa Valley (Hewitt et al. 1949; Purcell 1975).  Not only do many riparian plant species provide habitat for BGSS,
but some also serve as reservoir hosts of the causal agent of PD, Xylella fastidiosa (Xf) (Freitag 1951).  A variety of common
riparian plants, including native and non-native trees, shrubs, and herbaceous annuals, are capable of maintaining Xf
infections without expressing disease symptoms.  The ability of Xf to multiply and spread within a plant host, once it has
been infected, varies from species to species.  The efficiency of Xf acquisition and transmission by vectors is influenced by
the concentration of Xf in the plant host during feeding; the higher the concentration of Xf in a host plant, the higher the
probability of BGSS acquiring Xf (Hill and Purcell 1997).  Purcell and Saunders (1999) found that Xf populations are,
generally, lower in riparian hosts than in grape.  After screening several breeding hosts of BGSS for systemic movement of
Xf, Hill and Purcell (1995) found that only two, Rubus discolor (Himalayan blackberry) and Vitis vinifera (grapevine),
supported systemic Xf populations.  These results imply that some riparian plant species are likely more important than others
as reservoirs for the spread of Xf to grapevines.

A replicated field experiment was initiated at three commercial vineyards in Napa County, CA, to measure Xf populations in
five riparian plant species: Vitis californica (California grape), Rubus ursinus (California blackberry), Rubus discolor
(Himalayan blackberry), Sambucus mexicana (blue elderberry), and Vinca major (periwinkle).  All five species are breeding
hosts of BGSS and systemic hosts of Xf (Purcell and Saunders 1999). Xf could potentially overwinter in systemic hosts.
Overwintering hosts of Xf likely play an important role in the epidemiology of PD in providing a source of bacteria for spring
infections, especially near vineyards where infective adult BGSS do not survive the winter.  BGSS transmission of Xf from
riparian plants to grapevines in spring is more likely than mid- or late-season infections to result in chronic disease (Purcell
1981).  By measuring seasonal populations of Xf in riparian plants adjacent to vineyards, we will determine if and when
concentrations are high enough for acquisition by BGSS.

OBJECTIVES
Determine the epidemiological role of seasonal fluctuations of Xylella fastidiosa populations in riparian host plants of North
Coastal California.

RESULTS AND CONCLUSIONS
Populations of Xf reached detectable levels in California blackberry, blue elderberry, and California grape by mid summer
and increased by early fall (Table 1). Xf was not detected in periwinkle until early fall, when populations were found to be as
high as that of California blackberry, blue elderberry, and California grape (105-106 CFU/g of petiole tissue). Xf populations
of at least 104-105 CFU/g of plant tissue are required for acquisition by BGSS (Hill and Purcell 1997).  Estimated Xf
populations in California blackberry and California grape in mid summer and blue elderberry and periwinkle in early fall are
sufficient for acquisition by BGSS.  Our two culture attempts coincided with the emergence and increased flight activity of
young adult BGSS, which peaks in mid summer and remains high through early fall (Feil et al. 2000).  Assuming BGSS
feeds on California blackberry, California grape, blue elderberry, and periwinkle in early fall, Xf may be transmitted from
infected riparian plants to adjacent vineyards before the end of the growing season. Late season infections of grapevines are
unlikely to result in chronic disease and infected canes are pruned out during the winter (Purcell 1981).  However, young
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adult BGSSs that acquire Xf in mid summer to early fall and survive the winter are still capable of transmitting Xf the
following spring after budbreak.

Our inoculations resulted in a lower then expected number of infected plants.  Past research (Hill and Purcell 1995, 1997;
Purcell and Saunders 1999) on populations of Xf in four of the five riparian species we inoculated showed higher inoculation
success (higher number of plants that developed infections out of total plants inoculated).  Differences in inoculation method
(insect versus mechanical), Xf strain (YVPD versus STL), and/or environment (greenhouse versus field) may explain
differences in inoculation success.

None of the inoculated Himalayan blackberry individuals developed infections.  Insect inoculation of Himalayan blackberry
with the YVPD strain of Xf in the greenhouse showed that Xf populations can reach 107 CFU/g of plant tissue at 32 days after
inoculation (Hill and Purcell 1995, 1997).  Again, this difference may be due to our inoculation method, the strain of Xf we
used, and/or the fact that our experiment was carried out in the field.

Table 1. Culture of Xylella fastidiosa from riparian plants in the field following mechanical inoculation.

Species
Number

Inoculated a
Number
Infected

Number
Not infected

Number
Contaminated CFU/g b

Incubation
(days) c

Himalayan blackberry 29 0 11 18 0 41-54
Himalayan blackberry 26 0 4 22 0 119-124
California blackberry 35 2 11 22 log 3-4 41-54
California blackberry 35 8 5 22 log 4-6 119-124
Blue elderberry 30 1 11 18 log 2 41-54
Blue elderberry 18 1 1 16 log 6 119-124
Periwinkle 31 0 8 23 0 41-54
Periwinkle 30 1 2 27 log 5 119-124
California grape 27 2 11 14 log 2-5 41-54
California grape 25 1 3 21 log 6 119-124
a Plants were mechanically inoculated with STL strain of X. fastidiosa on 7, 13, and 18 June 2001.
b Colony forming units per gram of plant tissue (log scale).
c Number of days between inoculation and two culture attempts.  The first culture attempt was at 41 to 54 days after
inoculation (July 24 to August 8, 2001).  The second attempt was from the same plants, but from different petioles, at 119-
124 days after inoculation (October 9 to October 15, 2001).
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INTRODUCTION
This project is a collaborative effort between UC Davis and the USDA/ARS- Fresno, and is focused on breeding new PD
resistant cultivars of table and raisin grapes.  The project also integrates efforts to develop genetic maps for resistance to
Xylella fastidiosa (Xf) in segregating populations containing resistance from Muscadinia rotundifolia and from southeastern
US (SEUS) Vitis species.  The preliminary goal of these mapping efforts is the development of strongly linked DNA markers
to expedite breeding and the eventual goal is characterization and location of Xf resistance genes leading to genetic
transformation efforts.

OBJECTIVES
1. Develop PD resistant table and raisin grapes by crossing a variety of Xylella fastidiosa resistance sources with large

berried and seedless V. vinifera table and raisin grapes.

RESULTS AND CONCLUSIONS
Greenhouse Evaluations of Xf resistance:
There are now 60 PD resistant cultivars from the southeastern US (SEUS) at UCD and 13 at the USDA-Fresno.  We tested
and added 10 new accessions this year after finding them to be highly resistant to Xf. Sixty-five F1 progeny from SEUS
resistance sources by Ramming advanced seedless vinifera were screened.  Seven of these seedlings were backcrossed to
advanced seedless table grapes in 2002.  This winter we will be testing SEUS germplasm from Fresno and include promising
selections from their disease resistant table grape program (focused on powdery mildew) with potentially PD resistant
parentage.

During summer 2001, replicated cuttings from 130 seedlings were made from a 2000 cross of a female Xf resistant V.
rupestris x M. rotundifolia (8909-15) x B90-116 (Ramming advanced seedless selection) – population 0023.  This population
is being used for the mapping of both genetic markers and phenotypic traits.  The most resistant of these F1 progeny were
used in the crosses this year described below.

2002 Crosses:
UCD – Twelve crosses were made with 4 F1 V. rupestris x M. rotundifolia (rup-rot) selections with excellent Xf resistance by
5 USDA table and raisin parents to produce 1,613 seeds.  Twenty-five crosses were made using 10 SEUS (5 newly evaluated)
Xf resistant parents x advanced Xf resistant and vinifera parents to produce 33,306 seeds.  Two other crosses were made to
expand the two mapping populations that are based on a seedless female parent – one from a SEUS resistance source (5025),
and the other on rup-rot (5014).  Embryo rescue techniques at Fresno obtained 92 and 68 ovules respectively.

USDA-Fresno – Crosses were made to seedless vinifera parents in 2002.  Twenty-nine crosses were made with 19 advanced
seedless table and raisin grape selections using 16 Xf resistance sources, most of which were F1 selections from advanced
seedless vinifera x rup-rot selections.  6,171 ovules were extracted from these crosses and 1,198 embryos are establishing.
This material will make great advances towards commercial quality.

2002 Plantings and Evaluations:
UCD – 2,145 seedlings were planted from crosses made in 2001.  These seedlings were produced by crossing 6 SEUS
resistance sources with 9 advanced USDA seedless table and raisin grape selections.  Based on the early planting date,
excellent growth (virtually all have produced a short 75 cm cordon on the wire), and the success we had this year pushing the
2000 seedlings, we expect many of these to flower in 2003.

About 20% of the 1,150 seedlings from SEUS resistance sources produced from the 2000 crosses and planted in 2001 were
evaluated for fruit quality and 15 with good quality were greenhouse screened for PD resistance.  The best of these will be
crossed to advanced vinifera selections in 2003.  The quality of the 2000 seedlings was better than expected.  Some of the
seedlings have fruit that is partially seedless, with firm flesh, and markedly improved berry size and skin thickness.
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USDA-Fresno:
In 2001, 14 crosses were made with 3 seeded female parents (2 vinifera and 1 SEUS PD resistant) by 10 males (most SEUS
PD resistant selections).  Fifty-eight seedlings were planted. The majority of the 2001 crosses were to seedless female
parents and the progeny were embryo rescued.  There were 27 crosses with 9 advanced seedless females x 17 different
sources of PD resistance from the SEUS.  About 3,345 ovules were cultured, 1,220 embryos were rescued and 415 seedlings
were planted in the field.  These progeny are expected to start blooming in 2003 and should make excellent progress towards
our goal of PD resistance in a high quality vinifera table and raisin grape background.

PD Field Trial:
In 2001, we established a replicated field trial at a PD infected vineyard in Yountville using 13 SEUS PD resistant selections

and 9 resistant and 7 susceptible rup-rot selections.  Each plant was inoculated in May and June 2002 by needle inoculation.
The SEUS selections were chosen because most displayed severe PD symptoms after greenhouse testing, although they are
considered highly resistant in the SEUS.  Observations of leaf scorch, cane lignification and impact on vigor were made in
Fall 2002.  The observed range of responses correlated well with Xf titer results from previous greenhouse testing.  The plants
will be evaluated Spring 2003, to determine whether Xf is lost over winter due to lack of downward spread followed by
pruning, and to determine the extent of PD symptoms.

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board, the USDA
Animal and Plant Health Inspection Service, the California Raisin Marketing Board, and the California Table Grape
Commission.
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CHARACTERIZATION AND STUDIES ON THE FUNDAMENTAL MECHANISMS OF XYLELLA FASTIDIOSA
TRANSMISSION TO GRAPEVINES BY THE GLASSY-WINGED SHARPSHOOTER
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Reporting Period: The results reported here are from work conducted from November 30, 2001 to October 30, 2002.

INTRODUCTION
Current attempts to reduce the economic impact of the glassy-winged sharpshooter, Homalodisca coagulata, (GWSS) to
important crops in California have focused on GWSS or the causal pathogen, Xylella fastidiosa,(Xf), but little attention has
been given to an essential step of Xf-diseases: the transmission of the pathogen by its insect vector. Xf has been causing
diseases in California for a long time, but GWSS is apparently a more effective vector than other sharpshooters previously
involved in California.  Our objectives are to characterize Xf transmission by GWSS to grapevines, since this is a vital but
understudied area of PD.  Because of space limits, this report emphasizes objective #1.

OBJECTIVES
1. Characterize the transmission of Xylella fastidiosa to grapes by the glassy-winged sharpshooter.
2. Develop in vitro assays to assess vector transmission of Xylella fastidiosa.
3. Test the possibility of biological control of Xylella fastidiosa transmission through competition for attachment site in

vector’s foregut.

RESULTS AND CONCLUSIONS
GWSS transmission of Xf to grapes:
The basic characteristics for Xf transmission determined for other vectors were also found for GWSS.  Transmission i)
occurred without latent period, ii) was persistent over time, iii) unless molting occurred (no transtadial transmission), iv)
nymphs and adults were vectors.  GWSS transmitted Xf to 2-year-old woody tissue of grapevine cuttings with similar
efficiency as that to green shoots.  Transmission by nymphs had efficiency of approximately 70% (2 days inoculation access
period - IAP).  Inoculation efficiency increased with longer IAP, but even with 96h IAP efficiency was approximately 35%, a
value lower than that obtained for an efficient Xf vector, the blue green sharpshooter (BGSS, Graphocephala atropunctata).
Acquisition efficiency did not increase with longer acquisition access periods (AAP) after 6 hours.  Overall transmission
efficiency was 15-20% per insect per day, with large variability in transmission rates among experimental repetitions.
Comparable transmission efficiency by BGSS is over 90% (Hill and Purcell 1997). Using the culture detection method for
Xf, we found no association between Xf detection in the heads of GWSS and individual transmission of the pathogen to
plants, similar to the findings of Hill and Purcell (1997) for BGSS.  Further studies using other detection methods based on
PCR may prove to be better predictors of vector infectiousness.  In general, GWSS transmission of Xf had the same
characteristics observed for other vector species, but had much lower and more variable transmission efficiency among
experiments.  GWSS inoculation of 2-year-old wood of grapevines in the lab suggested that summer and fall inoculations in
the field may occur, and that these infections may become chronic disease because plant tissues where inoculation occurred
will not be removed during regular winter pruning.

GWSS transmission of Xf to dormant grapes in the field:
Because GWSS has been found to feed on dormant vines during the winter, we tested the possibility of GWSS inoculating Xf
into dormant vines in the field.  We previously reported that GWSS transmitted Xf to dormant grapes under laboratory.  Our
field experiment with dormant plants was done in a screen cage built in Bakersfield, Kern Co. Grape ‘Pinot noir’ cuttings
were planted within the cage in September 2001, and standard cultural practices used for the plants. In February 2002, 3 sets
of inoculations were done with groups of GWSS taken on plants to Bakersfield.  Briefly, adults had 4 d AAP on source
plant,; we later transferred these GWSS (groups of 4) in the greenhouse to green seedlings for 4 d IAP, which served as
indicators of group infectivity.  Plants with insects were taken to Bakersfield and transferred to dormant plants for a 1 week
IAP, seedlings returned to Berkeley for symptom development. One inoculation was done in May, as a positive control to
test GWSS survival under similar conditions and transmission to green plants growing in the field.  We inoculated 64
dormant plants during three dates in February, 13 on May, and left 16 un-inoculated.  We verified transmission to dormant
plants in the field with efficiency not much lower than that to green seedlings in the greenhouse.  No negative control plants
were positive for Xf or showed any PD symptoms.  Survival of insects in the field was high (47-90% for all insects in
different dates). Figure 1 summarizes the results obtained.
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Figure 1. Percentages of dormant (in the field) and green (in the greenhouse) vines infected with Xf by GWSS.

Association of Xf in vectors’ foregut and its transmission to grapes:
We used scanning electron microscopy to observe Xf cells attached to the foregut of GWSS and BGSS. We found the
expected structures in the pre-cibarium (sensilla, pre-cibarial valve).  Even though GWSS has low and variable transmission
efficiency (see above), we tested if Xf could be found in the foregut of insects that had 4 d AAP followed by ~1 week of
incubation period.  We found Xf cells in only 1 out of 35 insects, and then decided to do a similar test with an efficient vector
(BGSS). In this test, 14 BGSS had 4 d AAP on source plants, ~2 weeks on mugwort and 4 d IAP on healthy grape.  All
insects that transmitted to plants had large amounts of Xf in the pre-cibarium. Similar pictures have already been reported
(Purcell et al. 1979 and Brlansky et al. 1983).  In vitro assays of sharpshooter feeding through a membrane on suspensions of
Xf in sterile xylem sap revealed that sharpshooters picked up Xf in larger numbers than from Xf-infected plants but did not
subsequently transmit the bacterium to grape.  We have isolated numerous bacteria from the surface-sterilized heads of
GWSS fed on PD-grape but that failed to transmit Xf. Continuing studies will attempt to assess these bacteria as possible
antagonists to GWSS transmission of Xf to grape.  So far have not recovered any of the isolates that we sprayed onto foliage
in greenhouse experiments.

Electronic monitoring of BGSS:
Because we found that GWSS general Xf characteristics are the same as those for other vector species,and that it has lower
and more variable transmission efficiency than BGSS, we have used BGSS as a model vector to start a study on feeding
behavior and Xf transmission.  This work was done in cooperation with Dr. Elaine Backus (University of Missouri,
Columbia).  Although BGSS probing behavior has already been studied electronically (Crane 1970), we found that
waveforms previously observed were not comparable to the system we used, mostly due to technological advances. We
characterized various waveforms for BGSS probing behavior, and found that insects feed on xylem and mesophyll (may be
phloem too, but data inconclusive).
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MECHANISMS OF PIERCE’S DISEASE TRANSMISSION IN GRAPEVINES: AN ANALYSIS OF THE
MOVEMENT OF XYLELLA FASTIDIOSA IN XYLEM PATHWAYS

Project Leaders:
Thomas L. Rost
Section of Plant Biology
University of California
Davis, CA 95616

Mark A. Matthews
Dept of Viticulture and Enology
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Joshua Stevenson
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Reporting Period: The results reported here are from work conducted from June 15, 2002 to October 15, 2002.

INTRODUCTION
Pierce’s disease (PD) is a consequence of the spread of xylem-limited bacteria, bacterial products, or plant responses to either
leading to blockage of water movement within the grape’s hydraulic network (Hopkins and Mollenhauer 1973).  The
progression of symptoms and movement of PD pathogens from the point of inoculation into the hydraulic network is poorly
understood.  The development of xylem blockage from the inoculation point to distal or basal organs and the pathways for
movement of bacteria within grapevines needs to be determined.

The general vegetative anatomy and the primary vascularization of grapevine have been summarized (Pratt 1974, Mullins et
al. 1992, Fournioux 1982) and anatomical symptoms of PD have been documented (Esau 1948, Tyson et al. 1985).  Although
a general pattern of grapevine hydraulic architecture has been proposed, the vascular arrangement within grapevine must be
studied in the context of the spread of PD within the plant from the site of inoculation to a systemic presence.  It is unknown
whether the mechanisms of pathenogenesis of PD are a direct result of xylem blockage by the bacteria (Hopkins 1981),
phytotoxins produced by the bacteria (Lee et al. 1982), resultant gums and tyloses produced by the plant (Esau 1948), or a
combination of these factors.

OBJECTIVES
Through an analysis of the vascular system of grape shoots correlate the progression of PD from inoculation to infected
organs with the movement of Xylella bacteria, the development of tyloses and gums, and the loss of water transport.

RESULTS AND CONCLUSIONS
Grapevines were inoculated with Xylella in one of the two shoots per plant.  Six weeks following inoculation, symptoms
consistent with PD were observed on the leaves (marginal leaf necrosis) and the stem (incomplete cork formation on stem) of
the inoculated shoot, but the opposite, non-inoculated shoot was asymptomatic.  Anatomical examination of stem, petiole,
and midrib xylem with both light and electron microscopy revealed the internal progression of PD corresponding to external
symptoms.  The petioles and midribs of leaves displaying external PD symptoms contained tracheary elements with abundant
gummosis and accumulation of bacteria, but few tyloses (Figures 1-3).  Bacteria observed in symptomatic leaf midrib xylem,
and to a lesser extent in petiole xylem, were embedded within a globular matrix (Figures 5-6).   Stem xylem proximal to
leaves showing PD symptoms included tracheary elements with abundant tyloses, but little gum formation (Figure 4).
Bacteria were rare in the proximal stem and bacterial cells were not contained within a matrix.  Observations of fully
expanded asymptomatic leaves and stem tissue distal to the inoculation site showed similar anatomical pathology to nearby
symptomatic leaves. Consequently, internal progression of PD appears to precede external symptoms.  Six weeks following
inoculation, no anatomical symptoms of PD were found in the basal main shoot subtending the inoculated shoot, nor in the
opposite non-inoculated shoot.  Eight weeks following inoculation, PD symptoms manifested in the opposite, non-inoculated,
shoots.  Anatomical examination showed the same pathology as was observed two weeks earlier in the inoculated shoot,
including the accumulation of bacteria and embedding matrix in the xylem vessel members of leaf midribs and petioles.

Following these observations, a working hypothesis of the progression of PD within a young grapevine shoot can be
proposed. Xylella inoculation of stem xylem precedes a relatively rapid movement of bacteria through the hydraulic network
to distal stem regions, petioles, and leaf vascular tissue.  The rapid movement is potentially facilitated by one, or a
combination, of three mechanisms:

1. Grapevine vessels are long and few vessel-vessel transitions are needed to reach distal tissues,
2. Pit membranes of grapevine are frequently damaged, either in development, or as a result of frequent

cavitation/refilling cycles, or
3. Bacteria are able to quickly digest pit membranes of terminal vessel elements.

Once bacteria moving in the transpirational stream enter regions of the hydraulic network that contain many narrow tracheary
elements and more frequent terminal tracheary elements (i.e. shorter vessels in petioles and leaves), bacteria are ‘filtered out’
and accumulate, and become embedded in a surrounding matrix which effectively blocks water flow in that conduit.  It is
unknown whether this matrix is secreted from the bacteria itself, from the plant either as a defense reaction or responding to
bacterial stimulus, or a combination of the two.  Tylose formation in the stem coincides with bacterial infection, but at least
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initially, is not present to such a degree that bacterial movement is prevented or that the water supply to distal tissues is
restricted to levels causing visual symptoms.  Additionally, bacteria can move from an inoculated shoot to another shoot via
the subtending trunk relatively quickly.  Consequently, in can be proposed that the PD symptoms observed in multiple shoots
of a grapevine are not a symptom of a whole-plant response to a localized infection, but rather are an indication of a systemic
Xylella presence.  For this to occur, bacteria must move basipetally from the site of inoculation, into the basal stem and then
acropetally into the opposite shoot.  Whether bacteria are moving against the transpirational stream in an intact water column,
or whether the downward bacterial movement is facilitated by the release of tension in a cavitated water column is unknown.

Figures 1-3. Light micrographs of grapevine stem, petiole, and leaf midrib (l-r) six weeks after inoculation.  Tyloses are
frequent in vessels of stem sections, whereas xylem is occluded by gums in petioles and midribs.

Figure 4-6. Scanning electron micrographs of grapevine stem, petiole, and leaf midrib (l-r) six weeks after inoculation.
Symptoms of PD in stem xylem were typically tyloses, whereas petioles and midrib symptoms were associated with an
abundance of bacteria and surrounding matrix increasing from petiole to leaf.
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THE DEVELOPMENT OF PIERCE’S DISEASE IN XYLEM: THE ROLES OF VESSEL CAVITATION, CELL
WALL METABOLISM, AND VESSEL OCCLUSION

Project Leaders:
John M. Labavitch
Pomology Department
University of California
Davis, CA 95616

Mark A. Matthews
Dept of Viticulture and Enology
University of California
Davis, CA

L. Carl Greve
Pomology Dept.
University of California
Davis, CA

Reporting period: The results reported here are from work conducted from January 1, 2002 to October 31, 2002

INTRODUCTION
This proposal is directed toward discovering the plant responses to infection that are fundamental to the progression of
Pierce's disease (PD) in grapevine.  The disease is caused by the growth of the bacterium Xylella fastidiosa (X.f.) in the xylem
vessels of stems, petioles and leaf blades.  The disease progresses rapidly, causing severe water deficits in infected shoots and
vine death–often within two years.  However the progression of the disease and the mechanism(s) by which the disease
produces water deficits and death in infected tissues have not been well established.

The prevailing notion is that vessels become occluded with bacteria or products of metabolism.  However, it is unclear how
the bacterium moves through and between vessels, whether vessels cavitate upon introduction of the bacterium by the insect
vector or artificial inoculation, and whether PD symptoms can be found in tissues at a distance from local concentrations of
bacteria. The bacterium is reported to be larger than the openings in pit pore "membranes."  Thus, it is likely that cell wall
digestion is necessary for movement of the bacteria through the vine.  This digestion may be a key component of disease
progression.  The studies in our project are designed to test the following hypothetical “model” of the events contributing to
the development of PD.

X.f. introduction to vessels—>vessel cavitation—> initial water deficit—> X.f. population increase—> production of
enzymes by X.f. (signals ?) —> cell wall digestion —> oligosaccharide signals —>

ethylene synthesis rise—> a "wave" of vessel occlusion beyond the infection site —>
global collapse of vine water transport—> leaf abscission—>vine death

OBJECTIVES
For this research period, the work in our project has been closely coordinated with work in the new project led by Rost and
Matthews.  Our project follows several aspects of PD development following introduction of Xylella fastidiosa (Xf) to
grapevines by hypodermic injection to basal stem internodes.  The focus of our effort in this period has been on factors that
limit systemic spread of the Xf population and contribute to reduced water movement in the xylem.
1. Determine the “porosity” of the pit membranes that regulate movement from one xylem vessel to the next.
2. Determine whether digestion of cell wall polysaccharides in the pit membrane is required for passage  of Xf through the

xylem.
3. Determine how quickly, post-inoculation with Xf obstructions occur in the xylem.

RESULTS AND CONCLUSIONS
Factors limiting movement of bacteria and water in grapevines:
Using PCR-based detection of bacterial DNA sequences, we observed the rapid (within 14 days) spread of Xf up inoculated
shoots of small grapevines (30 – 40 cm in height).  This raised the possibility that the bacteria were moving unimpeded
through the xylem.  This could occur because a significant population of the vessels was sufficiently long that bacteria could
be swept along in the transpirational stream without encountering a vessel end and, hence bordered pit.  Alternatively, the pits
might not offer the expected restriction to bacterial movement among vessels.  Analysis to determine the length of the longest
vessels in shoots of other experimental material (80 - 100 cm shoots) has indicated a 30 - 50 cm maximum, with a mean of 34
±12 cm .  By comparing the air flow rates through stems from which apical segments were repeatedly excised, it is possible
to observe the relative distribution of vessel lengths.  This analysis indicated that most vessels were less than 15 cm long
(Figure 1).  Thus, there appear to be very few paths longer than about 10 – 15 cm that do not include a vessel end.   However,
we have not performed the same analysis on the shorter stems used in the experiment showing rapid systemic spread of Xf
(above).

Electron micrographs published by others have given the impression that Xf size is too large to pass through the cell wall
meshwork in the xylem "pit membranes" that fill the pit passageway from one water-conducting xylem element to the next.
Xf dimensions appear to be ca. 0.5 by 1.5 µm while the gaps between the cell wall elements that comprise the pit membrane
appear to be no larger than 0.3 µm in size.  It was important that we be certain that the pit membrane "pores" would block
bacterial passage.  Our hypothesis is that passage through pits could occur only if bacterial wall-degrading enzymes were able
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to digest a pathway through the polysaccharides of the pit membrane.  That would be unnecessary if its normal pore size did
not limit Xf movement.

The distal cut end of an explanted stem of a healthy vine was attached to a vacuum pump that was adjusted to apply a
negative pressure of 0.5 atmospheres.  The proximal cut end was then placed in a flask containing water plus various test
materials. We first followed water movement through the stem for a set period of time by measuring the volume of water that
exited the distal end.  After drawing water for a time, the proximal end was placed in 10 mM KCl in water.  When a steady
state of flow was reached, the water movement was measured again.  The test was repeated using a 50 mM KCl solution.
With each increase in salt concentration, the volume of water moved increased.  This result reflects earlier reports that
concluded that the increasing ion concentration had reduced the water shell around the polysaccharides in the pit membrane
and this, in turn, had decreased the resistance of the membrane to water flow.

The experiment was repeated, this time with red-stained polystyrene beads of defined dimensions.  The idea was that the
beads would serve as useful surrogates for the non-motile Xf cells that had been introduced to grapevines by the glassy-
winged sharpshooter or the "needle stab" inoculation technique we were using.  We used beads of 1.0, 0.5, 0.3 and 0.029 µm
average diameter.  No beads of any size were moved the length of the stem segments tested, no matter which test solution
was used (Figure 2). These experiments were conducted with shoots that were longer than the longest vessel in the test
shoots, so a bead would have had to pass through at least one pit membrane on its path from one end of the stem explant to
the other.  This test was repeated using soluble, naturally colored proteins of known molecular weight and predictable,
average molecular diameters. Cytochrome c (MWt of 14.8 kD, diameter of 0.005 µm) was not drawn up the stems when it
was dissolved in water; it did move slowly when it was in 10 mM KCl and more quickly when it was in 50 mM KCl.
Hemoglobin (MWt of 64 kD, diameter of 0.088 µm) was drawn up the xylem only when it was dissolved in 50 mM KCl and
the rate of movement was quite slow compared to that for cytochrome c.

The beads of 0.029 µm diameter represent less than 2% of the estimated volume of a Xf cell and have a diameter that is less
than 10% of the bacterial “width.” Therefore, these experiments confirm that the cell wall mesh of the pit membrane
represents a substantial barrier to the movement of Xf from one vessel to the next as long as it is intact.  The experiments also
indicate that the pit membrane mesh provides much smaller pores than had been suggested in some earlier reports and that
the chemistry of the xylem fluid can have an effect on the resistance to water flow in the xylem.

Do bacterial populations spread systemically because they produce enzymes that digest pit membranes?
The Xf genome contains DNA sequences that are predicted to encode cell wall-degrading enzymes like polygalacturonase
(PG, a cell wall pectin-digesting enzyme) and endo-β-1,4-glucanase (EGase, sometimes called cellulase).  Graduate student
Caroline Roper has cloned the PG-like sequence of the PD-causing bacterium and is now attempting to get the cloned gene to
be expressed in E. coli.  Once the protein is isolated, we will confirm its activity and then introduce it into explanted stems to
see if it opens the xylem to passage of beads or killed Xf cells, presumably by breaking the pit membrane cell wall mesh.
Currently we have a few non-Xf PGs to use in the same sort of test.  The experiment is made more complicated because the
PG protein is too large to pass the intact pit membrane “barrier.” The result of this test may be available by the time of the
Symposium.

Xf-induced xylem obstructions:
Last year, we reported on microscope-assisted observations that showed both tyloses and plant cell wall-derived "gels"
obstructing many of the vessels in PD-infected grapevines.  We have observed tyloses in vessels of Xf-inoculated grapevines
as early as 4 weeks after introduction of an aliquot of bacterial suspension (Figure 3).  Dr. Josh Stevenson (in the
Rost/Matthews project) has developed these investigations further and will report additional details about observations of
tyloses and gels in the vessels of stems and leaf petioles and midribs of PD-infected vines.  Briefly, reduced hydraulic
conductance in petioles is correlated with the accumulation of bacteria and gums in the petiole.  Data in Table 1 indicate the
correlation of PD leaf symptoms with reduced hydraulic conductance following stem inoculation with Xf. A related study,
focusing on Xf's impact on grapevine water movement is focusing on the hypothetical production, by Xf, of exo-
polysaccharides in xylem vessels.  Based on Dr. Stevenson's observations, we are now using a direct extraction and chemical
analysis approach to determine whether the amorphous gels occluding vessels in petioles and leaves of infected vines contain
bacterial polysaccharides like those predicted to be produced by Xf, based on gene sequences identified in its genome.  Our
interest is in coincident microscopic observation of gels and chemical measurement of bacterial polysaccharide component
sugars.

In stems, few bacteria and little gum has been found to accumulate.  There is an increased frequency of tyloses in stems of
PD-infected and symptomatic vines.  Our hydraulic conductance measurements have seldom revealed reduced water
transport in stem segments.  However, our samples may have been of young tissue not yet competent for extensive tylose
development.  Also, our hydraulic assay methods could have repaired cavitated vessels.  Therefore we are developing other
approaches to quantify cavitation, including a pneumatic assay that should prevent refilling, ultrasonic acoustic emissions,
and the imaging technique described below.
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Attempts to "see" points of reduced water flow in intact grapevines:
Typical tests of grapevine water-conducting capacity require that the stem be explanted and then tested.  The
decommissioned McClellan Air Force base in Sacramento houses a nuclear reactor that is a source of fast neutrons.  This
source is being made available for use in fundamental research.  It may provide an opportunity for visualizing water flow
through intact grapevines.  Preliminary tests using well-watered and water-stressed vines confirmed that images (analogous
to X-rays) can show differences in water moving through the stems.  We are continuing pilot studies, working with the very
cooperative McClellan staff scientists in attempts to enhance contrast in the photographic images that constitute the data
record of these experiments. Our hope is to use the observation of points of reduced water flow in intact healthy and diseased
vines to guide us in the “destructive” sampling for bacterial presence and observations of xylem obstructions.  Consistent
observations of obstructions in regions of reduced water transport, whether or not significant populations of Xf are co-
localized, will be of importance in developing our ideas about progression of PD symptoms and Xf populations in the xylem.

Preliminary conclusions:
The picture that is emerging is that PD leaf symptoms are seen in inoculated vines at times when bacterial populations are
small and that reductions in water flow may occur when no bacteria are detected.  This seems to suggest that PD symptoms
can develop in advance of the systemic spread of Xf because of the acropetal movement of thus far undefined signals that
trigger responses in the xylem.  We continue to address questions that are relevant to this preliminary conclusion, a
conclusion that is at the center of the hypothetical PD "model" that formed the core of our proposal.

Table 1. Estimated hydraulic conductance (Kh), presence or absence of PD symptoms, and presence or absence of Xf for
petioles of leaves from PD-infected and control plants. Kh was determined as flow rate through excised petioles at pressures
of 0.8 – 1.6 bars.  Presence of bacteria was determined from SEM micrographs of similar and adjacent leaves.

Treatment Kh (ml/bar/sec)
n = 3 or 4

+/- presence of Xf. +/- leaf chlorosis
symptoms

- PD Control 0.53 – 0.83 - -

+ PD Inoculated* 0.74 – 1.53 not assayed -
+ PD Inoculated** 0.13 – 0.17 + -
+ PD Inoculated 0.01 – 0.1 + +

*These leaves were located (6 – 14) nodes acropetal to the symptomatic leaves.
**These leaves were located 1 or 2 nodes acropetal to the symptomatic leaves.

Figure 1. Rate of air flow through stem segments of varying length.   Air was supplied to basal internode at pressures of 0.4
– 0.6 bar, and its rate of escape from the apical end was recorded after repeated excision of stem segments from the apical
end of the shoot.  The low pressure should not have passed pit pore membranes.  Therefore, the flow rate should reflect the
number of open vessels present.
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Figure 2. Polystyrene beads in a
grapevine xylem vessel.

Figure 3. Sections through the stems of young grapevines reveal extensive
xylem blockage in vessels of all developmental ages.  While tyloses are
occasionally seen in uninoculated vines, introduction of Xf substantially
increases their appearance.

Red polystyrene beads (0.3 µm
diam.) filling one vessel in this light
microscope view of a cross-section
of a grapevine stem.  Note that there
are many other “open” vessels which
contain no beads.  This suggests that
the other vessels in this view did not
extend all the way to the basal, cut
end of the stem where beads were
introduced.

Light microscopy examination of a
section through the stem of an
uninoculated grapevine.  Vessels are
seen to be unobstructed.

Light microscopy examination of a
section through the stem of a
grapevine 4 weeks after inoculation
with Xf. Most of the vessels are
obstructed by one or many tyloses.
PCR analysis of other individuals in
this set of test plants showed Xf
throughout the vine.  Typical PD
leaf symptoms did not appear in
these vines for 4 more weeks.

FUNDING AGENCIES
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EPIDEMIOLOGY OF PIERCE’S DISEASE IN SOUTHERN CALIFORNIA:  IDENTIFYING INOCULUM
SOURCES AND TRANSMISSION PATHWAYS

Project Leaders:
Donald A. Cooksey Heather S. Costa
Department of Plant Pathology Department of Entomology
University of California University of California
Riverside, CA 92521 Riverside, CA

Reporting Period: The results reported here are from work conducted from November 1, 2001 to October 31, 2002.

INTRODUCTION
Knowledge of the source of disease inoculum from vectors, whether from inside or outside the vineyard, is critical to
development of management strategies for disease control, such as the choice and management of plant species surrounding
vineyards.  In addition, there is little information available on the relative ability of the glassy-winged sharpshooter to acquire
or transmit the Pierce’s disease pathogen from vine to vine, or from alternate hosts to grape.  Because in many cases the
vineyards of the Temecula area are in close proximity to citrus groves, it is critical to know the relative inoculum pressure
that citrus and other plant hosts may provide in that area.

OBJECTIVES
1. Determine which plant species near vineyards harbor Xylella fastidiosa and serve as potential reservoirs of inoculum for

the spread of Pierce’s disease to grapes.
2. Measure the ability of the glassy-winged sharpshooter to acquire and transmit Xylella fastidiosa to and from grape,

citrus, almond, and other plant species identified as potential hosts and sources of inoculum for the spread of Pierce’s
disease.

3. Comparison of the sensitivity and specificity of various methods to screen large numbers of plant and insect samples for
the presence of Pierce’s disease.

RESULTS AND CONCLUSIONS
Detection of Xylella fastidiosa in various plant species:
We are completing our third and final season of plant host sampling.  We are still consistently getting positive detection of X.
fastidiosa in several plant species in Temecula, including grapevine, oleander, Spanish broom and the few almond trees that
remain.  We also detected the presence of X. fastidiosa in Brassica nigra (wild mustard) by ELISA and PCR, but have not yet
been able to culture it from this host.  We increased the sampling of Brassica nigra, coyote brush, and elderberry and other
weed and ornamental hosts that either appear symptomatic, or that have occasionally tested weakly positive with ELISA in
previous years.  We were never able to confirm positive results for coyote brush or elderberry with other methods, suggesting
that they could have been false positives.

In other areas of Riverside, San Bernardino and Orange Counties some symptomatic landscape plants have tested positive for
X. fastidiosa. Thus far, liquidamber, olive, mirror plant, and ornamental plum all tested positive by ELISA and PCR.  We
have also obtained cultures of X. fastidiosa from several samples of ornamental plum, but so far, have only been able to
obtain one culture from olive samples.  Several landscape plants, including olive and liquidamber, were repeatedly tested in
the Temecula valley, but thus far, these species have not tested positive for X. fastidiosa in that area.   The detection of X.
fastidiosa does not necessarily mean that the bacterium is causing disease in these hosts; other pathogens or abiotic factors
may be causing the observed symptoms.  Additional studies will need to be conducted to determine if X. fastidiosa alone can
cause disease in these species.

We are in the process of sequencing amplification products to identify the strains of X. fastidiosa that are infecting these new
hosts.

Transmission studies:
Studies were initiated last year to test the ability of GWSS to transmit Xylella from infected grape to several species of host
plants including: grape, lemon, grapefruit, orange, almond, oleander, blackberry, bougainvillea, toyon, coyote brush, B.
nigra, brittlebush, mule fat, sage, California buckwheat, sugar bush, laurel sumac, tree tobacco, elderberry, alfalfa, peach, and
coast live oak.  One year after inoculation, sampling of test plants with ELISA and PCR found that transmission occurred
only from infected grape to grape, and from infected grape to B. nigra plants.  None of the other hosts have been confirmed
positive thus far.  Transmission experiments were also conducted to see if GWSS could transmit the pathogen from field-
infected Spanish broom into grape test plants.  In that study, 9/26 grape plants tested positive for the pathogen, indicating that
Spanish broom may serve as a source of inoculum for Pierce’s disease.  Similar studies testing GWSS from greenhouse-
infected B. nigra plants to grape found 1/9 grape plants became infected.  This year, addition replicates of these species and
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11 additional species (including Spanish broom) were initiated.  Sampling two months after inoculation found only 1 grape
plant tested positive so far.

Evaluation of detection methods:
We are continuing to evaluate the effectiveness of various methods for detecting X. fastidiosa in plants and in the insect
vector. Both ELISA and immunocapture-PCR methods work well for plant samples.  An additional method of extracting
bacterial DNA from plants and insects using a commercially available kit was successful. This type of extraction can provide
enough material for multiple PCR reactions to allow sequencing of DNA products.  Strain specific primers have also been
identified that can detect the OLS and PD strains of the pathogen.  One primer set amplifies the PD but not the OLS strain,
the other amplifies the OLS but not the PD strain.  Although these primers pairs can be used to distinguish between these two
strains, these primer pairs alone cannot necessarily distinguish these strains from all other strains that might be present in the
environment.

FUNDING AGENCIES
Funding for this project was provided by the California Department of Food and Agriculture and the American Vineyard
Foundation.
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SHARPSHOOTER FEEDING BEHAVIOR IN RELATION TO TRANSMISSION
OF PIERCE’S DISEASE BACTERIUM

Project Leader: Personnel:
Elaine Backus Fengming Yan Javad Habibi William Bennett
Department of Entomology College of Life Sciences Department of Entomology Private consultant
University of Missouri Peking University University of Missouri 744 Elktown Rd.
Columbia, MO 65211 Beijing, China Columbia, MO Otterville, MO

Cooperators:
Matthew Blua Alexander Purcell Edwin Civerolo
Department of Entomology Division of Insect Biology USDA-ARS, PWA
University of California University of California Exotic & Invasive Diseases & Pests
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Reporting Period: The results reported here are from work conducted from November 1, 2001 to October 31, 2002.

INTRODUCTION
Almost nothing is known of the stylet penetration (probing) behaviors of the glassy-winged sharpshooter (GWSS),
Homalodisca coagulata, and how they interact with populations of Pierce’s disease (PD) bacterium, Xylella fastidiosa, to
facilitate transmission to grapevine. The Backus project is combining the three most successful methods of studying
leafhopper feeding (i.e. histology of fed-upon plant tissues, videotaping of feeding on transparent diets, and
electropenetration graph [EPG] monitoring) to definitively identify all details of feeding.  Both AC and DC EPG monitoring
are being performed.  All recorded waveforms will be correlated with stylet activities, cell types within the host plant in
which activities occur, and presence or movement of X. fastidiosa in and out of the stylets.  This research will provide crucial
baseline information for the present projects of collaborators, as well as the future development of a Stylet Penetration Index
for PD inoculation behavior, for screening differences among grapevine varieties and other uses.

OBJECTIVES
1. Identify and quantify all feeding behaviors of GWSS on grapevine, and correlate them with location of mouthparts

(stylets) in the plant and presence/ population size of Xylella fastidiosa in the foregut.
2. Identify the role of specific stylet activities in Xylella fastidiosa transmission, including both the mechanisms of

acquisition and inoculation, and their efficiency.  Emphasis is on inoculation.
3. Develop a simple, rapid method to assess feeding, or detect the likelihood of Xylella fastidiosa transmission (an

“inoculation-behavior detection method”), for future studies.

RESULTS AND CONCLUSIONS
We spent the first 4 months of this year completing the purchase of equipment, upgrading facilities, establishing plantings,
and hiring personnel, as described in last year’s progress report.  Unforeseen delays in acquiring a post-doc visa were finally
overcome in early February 2003, when Dr. Fengming Yan, Associate Professor, Peking University, arrived.  Research was
begun in March 2003, and has continued for 8 months.  Work this year supported Objectives 1 and 2.

Objective 1
A.  Adult GWSS were collected on citrus in Riverside, California by Cooperator Matt Blua, who express-mailed them to
Missouri every 2-4 weeks from mid-February to mid-October 2002.  Sharpshooters were maintained on chrysanthemum and
basil under quarantine, but conditioned for 48 hours on grapevine, cv. ‘Cabernet Sauvignon’ (from FPMS, UC Davis) prior to
testing on grape.

B.  For Experiment 1, Yan and Backus EPG-monitored a total of 242 male and female sharpshooters feeding on
chrysanthemum or grapevine, for access periods ranging from 4 to 20 hrs.  Both AC and DC EPG monitors were used, each
with separate insects.  We used these results to identify, characterize and label waveform phases, families and types, after the
now-standard conventions used for EPG (Reese et al. 2000, Cline and Backus 2002).  The most common categories of AC
waveforms and their characterizations are described in Table 1; representative appearances are pictured in Figure 1A and B.
In general, AC and DC recordings looked quite different, but were dividable into the same 3 phases, designated: pathway,
ingestion and interruption (Figure 1A).  Both AC and DC waveforms were very complicated at the most expanded (fine-
structure) level of characterization (termed waveform types) (Figure 1B).  In the interest of time, we characterized the DC
waveforms only to phase, while concentrating on more in-depth characterization of the AC waveform types, until we perfect
the AC-DC correlation monitor (see D below).  Preliminary analysis suggests that there are no differences in AC waveform
types between males and females, or among insects feeding on chrysanthemum or grapevine.  Selected traces will be
quantified and descriptive statistics applied for a preliminary publication.
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C.  In September 2002, Bennett completed the building and, with Backus, the testing of a prototype AC-DC correlation
monitor, whose design was based on suggestions kindly provided by W.F. Tjallingii (of Wageningen University, The
Netherlands; pers. comm. and Tjallingii 2000), with modifications by Bennett (ms. in prep).  This monitor allowed, for the
first time ever, display of two simultaneous signals from the same feeding insect, one AC and the other DC.  Its only
drawback was that the two views were not absolutely identical to those of normal AC and DC monitors.  However, they were
very similar and interpretable, and further minor adjustments may make them closer to normal.  This new monitor will
facilitate future correlation of DC waveforms with existing AC waveform categories.

D.  For Experiment 2, Yan and Backus developed protocols to: 1) rapidly terminate the feeding of wired sharpshooters, to
produce short EPG excerpts ending in a certain waveform type, and 2) mark the feeding site on grapevine petiole, for
excision of the plant tissue containing the salivary sheath.  Yan then performed 98 such waveform terminations, with
matching excised petioles fixed for histological examination of sheaths.  Habibi is preparing, sectioning and examining these
tissues, locating salivary sheaths and producing digital micrographs.  To date, a total of 36 salivary sheaths have been
correlated with the 6 presently identified AC waveform types (Table 1), i.e. 4 to 7 for each type.  Results from preliminary
analysis by Backus and Yan are summarized in Table 1.  In short, we found that sheaths from pathway waveforms indeed lie
along a path to the xylem.  However, not all sheaths from ingestion-containing excerpts terminate in mature xylem elements.
Some also terminate in proto-xylem or xylem sclerenchyma, as well as pith cells or interfascicular bundle sheath cells.  In
several cases of multi-branched sheaths, we could assign some branches to a certain waveform event by comparing degree of
hollowness of each branch.  Preliminary analysis suggests that the shortest-duration events occur in immature or non-xylem
cells, while the longest-duration events occur in mature tracheary elements.  However, this conclusion must be verified.

E.  For Experiment 3, Yan used AC EPG and videomicrography to record sharpshooter feeding on Parafilm sachets
containing expressed grape xylem sap (provided by Collaborator Purcell).  Preliminary analysis shows that sharpshooters
performed all of the pathway waveform types on such diet.  However, ingestion waveforms were abnormal and their duration
was very brief; even the hungriest insects terminated probing after only a few minutes.  Sheath salivation was easily visible,
although protocol modification will be necessary before watery salivation can be detected.  Further recordings and frame-by-
frame analysis will allow many correlations of waveform fine structure with stylet activities.

Objective 2
A.  For Experiment 4, Yan and Habibi used the same waveform excerpting and plant techniques for a study correlating
waveforms and salivary sheathes with inoculation of Xylella to healthy grapevine.  In addition, all sharpshooter heads were
excised and fixed for later scanning EM, to allow additional correlation with size and appearance of Xylella colonies inside
the precibarium and cibarium.  Eight treatments were performed, using a 2x4 factorial, randomized complete block design
with 10 replicates of each treatment.  The treatments were composed of two waveform excerpt treatments ([1] pathway only,
or [2] pathway + 1 hr of ingestion [including any interruptions]) and four Xylella detection methods ([1 and 2] plants held in
the greenhouse for 6 weeks, then fed-upon tissues tested via PCR [by Collaborator Civerolo] or bacterial culturing [by
Collaborator Purcell]; [3] plants held for three months, then assessed for PD symptom development; or [4] plants held for 5 d,
then the fed-upon petiole histologically prepared for immunocytochemical detection of both salivary sheaths and Xylella).
This experiment is still in progress.

REFERENCES
Cline, A.R. and E.A. Backus.  2002.  Correlations among AC electronic monitoring waveforms, body postures and stylet

penetration behaviors of Lygus hesperus (Heteroptera: Miridae) on cotton.  Environ. Entomol. 31: 538-549.
Reese, J.C., W.F. Tjallingii, M. van Helden and E. Prado.  2000.  Waveform comparisons among AC and DC electronic

monitoring systems for aphid (Homoptera: Aphididae) feeding behavior. In G. P. Walker & E. A. Backus [eds].
Principles and Applications of Electronic Monitoring and Other Techniques in the Study of Homopteran Feeding
Behavior.  Thomas Say Publications in Entomology:  Proceedings.

Tjallingii, W.F.  2000.  Comparisons of AC and DC systems for electronic monitoring of stylet penetration activities by
homopterans. In G. P. Walker & E. A. Backus [eds]. Principles and Applications of Electronic Monitoring and Other
Techniques in the Study of Homopteran Feeding Behavior.  Thomas Say Publications in Entomology:  Proceedings.
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Table 1. Proposed categories, their characteristics and meanings, for the most common AC waveforms of the GWSS.

Phase Waveform Proposed Biological Meaning
Name Name Waveform Characteristics Plant Tissue/Cell Insect Activity

Non-probing Z Irregular, small waveforms; Plant surface Walking on plant surface,
amplitude and frequency vary moving around, labial dabbing

Pathway A1 Highest amplitude, ascending Parenchyma or Breakage of plant surface,
waveform at beginning of probe bundle sheath secretion of salivary sheath
w/ or w/o spikes at the top and/or watery saliva

A2 Medium amplitude, declining slope;  Parenchyma or Lengthening and/or hardening
irregular high frequency bundle sheath of salivary sheath

A3 Medium amplitude, relatively flat Parench., bundle Further sheath salivation
irregular high frequency sheath or xylem

B Regular, high frequency, short Vascular or inter- Stylet tip fluttering?
(4~5 s), with distinct phrases fascicular tissue possibly w/ sheath salivation?

Ingestion C (to be   Regular, low frequency Usually  xylem, but  Ingestion (watery excretory
subdivided)   with distinct phrases sometimes pith droplets correlated)

Interruption N Irregular, appears A-like, but occurs  Vascular or inter- Salivary sheath extension
during C; ave. duration 16 sec fascicular tissue or branching

Figure 1. Representative AC
waveforms of the GWSS.
A. Compressed view of a
typical recording, with
pathway, ingestion and
interruption phases labeled.
Inset box, expansion of
ingestion waveform. B.
Expanded view of the first
5.5 minutes of the recording
(boxed in part A), labeling
the specific waveforms that
occurred.

ingestion interruptionpathway
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EPIDEMIOLOGY OF PIERCE'S DISEASE IN THE COACHELLA VALLEY
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Reporting Period: The results reported here are from work conducted from May 1, 2001 through September 30, 2002.

INTRODUCTION
The table grape industry in the Coachella Valley is represented by 10,465 acres of producing vines, which generated grapes
valued at $108.5 million in 2001 (Riverside County Agricultural Commissioner, 2001).  The glassy-winged sharpshooter was
identified in the Coachella Valley in the early 1990's (Blua et al. 1999), and we have documented increases in the numbers of
this efficient PD vector over the past 17 months.  In July 2002, we confirmed the occurrence of X. fastidiosa (PD strain) in 13
vines from 2 adjacent vineyards in the southeastern part of the Valley.  With this discovery, and the increasing numbers of
GWSS, the CDFA Pierce's Disease Program in concert with the Riverside County Agricultural Commissioner's Office is
developing an area-wide vector suppression program.  The data gathered in our epidemiological studies provide fundamental
information that are valuable for this program.

OBJECTIVES
The goal of our epidemiological studies in the Coachella Valley is to discover characteristics that are unique to geographic
areas with and without PD, and to use this information to design management strategies to reduce disease spread.

Two objectives are pertinent to this report:
1. Determine the incidence and distribution of Pierce's disease (PD) in the Coachella Valley.
2. Describe the spatial and temporal abundance of GWSS in the Coachella Valley and determine site characteristics that

contribute to GWSS abundance.

RESULTS AND CONCLUSIONS
PD incidence and distribution:
For the past 2 grape growing seasons, we have surveyed the Coachella Valley in search for PD.  In the summer of 2001, we
visually inspected 300 plants in each of 25 vineyards and all vines in a 60-acre vineyard proximal to an area that had PD in
1985.  We collected 233 suspected samples and analyzed them with ELISA.  None of these plants were positive for X.
fastidiosa.  In 2002, we visually sampled 300 plants in each of 25 vineyards, and visually inspected 35,000 vines randomly
distributed throughout the Valley.  We analyzed (by ELISA) 268 plants from these surveys and found 13 vines with X.
fastidiosa.  Bacteria were confirmed in these plants with selective-media plating and PCR, amplifying for PD-specific DNA.
These 13 vines were in 2 consecutive vineyards, located in the southeast part of the Coachella Valley.  The vines were
removed and the fields were treated with Admire.  Several surrounding vineyards also were treated with Admire.

Spatial and temporal abundance of GWSS:
We used yellow sticky traps distributed uniformly at one-mile intervals throughout the Coachella Valley to monitor the
seasonal cycle of adult sharpshooter activity.  GWSS catches rose into the summer of 2001, were depressed for 3 weeks in
late July, peaked again in mid-August, and then declined into the fall (Figure 1).  Numbers were extremely low until a period
of increased activity, presumably by overwintering adults, in January and February, after which counts declined again until
May 2002.  Average counts in the summer of 2002 were higher than in 2001, suggesting a trend toward generally higher
levels in the Valley.

Our project is particularly interested in the effect of the presence of citrus on sharpshooter numbers.  Among the area-wide
traps, those adjacent to citrus caught more GWSS than those not adjacent to citrus (Figure 2).  However, the presence of
citrus did not always result in elevated GWSS catches; fewer than 35 percent of the traps adjacent to citrus caught GWSS on
any given week (Figure 3).  This indicates that vector control strategies should be targeted at citrus, but all citrus groves in
the Coachella Valley do not need treatment at this time.  We also conducted extensive studies at 25 citrus/grape interface
study sites.  At each site, traps were placed in 4 plots: along the citrus border, within the vineyard adjacent to the citrus
(designated "Grapes-Near," Figure 4), 500 ft from the citrus (Grapes-Medium), and 1000 ft from the citrus (Grapes-Far).
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Traps near citrus consistently caught more GWSS than traps within the vineyards, and there were significant differences in
GWSS catches among the plots on 27 of the 42 trapping dates (P<0.05, Tukey-Kramer).  During each of the 6 weeks of
GWSS catches in January/February (data not shown), traps along the citrus border caught significantly more GWSS than did
those within the vineyards, and there were no significant differences in catches among the traps within the vineyard (P>0.05,
Tukey-Kramer).  In the most recent 7 trapping dates, GWSS catches in citrus were significantly higher than catches on the
Medium and Far vineyard traps, however there were no differences between catches within citrus and catches on the Near
vineyard traps (P<0.05, Tukey-Kramer).  The effect on PD epidemiology of these decreases in GWSS with distance from
citrus are not clear, but practices to reduce vector pressure should be focussed on the citrus and the grapes immediately
adjacent to the citrus.  Our data suggest that area-wide insecticide applications in vineyards that are not close to citrus are
unwarranted.  We shall continue to monitor this relationship to get a clearer picture of GWSS activity in the vicinity of its
reproductive hosts.

Figure 1 . Figure 2.

GWSS Trap Catches, 2001-2002

0

0.5

1

1.5

2

2.5

3

9-
M

ay

8-
Ju

n

8-
Ju

l

7-
A

ug

6-
Se

p

6-
O

ct

5-
N

ov

5-
D

ec

4-
Ja

n

3-
Fe

b

5-
M

ar

4-
A

pr

4-
M

ay

3-
Ju

n

3-
Ju

l

2-
A

ug

1-
Se

p

Date

Sh
ar

ps
ho

ot
er

s 
/ W

ee
k

GWSS Trap Catches With and Without Citrus
2001-2002

0

0.5

9-
M

ay

8-
Ju

n

8-
Ju

l

7-
A

ug

6-
Se

p

6-
O

ct

5-
N

ov

5-
D

ec

4-
Ja

n

3-
Fe

b

5-
M

ar

4-
A

pr

4-
M

ay

3-
Ju

n

3-
Ju

l

2-
A

ug

1-
Se

p

Date

Proportion of Traps Near Citrus which Caught GWSS

30

35

N
on

-z
er

o 
Tr

ap
s 

(%
)

Mean GWSS by Proximity to Citrus - 2002

A
ve

. N
o.

 G
W

SS
 / 

W
ee

k

1

1.5

2

2.5

3

G
W

SS
 / 

W
ee

k

By Citrus
No Citrus

0

5

10

15

20

25

13
-M

ay

10
-J

un

8-
Ju

l

5-
A

ug

2-
Se

p

30
-S

ep

28
-O

ct

25
-N

ov

6-
Ja

n

3-
Fe

b

3-
M

ar

21
-A

pr

19
-M

ay

23
-J

un

21
-J

ul

18
-A

ug

15
-S

ep

Date

0

3

6

9

12

19
-M

ay

18
-J

un

18
-J

ul

17
-A

ug

16
-S

ep

Date

Citrus
Grapes-Near
Grapes-Medium
Grapes-Far

Figure 3. Figure 4.
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ROLE OF TYPE I SECRETION IN PIERCE’S DISEASE

Project Leader: Cooperator:
Dean W. Gabriel Richard Lee
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University of Florida University of Florida
Gainesville, FL 32611 Lake Alfred, FL

Reporting Period:  The results reported here are from work conducted from November 8, 2001 to October 31, 2002.

INTRODUCTION
Xylella fastidiosa (Xf) is a xylem-inhabiting Gram-negative bacterium that causes serious diseases in a wide range of plant
species (Purcell and Hopkins 1996).  Two of the most serious of these are Pierce’s disease (PD) of grape and Citrus
Variegated Chlorosis (CVC).  The entire genomes of both PD and CVC have been sequenced (Simpson et al. 2000).
Availability of the complete genomic DNA sequence of both a PD and a CVC strain of Xf should allow rapid determination
of the roles played by genes suspected of conditioning pathogenicity of CVC and/or PD.  For example, analyses of the CVC
and PD genomes showed that there was no type III secretion system, but there were at least two complete type I secretion
systems present, together with multiple genes encoding type I effectors in the RTX (repeats in toxin) family of protein toxins,
including bacteriocins and hemolysins.  RTX proteins form pores in lipid bilayers of many prokaryotic and eukaryotic
species and cell types; at least one is associated with pathogenicity in plants.  However, lack of useful DNA cloning vectors
and/or techniques for working with either CVC or PD strains have impeded progress in functional genomics analyses.

There have been only three reports of transformation of Xf; one with a commercial transposase-transposon complex
(Guilhabert et al. 2002) and two others with narrow host range plasmids that utilize origins of replication derived from Xf.
One plasmid is an integrative vector that carries the CVC chromosomal origin of replication that provides a brief period of
unstable replication in Xf (Monteiro et al. 2001).  The second is a replicative shuttle vector that carries the pUC origin for
replication in Escherichia coli and a rolling circle replicon derived from a cryptic CVC plasmid (Quin and Hartung 2001).
However, this plasmid proved unstable in the absence of antibiotic selection.

We describe here the transformation of two Xf /PD strains using the small, stable, broad host range shuttle vector, pUFR047
(De Feyter et al. 1993).  This vector is one of a series of well characterized conjugational shuttle vectors based on repW and
is widely used to shuttle DNA fragments from E. coli to various species and strains of Xanthomonas, where the vector is
stabilized in the absence of antibiotic selection by the parA locus (De Feyter et al.1990).  This is the first report of stable
transformation of any Xf strain using a broad host range cloning vector.

OBJECTIVES
This is a two year proposal with three objectives: 1) develop an effective functional genomics tool kit for efficient
transformation and gene knock-out experiments in a PD strain (Year 1); 2) determine culture conditions for activation of type
I secretion (Year 2), and 3) determine the effect of type I secretion gene knockout experiments on pathogenicity of a PD
strain on grape (Year 2).

RESULTS AND CONCLUSIONS
PD strains of X. fastidiosa, PD-A (Hopkins 1985) and Temecula, ( Guilhabert et al. 2001), were grown in PD3 (Davis et al.
1981)medium supplemented with MOPS (3-4[morphomino] propane sulfonic acid), (Gabriel et al. 1989)  Both strains were
confirmed to be pathogenic on Madagascar periwinkle.  Symptoms appeared after 3 months.  pUFR047 was transferred from
E. coli DH5 to the spontaneous Rif resistant PD-1R strain by triparental conjugation.  Selection was on PW-H containing
gentamycin (Gm), 1.5 mg/L, and Rif, 75 mg/L.  Transfer by conjugation was very inefficient and difficult to reproduce due to
overgrowth of E. coli donor and/or helper colonies resistant to rifamycin; only a few PD-1 exconjugants were rescued from
the selection plates.  Presence of pUFR047 in the transformants was confirmed by agarose gel electrophoresis of alkaline
lysis minipreps of the PD-1 exconjugants, transformation of E. coli with these minipreps followed by detection of pUFR047
in the transformants, and PCR using IncW repA-specific primers and miniprep DNA. In Figure 1A is shown the results of an
alkaline lysis miniprep of a PD-1 transformant.  By contrast with conjugal transfer, pUFR047, with and without a 3 kb DNA
insert, was readily transferred by electroporation into both the PD-1 and Temecula at a frequency of ca. 50 transformants/
microgram DNA.  PD cells were harvested by centrifugation, washed twice and resuspended in 0.3 ml of 10% glycerol.  The
cells were electroporated with 0.5-1 g of plasmid DNA at 1.8 kV to generate a pulse of 5.8 to 6.0 ms.  Cells were then
incubated at 28oC for 24 h with constant shaking at 100 rpm and then selected by plating on PD3 agar medium supplemented
with 2 mg/L Gm.
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Maintenance of pUFR047 was measured in the absence of antibiotic selection for 30 generations.  Cultures sampled at the
beginning of each cycle were plated on both selective and nonselective medium by serial 10-fold dilutions in MOPS buffer,
pH 6.2, containing 0.001% Silwet L-77 to disperse clumps. Use of Silwet L-77 greatly facilitated reproducibility in the cell
counts, and did not appear to be toxic to either PD strain at concentrations used (data not shown).  After 30 generations of
growth, 48% of the cells retained the plasmid in the absence of antibiotic selection (Figure 2).

Figure 1.  Transformation of PD-1using
pUFR047.  A.  Plasmid DNA extracted from a
single colony of PD-1 after transformation with
pUFR047. Lanes: 1) undigested; 2) digested
with BglII, 3) Lambda digested with HindIII.
B.  PCR product amplified by X. fastidiosa-
specific primers RST31 and RST33 1) 100 bp
DNA ladder; 2) PD-A; 3) PD-A /pUFR047.

Figure 2.  Plasmid maintenance in PD-1 in broth culture.
Cultures were grown with antibiotic to late-exponential-growth
phase, and diluted 1/1000 into fresh broth in the absence of
antibiotic.  Growth was continued to late-exponential phase, and
the dilution growth procedure repeated for three cycles.
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THE EPIDEMIOLOGY OF PIERCE’S DISEASE

Principal Investigators:
Barry L. Hill Jennifer Hashim
California Department of Food and Agriculture UC Cooperative Extension, Kern County
Sacramento, CA 95832 Bakersfield, CA

Cooperating Investigator:
Alexander H. Purcell
Division of Insect Biology
University of California
Berkeley, CA 94720

Reporting Period: The results reported here are from work conducted from July 2002 through November 2002.

INTRODUCTION
The epidemiology of Pierce’s disease (PD) changed dramatically in California with the arrival of the glassy-winged
sharpshooter (GWSS) about 15 years ago.  Before that time infections that persisted and resulted in vine death were the result
of primary spread, i.e. from inoculum sources outside the vineyard.   The disease caused losses, but the spread was linear, not
logarithmic, and the damage was a gradual linear accumulation resulting in the loss of a small percentage of vines.   With the
exception of some traditional “hotspot” areas, losses from PD were important but not severe enough to preclude grape
production.  With the arrival of the GWSS, however, the transmission of the causal bacterium appears to be both primary and
secondary (from vine to vine) and subsequent disease spread has become logarithmic, such that entire vineyards can be
destroyed in as little as 3 to 5 years (Perring et al. 2001; Blua, Phillips et al. 1999; Purcell and Saunders 1999).  To cope with
this development there have been extensive field studies to determine methods to control the glassy-winged sharpshooter.
However characterization of the changes in the epidemiology of PD when the causal bacterium is transmitted by GWSS has
been based largely on anecdotal information and general observations with limited actual field data.   These two coordinated
projects propose to use field data from large numbers of vineyards to assess the impact of the glassy-winged sharpshooter on
the epidemiology of Pierce’s disease.  This is the first year of a proposed 5 year project.  The resulting improved
understanding of PD epidemiology may also enable UC Cooperative Extension to propose some preliminary
recommendations for disease-based control strategies that growers can implement.

Two critical issues are how much economic loss can be expected where GWSS occurs or when the insect moves into new
viticulture areas, and what disease-based control methods can be employed in areas already infested with GWSS.  The
current economic loss models for GWSS are not based on empirical data but on arbitrary projections.  Empirical mapping and
disease tracking data that enables the comparison of various epidemiological factors (such as cultivar and susceptibility,
vineyard age, proximity to GWSS hosts, cultural and control practices in grapes and other crops, etc.) are needed to make
better informed projections.  Current epidemiological models based on other native sharpshooter vectors (Purcell 1981) are
not adequate to account for vine-to-vine spread when GWSS is the vector. Historically, mapping the incidence and vine
locations of PD and tracking the spread over a few consecutive years has led to key conclusions regarding the sources of PD
spread (Hewitt and Houston 1941, Purcell 1974) and the effectiveness of various control methods (Purcell 1979, Hewitt,
Frazier et al. 1949).  For example, these previous efforts paid off in identifying the highest risk areas to be avoided with new
grape plantings.

OBJECTIVES
1. Develop a model for PD epidemiology when Xylella fastidiosa is vectored by GWSS, that evaluates the importance of

epidemiological factors such as GWSS population size, vine age, cultivar susceptibility, control practices, and GWSS
control treatments in vineyards and nearby GWSS hosts or habitat.

2. Develop PD identification and management strategies for use by growers to reduce risk and damage.  Update and
provide educational materials to assist vineyard managers, pest control advisors, and county, state, and federal staff
involved in advising growers and area-wide management plans.

3. Create a central data processing facility to compile the data from these projects in a GIS format.  Share the resulting data,
maps, and information with collaborating plant pathologists, statistical analysts, agricultural economists, and other
legitimate researchers.

RESULTS AND CONCLUSIONS
Two projects with shared methods and objectives were pursued cooperatively to avoid duplication and make the most
efficient use of management and field personnel, equipment and other resources.  Field surveys were conducted between
early August and November 18, 2002, after which the data compilation began.  A field crew composed of CDFA and UC
people was trained, and the surveys were done using all terrain vehicles.  Another project using identical methods and funded
by private sources was conducted by Gisela Wittenborn, and her data were made available to the overall project.  Every vine
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displaying possible PD symptoms was identified, tagged, mapped, and a sample was taken and sent to the CDFA diagnostic
laboratory in Sacramento and tested by ELISA for X. fastidiosa.  In all more than 250 blocks (> 6000 acres total) in Kern
County and more than 60 blocks (>3000 acres total) in Tulare County were surveyed and mapped.  More than 30 growers
participated in the project.  As the data are compiled these participants will be provided with mapped survey results for their
vineyards to assist in disease control.  The following cultivars were included in the study:  Red varieties include Christmas
Rose, Crimson Seedless, Flame Seedless, Redglobe, Ruby Seedless.  White varieties include Calmeria, French Columbard
(wine), Jade Seedless, Muscat, Perlette, Thompson Seedless, Superior Seedless.  Purple varieties include Autumn Royal,
Black Emerald, Fantasy Seedless.  A data center at the Center for the Assessment and Monitoring of Forest and
Environmental Resources (CAMFER) at University of California, Berkeley is beginning to compile the data and create a GIS
based data set that will be used in these projects and made available to other legitimate researchers.   The sites that were
surveyed were selected to enable a wide range of comparisons within the data set to enable the evaluation of epidemiological
variables, projection of disease progression over time, and the effectiveness of disease control practices.
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PROGRESS ON THE DEVELOPMENT OF A MONOCLONAL ANTIBODY SPECIFIC TO GLASSY-WINGED
SHARPSHOOTER EGG PROTEIN:  A TOOL FOR PREDATOR GUT ANALYSIS AND

EARLY DETECTION OF PEST INFESTATION

Project Leaders:
James Hagler
USDA-ARS
Western Cotton Research Laboratory
Phoenix, AZ 85040

Kent Daane
Division of Insect Biology
University of California
Berkeley, CA

Heather Costa
Department of Entomology
University of California
Riverside, CA

Reporting Period: The results reported here are from work conducted from January 1, 2002 to November 1, 2002.

INTRODUCTION
Effective control of glassy-winged sharpshooter (GWSS) will require an integrated pest management approach.  A major
component of true integrated pest management is the exploitation of the pest’s natural enemies, which, when utilized to their
greatest potential, can also increase the effectiveness of chemical, mechanical, and cultural control.  Unfortunately, very little
information exists on predaceous enemies of GWSS.  Evidence of predation on GWSS has been observed in the field (JRH,
pers. obs.); however, the GWSS predator complex and its impact on GWSS mortality are unknown. A useful technique for
identifying a pest’s natural enemy complex is through the use of predator gut content immunoassays employing pest-specific
antibodies (Greenstone 1996).

Over the past decade we have developed a library of MAbs specific to the egg stage of Lygus hesperus, Pectinophora
gossypiella, and Bemisia argentifolii (Hagler et al. 1991, 1993, 1994) for use in studying egg and adult female predation in
the field (Hagler et al. 1992; Hagler and Naranjo 1994a,b).  Our MAb library provided an avenue to qualitatively identify and
assess the impact of over a dozen predator species on populations of key insect pests; provided a quick, efficient, and cost
effective technique for screening numerous predators in a conservation biological control program (Hagler & Naranjo,
1994a,b; Hagler, 2002); and provided a method to compare the efficacy of in vitro-reared predators with that of their wild
counterparts in an augmentative biological control program (Hagler and Naranjo 1996).

Attempts to monitor GWSS populations and their natural enemies in Southern California are complicated by the presence of
a native species of sharpshooter, the smoke tree sharpshooter (STSS), Homalodisca lacerta.  The eggs of this species are
virtually indistinguishable by the naked eye from GWSS eggs.  Thus it is difficult to separate the relative rates of predation
and parasitism of GWSS and STSS in areas where these two species overlap.  The similarity also prohibits positive
identification of GWSS eggs intercepted during quarantine inspections of plant shipments.  A pest-specific MAb can be used
to accurately identify pests that are difficult to differentiate visually. For example, Greenstone (1995) developed an egg-
specific MAb diagnostic test that differentiates Heliothis virescens from H. zea.  Pest control advisors have used this MAb in
a squashblot immunoassay to rapidly and positively screen field collected eggs.  Early detection of H. virescens infestations
is critical for effective and environmentally sound pest management.  A MAb specific to GWSS egg would be an invaluable
tool for early monitoring of pest infestation and decision-making in pesticide application.  To date, we have developed a
series of antibodies specific to GWSS. In this report we describe the antibodies that are currently available for mass
screening the GWSS predator complex.

OBJECTIVES
1. Develop a GWSS monoclonal antibody based enzyme-linked immunosorbent assay (ELISA) to:

a) Identify key predators of GWSS by analyzing their gut contents for GWSS remains.
b) Differentiate GWSS eggs from taxonomically and visually similar species.

RESULTS AND CONCLUSIONS
Parental Hybridoma Cell Lines:
Over a dozen parental GWSS hybridoma cell lines were screened by ELISA for reactivity against GWSS and STSS eggs,
nymphs and adults as well as the adult or larval (lepidopterans) stage of 15 other insect species.  The majority of cell lines
were reactive to the GWSS and STSS egg stage.  Additionally, 3 of the cell lines showed reactivity to the GWSS and STSS
adult female lifestage.  None of the hybridoma cell lines reacted to the other 15 insect species tested (Figure 1).

From the original GWSS hybridoma cell lines examined, 3 hybridomas were selected for additional cloning.  The cell lines
selected were 1D4, 6C4, and 6D5.  These 3 cell lines were selected because: 1D4 only responded to the GWSS and STSS egg
stage; 6C4 only responded to the GWSS and STSS egg and adult female stages; and 6D5 had a stronger reaction to the STSS
egg stage than the GWSS egg stage (Figure 1).  Additionally, each cell line yielded a weak response to the other insects
tested.  Sub-cloned cell lines 1D4-1D8 and 6D5-2H1 have been mass-produced and are now ready for use for screening
potential predators of GWSS and STSS.  We collected predators every other week (June through October) from three
different locations in California.  This winter we will assay them by sandwich ELISA for the presence of GWSS egg antigen.
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The fact that these antibodies react to the egg stage of both species should not affect our predator evaluations because the
sites we collected from did not contain STSS (see Objective 1).  However, these antibodies will help us fulfill our second
goal, that is, a MAb capable of differentiating GWSS from STSS.  Next year we will select other potential parental cell lines
(Figure 1) and clone them to try to obtain an antibody specific only to GWSS.

REFERENCES
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Figure 1. Parental
hybridoma cell lines
screened for reactivity
against GWSS (top),
STSS (middle), and
other insect species
(bottom).  Those cell
lines marked with an
asterisk below them
have been sub-cloned,
screened for reactivity,
and mass-produced.
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BIOLOGICAL CONTROL OF THE GLASSY-WINGED SHARPSHOOTER IN KERN COUNTY, CALIFORNIA

Project Leaders:
Isabelle Lauzière, Matthew A. Ciomperlik, and Lloyd E. Wendel
USDA-APHIS-Plant Protection and Quarantine
Glassy-winged Sharpshooter Program
Edinburg, TX, 78539

Reporting Period: The results reported here are from work conducted from May 2002 through December 2002.

INTRODUCTION
Throughout 2001, a technique to rear the glassy-winged sharpshooter was developed at the USDA-APHIS, GWSS facility
located in Mission, Texas.  Series of observations and experiments were carried out, in particular to select suitable host plants
for feeding and oviposition and determine optimum environmental conditions.  Difficulties experienced during the fall and
winter of 2000 related to this insect’s development and reproductive behavior were largely overcome and a self-sustaining
glassy-winged sharpshooter colony with continuous egg production was finally achieved.  We now find ourselves nearly
independent of having to perform repeated field collections, with the exception of limited collections intended to increase the
genetic diversity of our colony.  From March 2001 to present, rearing personnel in Mission have produced 11 consecutive
generations of glassy-winged sharpshooters, about 55,000 insects in 2001 and three times that many in 2002.  This has
allowed us to start rearing and studying several glassy-winged sharpshooter parasitoids during 2002.  Since April, 20
generations of 3 parasitoid species, Gonatocerus ashmeadi, G. triguttatus and G. morrilli (Hymenoptera: Mymaridae)
isolated from 7 geographically diverse sites have been produced at our laboratory, with a total production of over 50,000
parasitoids to date.  In addition, several cultures of non-target sharpshooter species are being maintained for parasitoid host
range studies (Homalodisca insolita, H. lacerta and Oncometopia sp.).  Finally, several species of exotic parasitoids from
Argentina are maintained within the USDA-APHIS quarantine facility and studied in a collaborative effort with Walker Jones
(USDA-ARS).

Concomitantly, the Kern County Glassy-winged Sharpshooter Pilot Project developed several chemical-based management
strategies to control this insect pest in an area-wide fashion (see report by L. Wendel and M. Ciomperlik).  Initial goals
established in this program called for the testing and integration of biological control methods with those chemical control
methods that would be shown effective.  Information gathered from laboratory observations, field testing and improvements
to mass rearing of parasitoids indicate that area-wide integrated pest management for glassy-winged sharpshooter may be
feasible in the immediate future.  Classical biological control of glassy-winged sharpshooter may ultimately prove successful
in the long term; however, augmentative approaches that follow area-wide population control programs, such as those in
Bakersfield and Temecula, warrant further study.  Large scale field testing in the 3700 acres of citrus in the Kern Pilot
Project, comparing the efficacy of 3-4 species of Gonatocerus is planned in 2003.

Although very reliable, current rearing techniques must be further improved to where they become highly efficient and
economical and allow to produce high numbers of natural enemies for field releases in the biological control and area-wide
integrated pest management programs.  The challenge: the glassy-winged sharpshooter develops rather slowly to adulthood,
its development rate being dependent upon plant quality and host species selected for rearing, exhibits a reproductive
diapause under unsuitable natural environmental conditions, a moderate fecundity otherwise, and usually, high mortality rates
in captivity.  Based on our current knowledge of GWSS insect biology, an experiment was designed to study the effect of
rearing densities on the development and reproductive biology of GWSS under greenhouse conditions, using conditions
matching as much as possible with its rearing activities.

OBJECTIVES
1. Study the development and reproductive biology of the glassy-winged sharpshooter under semi-controlled conditions.
2. Determine the effect of increasing the density of glassy-winged sharpshooters per plant on its reproductive potential.
3. Optimize current rearing techniques accordingly.  Increase current glassy-winged sharpshooter egg production by a

factor of 10-15.
4. Continue studying the biology and behavior of several glassy-winged sharpshooter parasitoid species under laboratory,

semi-controlled and field conditions.
5. Evaluate field efficacy of 3-4 Gonatocerus species in citrus using parasitoid inoculated plants.
6. Participate in collaborative studies relating to chemical control, classical biological control (exotic parasitoids), DNA

analyses, cold storage and development of an artificial diet.

RESULTS AND CONCLUSIONS
In an ongoing experiment initiated in May 2002, four densities were tested: 50, 100, 150 and 200 first instar nymphs per
cage, equivalent to 2, 4, 6 and 8 nymphs per plant, respectively.  Each density was replicated 16 times.  Glassy-winged
sharpshooter nymphs were provided 25 potted pea plants replaced twice a month and nymphs were monitored daily for
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development to adulthood.  Slightly different methodologies were used to handle the cages to allow for determination of
development time (8 replicates), size of resulting adults (4 replicates and partial data), total egg production (12 replicates),
nymphal mortality (8 replicates and partial data) and, as precisely as possible, adult mortality over time (12 replicates).

Preliminary observations and analyses showed a significant effect of density on the growth and development of the glassy-
winged sharpshooter.  At the two lowest densities tested, individuals developed in 34 to 36 days as compared to 38 to 41 days
at the highest densities.  The size of resulting adults decreased significantly when reared at 200 nymphs per cage.  Males were
significantly smaller than females at all densities.  Nymphal mortality averaged 35% and did not vary significantly with
increasing density.  Total egg production did not vary significantly with increasing rearing density.  This indicates an indirect
negative impact of high rearing densities on glassy-winged sharpshooter females’ reproductive potential, possibly due to
nutritional requirements.  In addition, significantly higher premature adult mortality was recorded at the highest densities
studied.  Females produced an average of 1800 eggs per cage. Finally, it appears that the optimum rearing density is no more
than 5-6 glassy-winged sharpshooter per plant, given the type of plants selected for this experiment.  Based on these
observations, multiple steps are being taken to modify all current production activities in such a way that glassy-winged
sharpshooter production per space unit increases consistently.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service.
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DEVELOPMENT OF AN ARTIFICIAL DIET FOR THE GLASSY-WINGED SHARPSHOOTER

Project Leader:
Allen C. Cohen
USDA-ARS
Biological Control and Mass Rearing Research Unit
Mississippi State, MS 39762

Cooperators:
Fanrong Zeng and Amanda Lawrence
Department of Entomology and Plant Pathology
Mississippi State University
Mississippi State, MS

David J.W. Morgan
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Reporting period: The results reported here are from work conducted from October 1, 2001 through October 1, 2002

INTRODUCTION
This work is directed at the development of an artificial diet and a diet-based rearing system for Homalodisca coagulata.
The approach taken to this work is to analyze the feeding mechanism and feeding dynamics of H. coagulata in order to use
this information as a guide to the feeding needs of this insect.  The assumptions behind this work are that the profile of
components in xylem sap used by H. coagulata will be an optimal or at least suitable diet for this species, and details of the
feeding biology of this insect (such as knowledge of specific feeding strategies and digestive enzymes) will help identify its
dietary needs (Cohen 2003).  Towards this end, studies were undertaken to pinpoint the details of feeding biology of this
species, including how the insect may impact changes in the plant’s sap profile.

OBJECTIVES
1. Develop an artificial diet for H. coagulata.
2. Develop an understanding of the morphology of the feeding system of this insect.
3. Develop an understanding of the digestive processes used by H. coagulata in handling its food.
4. Develop an understanding of the interactions between H. coagulata and its host plants to determine whether or not the

insect is a passive feeder that simply ingests whatever the plant offers or an active feeder that manipulates or affects the
plant’s xylem sap composition.

RESULTS AND CONCLUSIONS
A series of diets has been formulated, and tests of these diets are underway.  It has been demonstrated that the insects will
feed on artificial diet presented through a membrane.  Currently, feeding stimulants and profiles are being refined to
maximize feeding rates.  Mixtures that contain combinations of free amino acids and peptides are being tested now in light of
the findings on the digestive physiology and biochemistry of H. coagulata.

The gross anatomy, fine anatomy, and utrastructure of the feeding system of Homalodisca coagulata (Say) (Homoptera
Cicadéllidae) were studied with light (Figures 1-a, 1-b) (bright field, differential interference, fluorescence) and electron
microscopy (cryofracture-based scanning and transmission).  The mouthparts of H. coagulata (including the labium, labrum,
and stylets) are relatively short in comparison with those of other Homoptera in relation to the ratio of these structures and
the insect’s body length.  The bristles herein referred to as stylets, contain lateral, paired mandibular stylets, which have a
dentition consistent with plant penetrating function.  Typical of the Homoptera, H. coagulata produces a salivary sheath that
extends from the exterior of the plant surface into the stem tissues terminating in the xylem elements.  The sheath substance
is produced by the paired salivary glands, which lie ventrally between the head and the prothorax.  The sheath material
fluoresces (Figure 2-a) when excited by various visible and UV wavelengths and can be localized within the plant tissues
easily with fluorescence microscopy.  Examination of 100 salivary sheaths by light and electron microscopy revealed that
these structures are characteristically straight leading directly from the plant surface to the xylem bundles with no evidence of
meandering or branching as is seen in aphids and whiteflies.  The conspicuous clypeus lies on the anterior and ventral part of
the head and marks the region of attachment of the powerful cibarial (sucking) pump muscles, which permit the ingestion of
remarkable amounts of xylem sap (which is under negative pressure in the plant’s vascular system).

Once xylem sap is ingested, it passes through the food meatus, mouth, and esophagus and empties into the anterior portion of
the midgut (mg1).  After the sap enters the midgut, it passes through the filter chamber (fc), where it is confined to a tubule
that is proximate to a series of four Malpighian tubules and a length of the posterior midgut (MG2).  The filter chamber is
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extremely active in peristaltic movements that evidently increase the efficiency of concentration of the sap and removal of
water to the Malpighian tubules, which remove the water and carry it directly into the hindgut where the water is stored in a
bladder-like expansion of the hindgut until it can be discharged.  The concentrated sap is processed by the midgut where the
final nutrient products are absorbed by microvilli that are on the surface of a highly convoluted series of tubles.

Digestive processes:
We tested for activities of aminopeptidase and general peptidase in the salivary glands (Figure 2-b), filter chamber (Figures
3-a, 3-b), anterior midgut, posterior midgut, and Malpighian tubules of the glassy winged sharpshooter, Homalodisca
coagulata (Say) (Homoptera Cicadéllidae), and of the salivary glands anterior midgut, posterior midgut, and Malpighian
tubules of the western tarnished plant bug, Lygus hesperus Knight (Heteroptera: Miridae). Both of these are fluid-ingesting
species; however, H. coagulata is strictly a xylem sap feeder, and L. hesperus feeds on slurries of plant materials extracted
from protein-rich tissues after pre-digesting plant tissues using extra-oral digestion.  As a xylem sap feeder, H. coagulata was
expected to lack ability to digest peptides because xylem sap is not known to contain substantial amounts of peptides or
proteins.  However, we found very high activities of aminopeptidase and general peptidase in the midgut of H. coagulata.  In
fact, the aminopeptidase activity from H. coagulata exceeded the activity of that enzyme from comparable regions of L.
hesperus by several fold (Figures 4-a, 4-b).  Given the fact that L. hesperus is known to ingest protein-rich foods, this finding
provides a basis for re-examining our understanding of the H. coagulata-plant interaction.

Interactions between H. coagulata and host plants:
The profiles of free amino acids in the xylem sap in infested and uninfested sweet potato plants reflects an increase in the
concentrations of most amino acids in the xylem sap from infested plants.  Also, the concentration of ninhydrin positive
substances was significantly higher in the sap from infested plants than it was for the uninfested counterpart.  Most
interestingly, when the xylem sap samples were filtered through molecular weight filters of 3 kDa and 30 kDa, there were
higher concentrations of ninhydrin positive substances in the samples that ranged from 3-30 kDa in saps from infested plants
than from uninfested plants.  This supported the hypothesis that the feeding of H. coagulata impacted an increase in the
available nitrogenous substances.  This finding is in accord with the demonstration of an extremely active aminopeptidase in
the midgut of this insect.

Artificial Diet: Preliminary Trials:
Based on the above findings about complex peptides as part of the feeding profile, a diet was devised to reflect the ability of
the H. coaglulata to use such peptides.  The following diet is currently being tested and is stimulating feeding response:

Proteose peptone 1.0 g
Asparagine 0.25 g
Glucose 0.010 g
Fructose 0.025 g
Citric acid (anhydrous) 0.050 g
L-ascorbic acid 0.020 g
Wesson salts 0.020 g

Cholesterol 0.0012* (*soluble at 0.0002 g/100 mL water)
β-sitosterol 0.0004
Water 200 mL
Stir until all components are dissolved.
Filter through 0.22 µm filter
Final pH is 4.65.

The diet is being presented in small Petri dishes covered with stretched Parafilm, and only a fraction of the nymphs are
attempting to feed on the diet in the current presentation format.  The mortality is still over 90% of the 1st instar nymphs
placed on this diet, but those nymphs that feed last for at least one week and undergo a molt during that time.

Figures 1-a. GWSS surrounded by dissected gut, 1 b complete gut, intact.
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Figures 2a and 2b: Fluorescent feeding sheath in soy petiole and pair of salivary glands.

Figures 3a and 3b: Fluorescent image of filter chamber (100x) and close-up of filter chamber showing arrangement of
Malpighian tubules.

Figures 4a and 4b: Kinetics of amino peptidase activity from GWSS posterior mid-gut (upper three lines) compared to
activity from posterior midgut of tarnished plant bug (lower three lines), and chromatogram showing destruction of leucyl-
glycine by GWSS posterior midgut extract.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service.
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INTERSPECIFIC COMPETITION BETWEEN GONATOCERUS ASHMEADI ANDG. TRIGUTTATUS FOR
GLASSY-WINGED SHARPSHOOTER EGG MASSES

Project Leader: Cooperator:
Mark Hoddle Nic Irvin
Department of Entomology Department of Entomology
University of California University of California
Riverside, CA 92521 Riverside, CA

Reporting Period: The results reported here are from work conducted from March 2002 to October 2002.

INTRODUCTION
We are currently studying the competitive behavior of two GWSS egg parasitoids, Gonatocerus ashmeadi Girault and G.
triguttatus Girault (both Hymenoptera: Mymaridae), to determine which one shows the most potential as a classical
biological control agent for GWSS.  A better understanding of the interactions between these two parasitoids may provide an
insight into predicting and interpreting field outcomes following the establishment and proliferation of G. triguttatus in
California as it competes with the precinctive G. ashmeadi.  Therefore, the following investigations were conducted to
investigate which parasitoid species is most competitive using two different experimental designs representing high and low
GWSS egg mass densities.

OBJECTIVES
1. To investigate interspecific competition between G. ashmeadi and G. triguttatus for GWSS egg masses.

MATERIALS AND METHODS
Two experimental designs were used to represent low and high GWSS egg mass densities.  The first involved exposing
approximately 45 GWSS eggs (egg masses were 1, 3 and 5 days of age) to one mated female G. ashmeadi and G. triguttatus
(~24 hrs of age) for 24 hours in a 3 inch ventilated vial cage at 25oC.  The second involved exposing one egg mass (4-8 eggs)
to both species (see previous description) for one hour in a 2 inch Petri-dish lined with moist filter paper at 25oC.  Visual
observations for aggressive behavior were made every 5 minutes during the second experiment and both experiments were
replicated 20 times.  The number of G. ashmeadi and G. triguttatus offspring produced per vial or egg mass was recorded.

RESULTS AND CONCLUSIONS
Exposing approximately 45 GWSS eggs (high density situation) to one mated female G. ashmeadi and G. triguttatus
simultaneously produced 45% more G. ashmeadi offspring compared to G. triguttatus (Figure 1).  This may suggest that G.
ashmeadi is more ‘aggressive’ than G. triguttatus and therefore shows more potential as a biological control agent for GWSS.
It also may indicate that G. ashmeadi could out compete G. triguttatus in the field and prevent its successful establishment
and dispersal in California. However, exposing one GWSS egg mass to one mated female G. ashmeadi and G. triguttatus
simultaneously produced 53% more G. triguttatus compared to G. ashmeadi (Figure 2).  The result from the low egg mass
density experiment apparently contradicts previous results.  This might be due to the differences in GWSS densities between
studies and may indicate that G. ashmeadi is more efficient at parasitising at high GWSS egg mass densities, whereas when
resources are scarce G. triguttatus becomes more efficient at excluding competitors.  In fact, two observations of G.
triguttatus aggressively chasing G. ashmeadi off the egg mass were recorded during the second study.  Furthermore, Lauziere
et al. (1999) has shown that at low host densities oogenesis in the parasitoid Cephalonomia stephanoderis Betrem
(Bethylidae) was delayed and the pre-oviposition phase was extended.  Therefore, the lower numbers of G. ashmeadi
offspring produced in the second study where GWSS egg mass density was low, may be due to G. ashmeadi females
requiring a longer pre-oviposition period compared to G. triguttatus under these conditions.

Alternatively, the difference between results may be a factor of parasitoid age.  The first study exposed egg masses to
parasitoids that were ~ 24 hrs of age for 24 hours, whereas the second study involved similarly aged parasitoids being
exposed to egg masses for just one hour. Therefore, parasitoids were respectively, 48 hours and 25 hours old by the
conclusion of the experiments.  This may account for differences in competitive behavior between studies because both
species may have different pre- oviposition periods or may vary in their response to host interaction and oviposition
experience.  This may occur because female G. ashmeadi and G. triguttatus may emerge with complements of undeveloped
eggs and, the pre-oviposition period post-emergence during which oocytes develop may differ between these two species.
For example, G. triguttatus may have a shorter pre-oviposition period allowing superiority at low GWSS density studies;
however, it may have a more limiting daily fecundity than G. ashmeadi, therefore limiting its efficiency at higher density
studies. Gonatocerus ashmeadi may require a higher degree of host interaction and oviposition experience compared to G.
triguttatus to maximize its parasitization efficiency.  This would enable G. ashmeadi to out compete G. triguttatus in the first
study because it involved high GWSS densities, a longer exposure time, and a greater potential for host encounters, and
subsequent experience. However, to accurately hypothesize about the mechanisms behind why results were contradictory in
these two studies, and to determine which species shows more potential as a biological control agent for GWSS, trials
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investigating parasitoid pre-oviposition periods, longevity, daily and lifetime fecundity, and field-based competition studies
are required.
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Figure 1.: Mean number of G. ashmeadi and G.
triguttatus offspring produced from exposing
100 GWSS eggs in a vial to one mated female
of both species

Figure 2.: Mean number of G. ashmeadi and
G. triguttatus offspring produced from
exposing one GWSS egg mass to one mated
female of both species

Funding for developing mass rearing techniques for biological control programs is limited and results presented here raise the
important question: how do we decide which parasitoid species shows the most potential as a biological control agent?
Depending on the experimental design used, results can favor a different parasitoid species. It may be beneficial to determine
which design is more realistic of a field situation.  The first study may be representative of high GWSS egg densities that
occur in summer; whereas the second study may be representative of low densities that occur in spring, or could occur year
round as a result of a successful biological control program against GWSS. Therefore, experimental designs that simulate low
GWSS densities may be more realistic at determining which parasitoid species shows the greatest over all potential for
suppressing GWSS population recruitment from the egg stage. Results presented here suggest that as GWSS biological
control progresses in California there may be a shift in species dominance from G. ashmeadi to G. triguttatus as GWSS
populations diminish.

REFERENCES
Lauziere, I.,G. Perez-Lacharud and J. Brodeur. 1999. Influence of host density on the reproductive strategy of Cephalonomia

stephanoderis, a parasitoid of the coffee berry borer. Ent. Exp. Appl. 92:1, 21-28.
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Funding for this project was provided by the California Department of Food and Agriculture.
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BIOLOGICAL CONTROL OF HOMALODISCA COAGULATA
(revised report; submitted April 15, 2003)

Project Leader:
Walker A. Jones
Beneficial Insects Research Unit
USDA- ARS, Kika de la Garza Subtropical Agricultural Research Center
Weslaco, TX 78596

Reporting Period: The results reported here are from work conducted from October 1, 2000 to October 31, 2002.

INTRODUCTION
Although the glassy-winged sharpshooter (GWSS), Homolodisca coagulata (Say), occurs throughout the Lower Rio Grande
Valley (LRGV) of Texas, it is never abundant and is usually difficult to locate.  Although there is an extensive local citrus
industry, eggs are only occasionally found in orchards.  This insect appears to be most evident in urban areas.  Earlier,
informal surveys were conducted to collect egg parasitoids for shipment to California for release.  Following extensive
examination of various plant species, it was found that oviposition occurred during two fairly distinct generations, most
abundantly on the native leguminous tree, Texas mountain laurel, Sophora secundiflora (Ortega) Lag. ex D.C.
(Leguminoseae) and varieties of crape myrtle, Lagerstroemia indica L. (Lythraceae). Once their favorite oviposition hosts
were indentified in 2000, a survey was begun to assess the impact of parasitism and predation of egg masses.  Also, a
qualitative survey of breeding hosts was made.

OBJECTIVES
1. Determine the seasonal impact of egg parasitoids.
2. Determine breeding host plants in the Lower Rio Grande Valley of Texas.
3. Record biological and behavioral attributes of the most important parasitoids.

RESULTS AND CONCLUSIONS
During two years of the survey, 993 and 1,153  egg masses were sampled during 2001 and 2002, respectively.  Most were
collected from S. secundiflora (March-May) and L. indica (late May through summer and fall) in Weslaco, TX. All
parasitism was by wasps in the genus Gonatocerus (Mymaridae).   In 2001, 86% of all egg masses on S. secundiflora were
parasitized, 7% were predated, nymphs emerged from 12%, with 1% unknown (n = 125 masses).  On L. indica, 85% were
parasitized, 8% predated, with 11.4% nymphal emergence (n = 993 masses).  During 2002, egg masses on S. secundiflora
leaves showed 74% of the egg masses were parasitized, 4% incurred some predation and 27% indicated at least some
nymphal emergence (n = 285 masses).  For L. indica, 89% were parasitized, 8% predated, with 8% nymphal emergence (n =
691 masses).  Most, but not all parasitized masses were completely parasitized. Gonatocerus morrilli Howard, G. ashmeadi
Girault and G. triguttatus Girault were recovered. G. triguttatus was the most important species, with the other two species
generally only appearing at the very beginning and very end of the seasons.

Mature adult GWSS were seldom seen on trees bearing eggs. Nymphs were observed on a very wide variety of plants,
almost always on new growth.  Spiders were often observed with captured nymphs and adults.

Observations were made on biological and behavioral attributes of G. triguttatus.  At 27oC, development from egg to
emergence was 12.8 d for males (n = 111); 13.3 d for females (n = 70).  Males lived 6.6 d; females lived 6.0 d, when
provided pure honey for food.  Sibling mating took place on or in the vicinity of the egg mass within confinement of Petri
dishes.  Unparasitized GWSS eggs eclosed after 7.6 d.

Female parasitoids antennated the egg mass prior to ovipositing but did not oviposit in linear sequence. Nevertheless, they
almost always parasitized the complete mass.  However, the brochosomes significantly hindered oviposition time.
Brochosome particles quickly accumulated on tarsi and antennae, and resisted preening attempts to remove them.
Frequently, the parasitoid would leave the mass to spend several minutes preening.

Overall, egg parasitism of GWSS was high throughout the year in the LRGV of Texas, primarily by G. triguttatus, but G.
ashmeadi and G. morrilli also occur, though in much lower numbers.  A sample of over 50 egg masses in San Antonio, TX
during the summer of 2002 yielded only G. ashmeadi.  Triapitsyn and Phillips (2000) reported G. triguttatus from NE
Mexico and Weslaco, TX, and although Tripitsyn et al. (1998) didn’t report this species in collections from elsewhere, it was
recently reported from another sharpshooter host in Apopka, FL (Triapitsyn et al. In press).  Thus, the range of G. triguttatus
may be confined to extremely southern areas only.

The purpose of the white powdery brochosomes that female GWSS place around the egg masses has been a matter of
conjecture (Hix 2001, Rakitov 2002).  While the material may serve multiple purposes, it clearly slows down the time G.
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triguttatus is able to complete oviposition of GWSS egg masses.  Nevertheless, the high discovery rate of egg masses by
parasitoids clearly demonstrates that parasitoids possess efficient host location mechanisms and are important natural
enemies of GWSS in south Texas.

REFERENCES
Hix, R. L. 2001. Egg-laying and brochosome production observed in glassy-winged sharpshooter. Calif. Agric. 55: 19-22.
Rakitov, R. A. 2002. What are brochosomes for? An enigma of leafhoppers (Hemiptera, Cicadellidae). Denisia 4: 411-432.
Triapitsyn, S. V., M. S. Hoddle and D. J. W. Morgan. 2002. A new distribution and host record for Gonatocerus triguttatus in

Florida, with notes on Acmopolynema sema (Hymenoptera: Mymaridae). Fla. Entomol. 85: 657-658.
Triapitsyn, S. V., R. F. Mizell, J. L. Bossart and C. E. Carlton. 1998. Egg parasitoids of Homalodisca coagulata (Homoptera:

Cicadellidae).  Fla. Entomol. 81: 241-243.
Triapitsyn, S. V., and P. A. Phillips. 2000. First record of Gonatocerus triguttatus (Hymenoptera: Mymaridae) from eggs of

Homalodisca coagulata (Homoptera: Cicadellidae) with notes on the distribution of the host. Fla. Entomol. 83: 200-203.

FUNDING AGENCIES
Funding for this project was provided by the USDA Agricultural Research Service.



-90-
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INTRODUCTION
The egg parasitoid, Gonatocerus ashmeadi, is a mymarid wasp that accounts for most of the observed parasitism in
California on the glassy-winged sharpshooter (GWSS), Homalodisca coagulata (Say), a vector for Pierce’s disease.  In the
absence of techniques for propagating the wasp via artificial methods, it is very important to mass-rear the GWSS to provide
host eggs for this parasite to be used in bio-control programs.  Low temperature storage is an integral part of the process of
mass-rearing insects for use in agricultural pest control programs (Leopold 1998).  Through cold storage, parasitized and
unparasitized GWSS eggs may be accumulated and held for later use in rearing and releasing parasitoids. Although Al-
Wahaibi and Morse (2002, submitted) reported that the development of GWSS eggs held at 11.5 °C was retarded and aborted
during early stages of eye spot formation, data regarding the effect of low temperature throughout the development of the
GWSS and that of the egg parasitoid are lacking.

Further, choosing suitable host plants, which are amenable to cold storage, will be very critical for establishing and
maintaining the leafhopper colony and for obtaining large numbers of leafhopper eggs.  The sharpshooter is a highly
polyphagous leafhopper having over 100 known host plants in Florida (Adlerz 1979). Recent observation shows that the
leafhopper can feed on at least 72 plant species in 37 families (Hoddle at al. 2002, submitted), and 73 plant species in 35
families (Blua et al. 1999).  Although feeding is apparently limited to xylem vessels on all host plants (Anderson et al. 1989),
some studies have shown that the leafhopper exhibits host-plant preference (Adlerz 1979; Mizell and French 1987), and that
the amide concentrations in host plants may potentially cause an oviposition preference by the leafhopper (Andersen et al.
1992).  Some field observations have indicated the preference for different plant species varied with different times of the
year (Adlerz 1979; Mizell and French 1987; Brodbeck et al. 1990).  However, little quantitative data are available so far on
host plant preference of feeding adult males and females under laboratory or mass-rearing conditions.

OBJECTIVES
1. Examine feeding behavior of GWSS adults on various host plants and determine the effects of cold storage tolerant host

plants on size of the egg masses, egg hatch, nymphal development.
2. Determine the cold tolerance of GWSS eggs and parasitized eggs during development.
3. Determine the most effective method for cold storage of GWSS eggs and parasitoids.

RESULTS AND CONCLUSIONS
Host Selection:
The experiments were conducted in USDA-ARS, Biosciences Research Laboratory, Fargo, from July through October 2002.
These studies showed that adult female sharpshooters (fourth generation from parents collected in Riverside, California) had
a significant host preference when given a choice of 12 plant species at 25˚C, RH 65% and L 14: D 10 photoperiod. The test
plants included corn (Zea mays), sorghum (Sorghum aethiopicum), millet (Milium effusum), euonymus (Euonymus spp.),
mums (Chrysanthemum spp.), hibiscus (Hibiscus spp.), sunflower (Helianthus annuus), eggplant (Solanum spp.), cantaloupe
(Cucumis melo), cotton (Gossypium hirsutum), wild grape (Parthenocissus quinquefolia) and a plant of Lamiaceae family.
The percentages of feeding females varied significantly among different plant species at time intervals examined between 6
to 48 hours (Table 1).  A majority of the female adults preferred feeding on sunflower while less than 6% females were
observed feeding on millet, corn, sorghum, cantaloupe, wild grape and the Lamiacae plant.  For males, no significantly
different feeding preferences were observed, although at the end of the test almost 40% of the insects were found on just 3
plants: egg plant, hibiscus and sunflower (Table 1).  The sharpshooter deposited eggs on leaves of 7 of the 12 plant species,
which were corn, sorghum, millet, euonymus, chrysanthemum, hibiscus and sunflower.  Our data indicate that plant species
had no significant influence on the size of egg mass (the average number of eggs per mass) but egg hatch was affected
(Table 2).  Although sunflower was one of preferred host plants, egg hatch was significantly lower on it than the other plants.
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Approximately 68% of the sunflower leaves bearing eggs died or wilted from desiccation while still attached to the plant
and this consequently caused many of the eggs to die.  In addition, our observations indicate that the sharpshooters from the
colony shipped to us from the APHIS facility in Texas readily oviposit on eggplant while it is not preferred by our colony
females.

Low Temperature Storage:
In a comparison with hibiscus, chrysanthemum and sunflower plants, euonymus cuttings and leaves remain viable the longest
in incubators set at either 2, 5, 7, 10, or 12°C.  The leaves of hibiscus cuttings or whole plants begin to wilt when stored at
2°C for 24 hr while chrysanthemum remains fresh for 3-4 weeks. Euonymus cuttings placed in nutrient solution remain fresh
and viable for rooting after nearly 60 days at 10°C.  We collected sharpshooter eggs by using euonymus plants and placed the
0-1 day-old embryos into incubators.  After storage at 10°C for 1-6 days, the eggs could hatch in part or all (Figure 1).
Furthermore, these embryos had a similar developmental time to hatching as the controls after they were taken out of cold
storage (Figure 2).  However, no eggs hatched after cold storage for 8 or 10 days at 10°C.  The embryos placed at 2°C for 2
or 4 h could hatch within 8-9 days and hatching was 67% and 62%, respectively.  After storing 0-1 day-old eggs at 5°C for 6
days, up to 63 % of the embryos emerged as nymphs.  No eggs stored at 5ΕC for more than 8 days would hatch.  At 12°C,
embryonic development proceeded very slowly and we found that 24% of the eggs could hatch after storage for 20 days.
However, because of the low number of egg masses obtained (some of the points on Figures. 1 and 2 had < 10 egg masses),
these experiments will be repeated again.  Finally, Gonatocerus ashmeadi parasitoids within 1-2 day-old sharpshooter eggs
on euonymus leaves could completely emerge in the 5°C incubator within 20 days.  Furthermore, we found that on the
chrysanthemum leaves the parasitoids within 1-2 day-old sharpshooter eggs could emerge after storage at 2°C for 6 days.
Further studies are planned to identify the threshold for development for the parasitoid and which developmental stage is the
most tolerant to cold storage.

Table 1. Mean (± SE)% of total number of H. coagulata adults on different host plants at different time intervals
Plants Sex Per cent adults on plants at time intervala

6h 12h 24h 36h 48h
Purple millet 4.6 ± 2.9 b 5.9 ± 3.2 b 5.0 ± 0.9 b 6.0 ± 3.9 b 4.9 ± 2.9 b
Euonymus 6.4 ± 3.2 b 9.4 ± 5.3 b 6.4 ± 3.2 b 9.4 ± 5.3 b 9.4 ± 5.3 b
Egg plant 10.8 ± 3.5 b 13.8 ± 1.6 b 12.3 ± 2.6 b 12.2 ± 3.4 b 12.2 ± 4.0 b
Hibiscus
Cotton male

10.3 ± 4.4 b
9.1 ± 2.9 b

9.5 ± 5.4 b
9.1 ± 2.9 b

7.2 ± 4.3 b
7.6 ± 2.0 b

8.4 ± 5.4 b
7.5 ± 3.9 b

10.9 ± 7.8 b
9.0 ± 4.5 b

Corn 4.1 ± 2.7 b 2.6 ± 1.4 b 2.6 ± 1.4 b 2.6 ± 1.4 b 2.6 ± 1.4 b
Sunflower 10.7 ± 6.4 b 12.3 ± 5.2 b 12.3 ± 5.2 b 16.1 ± 5.1 b 16.1 ± 5.1 b
Sorghum 1.5 ± 1.5 b 1.5 ± 1.5 b 1.5 ± 1.5 b 2.7 ± 1.4 b 2.8 ± 1.4 b
Cantaloupe 10.7 ± 5.5 b 9.2 ± 5.3 b 10.7 ± 5.5 b 11.0 ± 5.6 b 9.5 ± 4.8 b
Chrysanthemum 5.0 ± 0.9 b 7.4 ± 1.9 b 9.0 ± 1.3 b 9.4 ± 3.1 b 9.4 ± 3.1 b
Lamiacea 0 b 2.2 ± 2.2 b 2.2 ± 2.2 b 3.5 ± 1.9 b 3.5 ± 1.9 b
Wild grape 2.6 ± 1.4 b 7.6 ± 2.0 b 7.7 ± 0.7 b 7.4 ± 1.9 b 6.2 ± 0.9 b

Purple millet *
Euonymus*
Egg plant
Hibiscus*
Cotton
Corn*
Sunflower*
Sorghum*
Cantaloupe
Chrysanthemum*
Lamiacea
Wild grape

female

1.2 ± 1.2 c
5.8 ± 4.1 bc

11.0 ± 4.4 ab
4.9 ± 3.3 bc
8.3 ± 2.9 abc
4.8 ± 2.4 bc

15.6 ± 2.3 a
1.2 ± 1.2 c
2.4 ± 1.2 c
2.4 ± 1.2 c

0 c
2.4 ± 1.2 c

4.9 ± 1.3 bc
10.7 ± 3.9 bc

8.6 ± 3.3 bc
7.2 ± 2.1 bc

13.3 ± 2.6 b
3.6 ± 2.1 bc

25.2 ± 7.1 a
3.7 ± 2.1 bc
3.6 ± 1.1 bc
4.8 ± 1.1 bc
1.1 ± 1.1 c
2.4 ± 1.2 c

3.6 ± 0.1 bcd
10.7± 5.4  bcd
11.0 ± 4.4 bc

7.2 ± 2.1 bcd
13.3 ± 2.6 ab
3.5 ± 2.0  cd

21.5 ± 4.7 a
3.7 ± 2.1 bcd
4.9 ± 1.3 bcd
6.0 ± 1.2 bcd
1.1 ± 1.1 d
2.4 ± 1.2 cd

2.5 ± 1.2 b
11.8 ± 6.2 b
11.0 ± 4.4 b
9.6 ± 3.2 b
9.8 ± 3.4 b
2.5 ± 2.5 b

22.7 ± 5.2 a
3.7 ± 2.1 b
5.9 ± 2.2 b
2.5 ± 1.2 b
1.1 ± 1.1 b
3.5 ± 2.0 b

2.4 ± 1.1 b
11.8 ± 6.2 b
11.0 ± 4.4 b
13.0 ± 5.1 b
8.6 ± 5.4 b
2.5 ± 2.5 b

26.3 ± 4.6 a
3.7 ± 3.7 b
5.9 ± 2.2 b
2.5 ± 1.2 b
2.3 ± 1.2 b
2.4 ± 1.2 b

a One-way ANOVA – means were separated by Duncan’s Multiple Range Test
* Denotes plants on which oviposition occurred.
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Figure1. Percentage egg hatch at
different cold storage times at
10ΕC

Figure 2. Egg stage of H.
coagulata eggs stored at 10ΕC

Table 2. Egg mass size and hatching related to host plants
Plants No. of eggs/mass

(range) a
Per cent egg hatcha

Euonymus 16.8 ± 1.6 (10~37)  b 81.8 ± 9.1 ab
Chrysanthemu
m

15.0 ± 3.1 (  9~23)  b 72.8 ± 16.1 ab

Hibiscus 12.0 ± 2.7 (  6~19)  b 81.3 ± 12.0 ab
Sunflower 11.1 ± 1.9 (  2~31)  b 24.7 ± 9.9   c
Sorghum 11.5 ± 1.5 (10~13)  b 100.0 ± 0.0 a
Corn 15.0 ± 2.0 (13~17)  b 94.1 ± 5.9 a
Purple millet 14.0 ± 3.0 (11~17)  b 95.5 ± 4.5 a

aValues followed by different letters in each column were significantly
different (P<0.05)
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INTRODUCTION
Gonatocerus ashmeadi Girault is a common and seemingly widespread egg parasitoid of glassy-winged sharpshooter
(GWSS).  Location records for G. ashmeadi indicate its natural range to be Florida, Louisiana, northeastern Mexico,
Mississippi, North Carolina, eastern Texas (which coincides with the presumed native range of GWSS), and southern and
central California (the adventive range of GWSS). Gonatocerus ashmeadi was collected from eggs of the native smoke-tree
sharpshooter, Homalodisca lacerta (Fowler), as well as from GWSS eggs before G. ashmeadi releases began as part of an
organized biological control program in CA. Gonatocerus ashmeadi is currently being imported from different areas within
the natural range of GWSS and released in California with the assumption that this is one species and not a complex of
morphologically indistinct sibling species.  Species identifications have been made using light microscopy to determine the
presence of key morphological features for G. ashmeadi. Light microscopy has failed to reveal any differences between
different G. ashmeadi populations except for some specimens from central and southern Tamaulipas and San Luis Potosí,
Mexico (Triapitsyn et al. 2002). Due to the minute size of adult Gonatocerus parasitoids (1.2-1.7 mm in length), their
taxonomic identification is very difficult without careful and costly preparation, which involves mounting on microscopic
slides.  The morphological characters that are used for differentiating between closely related Gonatocerus spp. can be
variable and thus species limits are often difficult to assess without supporting data from biological and molecular data.  The
purpose of work proposed here is to determine whether G. ashmeadi in the native range of GWSS is one species or a
complex of cryptic species that can’t be separated on the basis of currently employed morphological characters.  We intend to
use three approaches to determine the species identity of different G. ashmeadi populations.

OBJECTIVES
1. Reassessment of key morphological features using scanning electron microscopy (SEM) to determine if subtle

morphological differences exist between G. ashmeadi populations which could possibly indicate species differences.
2. Conduct mating compatibility studies to determine if different populations of G. ashmeadi are reproductively isolated, or

if mating occurs, whether offspring are viable thereby defining species groups on the basis of successful interbreeding.
3. To determine if molecular differences exist between G. ashmeadi populations collected from different regions by

comparing mitochondrial and ribosomal DNA sequences.  Molecular dissimilarities of key regions could potentially
indicate the existence of different species.

RESULTS AND CONCLUSIONS
Results from these three areas (morphology, behavior, and molecular) are currently under investigation and will be evaluated
together to determine whether G. ashmeadi as it is currently viewed is a valid species or whether it is an aggregate of
morphologically indistinguishable cryptic species.

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program.
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Reporting Period: The results reported here are from work conducted from January 1, 2002 to November 1, 2002.

INTRODUCTION
Observations in northeastern Mexico and Texas, USA, during the past three years revealed presence of Homalodisca
coagulata (Say) (GWSS) there, but in very low densities (Coronado-Blanco et al. 2000, Triapitsyn and Phillips 2000).
Almost all egg masses of GWSS and other related sharpshooters, such as Oncometopia spp., were heavily parasitized.  The
climate in the central part of Tamaulipas, Mexico, is very similar to the climate in the valleys of southern California.  Earlier
surveys in Florida and Louisiana revealed several species of GWSS egg parasitoids there; some of those species do not occur
in California (Triapitsyn et al. 1998; Triapitsyn in review; Triapitsyn et al. in press) and thus are promising biological control
agents.  As a result of the collections made in northeastern Mexico during 2000 and 2001, colonies of three species,
Gonatocerus ashmeadi Girault, G. morrilli (Howard), and G. triguttatus Girault (Hymenoptera: Mymaridae), were
established in UCR quarantine and insectary (Triapitsyn and Hoddle 2001; Triapitsyn et al. 2002) and later propagated and
released against GWSS in California by CDFA and USDA researchers.

OBJECTIVES
1. Search for and collect additional egg parasitoids of GWSS, particularly G. fasciatus and Ufens spiritus Girault

(Hymenoptera: Trichogrammatidae, also known as Zagella sp., see Triapitsyn et al. 1998), in the home range of GWSS
(southeastern USA and northeastern Mexico) for introduction into California, establishment of cultures in UCR
quarantine, and a following evaluation.

2. Recollect the target species of GWSS egg parasitoids, particularly G. triguttatus, in northeastern Mexico and clear them
through UCR quarantine to be used for preventing inbreeding in the cultures maintained by our cooperators from the
CDFA for a large-scale classical biological control program against GWSS in California.

RESULTS AND CONCLUSIONS
Three exploratory trips were made during 2002: 1) to the States of Cuahuila (Parras and San Lorenzo, where we found
numerous egg masses of GWSS which were not parasitized, apparently due to an unusually cold weather), Nuevo León, and
Tamaulipas, Mexico, in March 2002 (S. Triapitsyn, V. Berezovskiy, and S. Myartseva); 2) to Cuahuila, Nuevo León,
Tamaulipas, San Luis Potosí and Queretaro, Mexico, in April 2002 (D. Yanega and S. Myartseva); and 3) to Louisiana in
April 2002 (M. Hoddle and S. Triapitsyn).  Material from a trip to Jackson, Mississippi, in March 2002 by D. Morgan was
also processed in UC Riverside quarantine as part of this project.

A survey of egg parasitoids of GWSS was undertaken in Baton Rouge, Louisiana, during April and May 2002.  It was
conducted initially by M. Hoddle and S. Triapitsyn during the first week of April 2002 and was continued after our departure
by D. Chouljenko, using sentinel egg masses of GWSS on various plants following Triapitsyn et al. (1998).  The fairyfly
wasp G. fasciatus was reared on numerous occasions from egg masses of GWSS, laid in leaves of several different plants,
and shipped under an appropriate permit to UCR quarantine.  A colony of G. fasciatus was successfully established in
quarantine on H. coagulata eggs laid in leaves of Euonymus japonica.  Observations on the biological traits of G. fasciatus
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revealed that this species has a gregarious habit, with two or more wasps developing per each egg of the host, unlike other
common North American parasitoid species of H. coagulata from the same genus, such as G. ashmeadi, G. morrilli, or G.
triguttatus, which are solitary parasitoids (Triapitsyn et al. in review).  Besides the obvious advantages in mass-rearing of a
gregarious parasitoid, G. fasciatus may be also considered a promising biological control agent for control of GWSS in
central and northern California (if GWSS becomes established there) because its native range includes Illinois; thus, G.
fasciatus must be better adapted to colder climates than any other known mymarid egg parasitoid of GWSS.  The species of
exotic egg parasitoids collected during 2002 and propagated at UC Riverside (if applicable) are listed in Table 1.

Table 1. The species of exotic egg parasitoids collected during 2002 and propagated at UC Riverside.
Genus and species of egg
parasitoid

Originally from:
(country and state)

Original host Propagated on GWSS at
UCR quarantine (yes/no)

Gonatocerus ashmeadi USA: Louisiana Homalodisca coagulata Yes
Gonatocerus fasciatus USA: Louisiana Homalodisca coagulata Yes
Gonatocerus triguttatus Mexico: Tamaulipas Oncometopia ?clarior Yes
Ufens spiritus
(= Zagella)

USA: Louisiana
USA: Mississippi

Homalodisca coagulata
Homalodisca coagulata

No (failed)
No (failed)

Ufens n. sp. Mexico: Tamaulipas Oncometopia ?clarior No (died)
Ufens sp. USA: Mississippi Homalodisca coagulata No (failed)
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Reporting Period: The results reported here are from work conducted from November 1, 2001 to November 1, 2002.

INTRODUCTION
Table, raisin, and wine grapes grown in the San Joaquin Valley (SJV) comprise some of California’s largest and
economically productive agricultural commodities.  Their commercial existence is now threatened by presence of both the
glassy-winged sharpshooters (GWSS), Homalodisca coagulata, in the SJV (Phillips 1998, Blua et al. 1999) and the bacterial
pathogen, Xylella fastidiosa, which is the causal agent of Pierce’s disease (PD) (Purcell and Sanders 1999a).  GWSS may not
be a more “efficient” vector than the native California sharpshooters (Purcell and Saunders 1999a), but it is certainly more
important.  While initial control efforts will most certainly be directed at chemical suppression or spot eradication, there are a
number of questions on GWSS biology and ecology in the SJV that should be addressed in order to improve control
programs and/or increase control options.  The primary focus of this research is the description of GWSS preference, egg
deposition, age structure, population dynamics and levels of natural regulation on different host plants in urban / agricultural
interface in the SJV where untreated populations serve as an inoculum source for nearby vineyards and citrus.  We will also
test sampled GWSS, from selected host plants and ecosystems, for the presence of X. fastidiosa.

OBJECTIVES
1. Determine glassy-winged sharpshooter (GWSS) biology and ecology throughout the season, particularly its age structure

on and utilization of the different host plants that represent common breeding or dispersion refuges for GWSS in the San
Joaquin Valley.

2. Determine the presence of Xylella fastidiosa in GWSS collected from different host plant species and in selected
ecosystems in the San Joaquin Valley.

3. Begin to evaluate predator release as an additional suppression tactic.

RESULTS AND CONCLUSIONS
We began to categorize GWSS age structure, ecology, and resident natural enemies (particularly predators) on different host
plants common in the SJV in spring 2002.  Our initial methodology relied on field samples taken over a series of dates and on
different host plant in untreated urban and agricultural regions in Fresno County.  The search and spray program in that
region was so effective that new GWSS sightings were treated within days or, if left untreated, the GWSS population density
was too low to sample for our purposes.  For these reasons, we adjusted our methodology and region sampled.  Studies were
moved to Bakersfield and host plant preference studies using potted host plant were included to manipulate the availability of
same-aged and same-condition (e.g., irrigation and fertilization amounts) host plants to natural GWSS and natural enemy
populations.

Host preference studies were conducted in unsprayed, GWSS infested areas (a citrus orchard and a residential area) in
Bakersfield, California.  Potted (6.6 liter) ivy, photinia, citrus, gardenia, privet, euonymous, hibiscus, agapanthus (lily of the
Nile), grapevine, crape myrtle, eucalyptus, and oleander were set in a randomized block design (3 blocks in the citrus orchard
and 4 in residential areas).  GWSS eggs, nymphs and adults and GWSS predators and parasitoids were counted weekly from
July through October.  Initial results confirm field surveys from the Temecula and Riverside infestations that GWSS
populations dynamics are influenced by host plants.  There was a significant (P < 0.1) oviposition preference for some host
plants, with more GWSS egg masses on crape myrtle, privet, grape, gardenia, and citrus than other plants (Figure 1).  No or
few egg masses were found on oleander and ivy.  Interestingly, GWSS egg mass density was not related to adults or nymphs
density (F=0.16, df=1,82, P=0.68, r2=0.002; F=0.03, df=1,82, P=0.86, r2=0.001, respectively).  For example, GWSS nymphs
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were significantly more common on oleander, which had no GWSS egg masses, than citrus, which had the most egg masses
(Figure 2). There was no treatment difference in the number of adults observed (Figure 3); still, it is difficult to accurately
measure adult densities through visual counts.  The potted plants were in contact with each other and, therefore nymphs could
move between plants, suggesting that oviposition preference may be different from nymph feeding preference.

Another possibility is disparate egg and nymph mortality among treatments, which may be suggested by both a significant
treatment difference in the number of predators observed on the potted plants (Figure 4) and significant relationship between
predators and GWSS egg masses (F=8.52, df=1,82, P=0.005, r2=0.09).  There was no relationship between predator and
GWSS nymph densities, although GWSS population dynamics showed a clear reduction in nymph density after oviposition
(Figure 5), which may have reduced predators during the very small sampling window.  Furthermore, a significant
relationship between observed parasitoids foraging on plants and GWSS egg masses (F=16.2, df=1,82, P<0.001, r2=0.16)
suggest many nymphs did not emerge (these data are not yet analyzed). In the unsprayed citrus block, we found a season-long
“egg mass” parasitism rate of 68.2 ± 0.02%; when an egg mass was attacked most of the eggs were parasitized, resulting in a
season-long “egg” parasitism rate of 51.8 ± 1.8% (there were 11.6 ±0.2 eggs per egg mass).  Late-season parasitism was
>90%, as has been reported in previous studies.  A subsample of emerged parasitoids has found only Gonatocerus ashmeadi
present (Triapitsyn et al. 1998).  The results from the potted plant experiment suggest GWSS adults have host oviposition
preferences that may be different from the nymph feeding preference (see Brodbeck et al. 1995, 1996).  Results also suggest
that parasitoid and predator densities tract GWSS density.  Abiotic and biotic mortality factors accounts for a reduction of ca.
35 eggs per plant to ca. 0.15 large GWSS nymphs per plant.

The experimental use of potted plants presents potential bias.  For example, in the citrus block the resident GWSS and
parasitoids may have been preconditions to citrus, resulting in both greater GWSS and parasitoid densities on that treatment.
Surveys of urban areas were made to determine GWSS and natural enemy host plant relationships.  Results are still being
processed.  Figure 6 provides an example from one survey.  The information shows GWSS host plant preference in urban
settings.  Observations indicate that host plant condition between surveyed regions may be as important as host plant species,
with plant vigor (typically fertilization, age or irrigation amounts) being the primary factor.  During the GWSS surveys, egg
masses are collected to determine parasitoid species composition and activity.  Similarly, predator species and density are
recorded.  Predators are collected and stored at -80ºC for later processing by Dr. James Hagler with immunologically-based
assays that employ pest-specific monoclonal antibodies (MAbs) that can be used in an ELISA to identify the key predators of
GWSS (Hagler et al. 2001).  To date, samples have been taken (Bakersfield, Porterville Fresno and Ventura, CA) and will
soon be processed.

A description of GWSS biology and ecology on host plants in urban areas of the SJV will help understand GWSS seasonal
movement and infestation foci.  For example, information on the abundance, host plant use, and seasonal dispersal patterns of
resident sharpshooters (e.g., blue-green sharpshooter) (Goodwin and Purcell 1992, Perring et al. 2001).  The same critical
information for GWSS is lacking for the SJV.  This work will provide a needed baseline on resident natural enemies of
GWSS in the SJV and their contribution to GWSS mortality. Information on GWSS movement and host plant succession in
the SJV may be useful for modification of surrounding vegetation or traps crops can potentially suppress GWSS movement
into a vineyard.

Research has not yet begun on identifying the incidence of X. fastidiosa in GWSS adults collected from different habitats in
different geographic regions, which will aid researchers currently mapping out PD and X. fastidiosa sources in the SJV, and
on the augmentation of selected natural enemy species.



-101-

G
W

SS
 e

gg
-m

as
s 

pe
r p

la
nt

0

2

4

6

8

10

Gar
de

nia

Euo
ny

mus

Aga
pa

nth
us

Gra
pe

Cra
pe

myrt
le

Euc
aly

ptu
s

Olea
nd

er Ivy
Pho

tin
ia

Citru
s

Priv
et

Hibi
sc

us

a

bcbc

cd
d

d

bc

ab

c
cd

cd

d

Figure 1

G
W

SS
 n

ym
ph

s 
pe

r p
la

nt

0

2

4

6

10

8

c
c

ab ab
a

aa
ab a

bc bc

a

Figure 2

Gard
en

ia

Euo
ny

mus

Aga
pa

nth
us

Grap
e

Crap
e myrt

le

Euc
aly

ptu
s

Olea
nd

er Ivy
Pho

tin
ia

Citru
s

Priv
et

Hibi
sc

us

Figure 1. Average densities (sum ± SEM) of GWSS egg
masses on potted plants shows a significant oviposition
preference for some host plants or avoidance of other plants.
Letters above each mean are significantly different, Fisher’s
LSD at P < 0.1.

Figure 2. Average densities (sum ± SEM) of GWSS
nymphs on potted plants shows wide discrepancy
between egg mass density (Figure 1) and GWSS nymph
density. Letters above each mean are significantly
different, Fisher’s LSD at P < 0.1.
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Figure 3. Average densities (sum ± SEM) of adults observed
resting or feeding on potted plants shows no significant
different among treatments.  These data were collected
during last adult flight (July to October 2002). Letters above
each mean are significantly different, Fisher’s LSD at P <
0.1.

Figure 4. Average densities (sum ± SEM) of predators
observed on potted plants shows a significant different
among treatments. Predators were spiders (82.9%),
lacewings (11%), preying mantids (3.6%) and assassin
bugs (2.4%). Letters above each mean are significantly
different, Fisher’s LSD at P < 0.1.
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Figure 5. Average densities (sum ± SEM) of GWSS life
stages found on potted plants shows a significant density
reduction for each grouping of life stages.  These data were
collected during last adult flight (July to October 2002).
Letters above each mean are significantly different, Tukeys’
LSD test at P < 0.05.

Figure 6. Example of survey information on GWSS life
stages found in one sample of host plants on a residential
street in Bakersfield, CA (July 10, 2002). During this
survey, GWSS were not found on eucalyptus, pecan, pine,
ornamental plum, persimmon, oleander, fig, Opuntia spp.
or acacia.
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INTRODUCTION
We need to know what impact the glassy-winged sharpshooter (GWSS), Homalodisca coagulata, has on fruit yield, size and
quality as well as tree vigor.  The goals of this project are to determine the usefulness of management of GWSS to prevent
yield loss, fruit size reduction, and degraded fruit quality.  This information is paramount before we can even begin to
incorporate these into conventional IPM programs.  First we have to know what impact GWSS has on citrus, and second we
need to know how to use the materials against the GWSS in IPM programs to prevent potential losses.  Prior to this study,
efforts to manage GWSS in citrus were primarily to suppress populations to limit the spread of Xylella fastidiosa.

The primary goal of the first year of this project was to properly set up the three experiments in this project.  First, the
research sites had to be evaluated for suitability.  Second, high and low populations of glassy-winged sharpshooters had to be
established at a site with Valencia oranges and a site with Navel oranges.

OBJECTIVES
This research was initiated to:
1. Address the impact of GWSS on fruit yield, and distribution of fruit size when GWSS are controlled compared to

untreated blocks of Valencia oranges, ‘Washington’ navel oranges, and grapefruit
2. Evaluate the effects of high GWSS populations have on fruit quality (sugar/acid ratios, peel thickness, sugar/acid ratio,

juice quality, peel texture and firmness, susceptibility to post-harvest disorders) in Valencia and Navel oranges;
3. Evaluate the effects of large GWSS populations have on water stress, nutrient loss (Ca etc.), metabolite loss (amino

acids, xylem translocated PGRs) due to xylem feeding and fruit drop and fruit quality, and fruit drop
4. Determine if Admire enhances fruit size, tree health and vigor in the absence of GWSS.

RESULTS AND DISCUSSION
A Valencia Experiment (Experiment 1) was established at a site near Newhall (Ventura County).  The site has 6 replications
of 6 40-tree rows plus a 7th spare replicate with low GWSS populations and high GWSS populations.  The low population
treatment was established by applying Admire 2F to all 6 rows (4 guard rows + 2 harvest rows, May and August) in each low
population replication.  Four rows serve as “guard” rows in each replicate with 2 center rows serving as harvest rows.  Insects
were monitored weekly by trapping, and visually counting adults, nymphs and egg masses.  Efforts to establish differential
populations were successful.  On 8 August 2002, visual searches revealed 6.0adults/3 min search/tree (± 1.0 SEM) in the high
population trees verses 0.7/3 min search/tree (± 0.4 SEM) in the low population trees.  The high and low population trees had
2.7 (± 0.6 SEM) and 0.9 (± 0.2 SEM) egg masses/25 leaf turns respectively.

One of the harvest rows was harvested in May the other in August.  The fruit was sent to Filmore-Piru Packing House for
packout and evaluation.  Two cartons from 2 sizes (113 and 138) and 2 grades (Choice and Export) from each block and
treatment (total of 96 cartons) were selected.  Trans-Pacific shipment was simulated by storing the 96 cartons from at the
packinghouse for 21 days at 2.8°C (37°F) after which time the fruit was sent to KAC for storage at 20°C (68°F) for 4 days
followed by 12.8°C (55° F) for 5 days.  The procedure was followed for the May and August harvest rows.  For post-harvest
evaluation at harvest, initial measurements of general appearance, pitting, puff and crease, peel firmness, thickness, color,
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TA, TSS, and % juice were taken from a 20 fruit sub-sample.  Fruit was evaluated for general appearance, rind pitting, and
decay following simulated shipment.  The size distribution for the Valencia Experiment was not statistically significant for
the high population and low population trees, which is not surprising since this fruit was harvested within a few weeks of
Admire treatment.  This demonstrated that the trees were similar at the beginning of the experiment.

At the May Valencia harvest, 10 oranges were taken from 5 trees per replication and evaluated for pitting and signs of
potential GWSS ovipositor wounding on the fruit surface.  Only 3.1% of the fruit had pitting.  There were no signs of
attempted oviposition on the remaining 96.9% of the oranges.  Also, when the initial fruit evaluation was compared to final
evaluation, significantly more fruit had pitting (Figure 1).  The pitting is seemingly a postharvest disorder and is not caused
by direct damage of the GWSS.  The preliminary information suggests a physiological problem possibly a result of GWSS
xylem feeding behavior.  Research plans for 2002-03 have been modified to address these issues.

A similar experiment was initiated on 21 August 2001 for ‘Washington’ Navel oranges.  A site was established in Mentone
with a completely random design with 5 replications with high and low GWSS populations.  Each population level has three
rows of 43 trees (2 guard rows and 1 central harvest row).  The low populations were established by applying 32 oz of
Admire 2 via drip irrigation 21 Aug 2001 and 7 May 2002.  The central harvest rows of the low population rows were
subsequently treated with 3.2 oz of Baythroid (cyfluthrin, a pyrethroid) to minimize encroachment from adult GWSS flying
into these rows from heavily infested neighboring groves.  However, this encroachment was desired in the high population
reps.   Baythroid was chosen because it has excellent knockdown of adults and nymphs and kills nymph hatching from eggs
up to 21 days following application.  Furthermore, pyrethroids tend to repel GWSS.

Preliminary data was collected from the harvest trees on 21 January 2002.  This was not enough time to have complete effect
on the treated trees, since fruit set had occurred at least 4 months prior to the first Admire treatment.  Thirty oranges were
randomly collected from each tree in the harvest rows and hand ringed for size, weighed, and total soluble solids (TSS)
determined.  Size distributions, average orange weight, and TSS for the high and low population trees were not significantly
different.
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Figure 1. Comparison of initial evaluation verses final evaluation after simulated trans-Pacific shipment of May harvested
Valencia oranges.  More fruit had Pitting following the storage regime of 21 days at 2.8°C (37°F), the fruit was sent to KAC
for storage at 20°C (68°F) for 4 days followed by 12.8°C (55°F) for 5 days.

FUNDING AGENCIES
Funding for this project was provided by the California Citrus Research Board and the University of California Pierce’s
Disease Grant Program.
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SEASONAL CHANGES IN THE GLASSY-WINGED SHARPSHOOTER’SAGE STRUCTURE, ABUNDANCE,
HOST PLANT USE, AND DISPERSAL

Project Leaders:
Robert F. Luck
Department of Entomology
University of California
Riverside CA 92521

Richard Redak
Department of Entomology
University of California
Riverside CA

Cooperators:
Carlos E. Coviella
Department of Entomology
University of California
Riverside, CA

Juliana Garcia
Department of Entomology
University of California
Riverside, CA

Reporting Period: The results reported here are from work conducted from November 2001 to October 2002.

OBJECTIVES
1. Develop a technique to rapidly mark adult GWSS for release-recapture studies.
2. Develop a sampling system for eggs of GWSS and monitor GWSS egg density on citrus.
3. Monitor adult movements of GWSS.

RESULTS AND CONCLUSIONS
We have completed our laboratory and field experiments verifying the stability of fluorescent dust as a method for marking
the glassy-winged sharpshooter.  We know that the marks will last for at least 30 days and for as long as 80 days under field
conditions.  Adults captured during the summer months readily survived the capture and marking process. In contrast, the
few adult GWSS we captured at the UCR Agricultural Operations citrus groves during the winter months survived poorly
after we marked them, probably from age and the stress of being captured and marked.  However, Figures 1 and 2 show that
the marked and unmarked control GWSS survived equally well.  This was true for newly emerged adults collected during
summer (Figure 1), and for over wintering adults (Figure 2).

Figure 1.  Mean survival of adult GWSS with standard error bars.  Insects were collected during July and August.

Figure 2. Mean survival of adult GWSS with standard error bars. Insects were collected during January.

Both marked and unmarked control insects released in a barren field were equally able to fly at least 100 meters from the
release point within the first five minutes of their release.  This field experiment (Figure 3) showed that the drop in recapture
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over distance did not differ between marked and unmarked insects.  Also, the slope of the line describing the relationship
between the numbers of GWSS adults recaptured versus distance did not differ between the marked and unmarked
individuals.  The barren field experiment also showed a clear-cut affect due to wind speed. At wind speeds above 5 m/s, the
efficiency of the yellow sticky cards to capture adult GWSS suddenly dropped (Figure 4) suggesting that the insects cannot
steer into the traps or they are simply blown away.
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Figure 3. Mean recapture of marked and control insects.  Standard error bars and trend lines shown.

Figure 4. Mean recapture of GWSS with increasing wind speeds.

We now have focused on sampling adult and nymphal GWSS in citrus to estimate changes in their densities over time on a
whole tree basis.  We began sampling GWSS weekly at the Citrus Experiment Station, Agricultural Operations (UCR) 19
October 2001 and sampled three randomly selected trees per week.  We alternated sampling the lemon trees and Valencia
trees biweekly using two parachutes to cover each sample tree and confine the Pyronyl Crop Spray® (a natural pyrethrum
product).  We used the spray to fog the tree canopy beneath the parachute tent.  On May 17, 2002 we initiated sampling at a
new site in Kern County east of Bakersfield after obtaining authorization to apply pyrethrum in Kern County.  The sites we
had previously sampled in the Bena Road area beginning in July 2001 were treated October 2001, consequently the GWSS
populations at these sites were too sparse to estimate GWSS densities, age structure and survival during the winter spring
2001-2002 period.  Adult GWSS densities were too low at both the Agricultural Operations and Kern County sites to track
their movements during winter and spring.  By fogging Valencia and Lemons trees at Agricultural Operations, UCR, and
navel orange trees at a Kern Count grove in 2002, we estimated adult GWSS densities, their sex ratios, the onset of
oviposition, and nymphal development.  During the last months of this project, we are developing methods of detecting the
presence of GWSS in riparian vegetation and, once detected, to estimate their densities, objectives three and four. We
propose to test a system based on coated paper that will allow us to detect the ammonia in GWSS excreta and to test it against
known GWSS densities.  We are currently analyzing the data from these studies statistically and preparing manuscript based
on these analyses.

FUNDING AGENCIES
Funding for this project was provided by the California Department of Food and Agriculture.
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SPATIAL AND TEMPORAL RELATIONS BETWEEN GLASSY-WINGED SHARPSHOOTER SURVIVAL AND
MOVEMENT, XYLEM FLUX PATTERNS, AND XYLEM CHEMISTRY IN DIFFERENT HOST PLANTS

Project Leaders:
Robert F. Luck
Department of Entomology
University of California
Riverside, CA 92521

Mark Hoddle
Department of Entomology
University of California
Riverside, CA

Cooperators:
Carlos Coviella
Department of Entomology
University of California
Riverside, CA

Peter Andersen
University of Florida, North Florida
Research and Education Center, Quincy
Quincy, FL

Reporting Period: The results reported here are from work conducted from November 2001 through October 2002.

INTRODUCTION
The glassy-winged sharpshooter (GWSS), Homalodisca coagulata (Say) (Homoptera: Cicadellidae), has been identified as
the main vector for the xylem restricted bacterium Xylella fastidiosa, the causal agent of Pierce’s disease.  Our project aims to
identify those aspects in the GWSS-host plants interaction that may explain variations in GWSS performance and population
dynamics of this vector.  Following the field population dynamics of a species requires a reliable method for accurately
estimating real field densities.  Current methods used to estimate GWSS densities in the field, rely mainly on yellow sticky
traps or net beatings and insect counts.  We have developed a method to take absolute samples of the GWSS to recover all the
GWSS stadia except eggs.  We will then explore possible correlations between GWSS changes in population densities and
performance, with xylem physical and chemical parameters in different host plants.

OBJECTIVES
1. Quantify xylem flux patterns and to characterize xylem fluid chemistry to determine potential correlations with GWSS

movement from surrounding alternate host plants into vineyards.
2. Quantify egg production, nymphal survival, and adult production and movements in different host plants and to correlate

GWSS demographic statistics with xylem flux and chemistry.

METHODOLOGY
Our sampling system uses military parachutes to cover entire trees and then, by fogging the trees, we recover all the insects.
To estimate accurately the recovery rate, we collect adult GWSS in trees surrounding the ones to be sampled and mark the
GWSS with a dye.  After the randomly selected sample trees are tented, we release 100 marked GWSS in each of them.  The
amount of marked insects recovered is an estimate of the recovery rate of the population on each of the trees.  We then use
this number as a correction factor for each tree.  The average recovery rate of marked GWSS on these commercially sized
citrus trees is 89%. We count all the adult and nymph GWSS in the sample.  We also use a specially designed Schölander
bomb to measure xylem fluid pressure and to extract xylem fluid for chemical analyses.

RESULTS AND CONCLUSIONS
At this point, the method is being used in orange and lemon trees at three different locations.  One is a mixed orange/lemon
grove at Agricultural Operations, UC Riverside, and the other two consist of an orange and a lemon grove, in Temecula,
California.  We also did some limited work at an orange grove in Kern County, and in the Coachella Valley, California.  We
intend to use this method to follow GWSS population dynamics for two complete years, and to correlate changing GWSS
densities over time in different host plants with xylem flux and xylem chemistry over the same time period with the same
trees.  Our results show that several thousand glassy-winged sharpshooter adults occur per tree too (Figure 1).  We also found
that adult GWSS densities differ between lemon and Valencia trees at certain times of the year whereas they are similar
significantly between Valencia oranges and lemon over the entire year, adult GWSS switch from Valencia to lemon trees
starting in mid-January.  By the end of February, when the first egg-masses appear, 99.51% of the adult GWSS population
can be found on lemon trees.

The results shown here are in agreement with indirect density measurements in the same and other areas.  Data from a mark-
recapture method used in our other studies, allowed us to use the Lincoln index to estimate GWSS adult population densities.
Summer estimations for adult GWSS ranged between 6,000 to more than 8,000 adult GWSS per tree (ca. 600,000 to
800,000/acre) in both Agricultural Operations, UC Riverside and a non-treated orange grove in the Bena Road area of Kern
County.  We are also counting all nymphal stages and estimating nymph densities.  These results for this first year of
sampling will also be presented.
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Figure 1. Monthly mean of adult GWSS on lemon trees (dotted line) and orange trees (solid line).

With these data, we have also estimated GWSS sex ratios.  Based on the coloration of newly emerged adult GWSS, we
estimated the proportion of new adults per sampling date.  All these data will be used to calculate recruitment, and mortality
for each age and for each generation on both citrus host plants, and therefore, to build a picture of the GWSS population
dynamics over time.  We are using the Scholander bomb for xylem fluid extraction on the same trees that are sampled for
GWSS for subsequent chemical analyses.  We are in the process of collecting the samples in both places at UC Riverside and
Bakersfield area.  We intend to expand this xylem studies to different host plants, namely grapefruit, tangerines, and
grapevines during the second year of the project.  The chemistry of the xylem samples for the first year is being analyzed, and
we will test for possible correlations between fluctuations in xylem chemistry and in GWSS performance that might explain
changes in GWSS densities over time.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service.
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KEYS TO MANAGEMENT OF GLASSY-WINGED SHARPSHOOTER: INTERACTIONS BETWEEN HOST
PLANTS, MALNUTRITION, AND NATURAL ENEMIES

Project Leaders:
Russell F. Mizell, III and Peter C. Andersen
University of Florida,
North Florida Research and Education Center, Quincy
Quincy, FL 32351

Reporting Period: The results reported are from work conducted from 2001-2002.

INTRODUCTION
Leafhopper vectors of Xylella fastidiosa (including GWSS) behave very differently than most herbivorous insects. GWSS has
evolved many unusual adaptations that enable subsistence on xylem fluid.  Adult GWSS may feed on hundreds of different
host species, are long lived and exceptionally mobile and fecund.  Nutrition affects GWSS female fecundity and longevity,
and malnutrition is a primary source of mortality of immatures.  We have established that adults prefer to feed on xylem fluid
with specific chemical characteristics (high amide concentrations).  Nymphs develop more successfully on xylem fluid with
low amide concentrations and proportionally higher concentrations of many of the more dilute amino acids that are deemed
essential for the development of most insects.  We have also established the physiological basis for this phenomenon: adults
can more efficiently use nitrogen and carbon from high amide concentrations than can young developing nymphs cannot.
Given the pivotal status of host plant nutrition on GWSS behavior and survival, we are investigating GWSS behavior and that
of its parasitoids in field and laboratory experiments to elucidate how the underlying feeding and oviposition behavioral
mechanisms relate to host plant quality.  The behaviors involved in host selection can be divided into two extremes. In the
first, selection takes place after insects contact the host, the second extreme implies that the insect perceives plant
characteristics at a distance and select hosts based on these perceptions.  These two extremes can be described as host-plant
recognition and host-plant finding.  Host plant recognition is less well known in the literature, but our research is addressing
behaviors involved in both categories.

OBJECTIVES
1. Determine the effects of host plant assemblages and host plant chemistry on distribution, performance and behavior of

Homalodisca coagulata, glassy-winged sharpshooter (GWSS) and its natural enemies.
2. Determine the relationship of host plant xylem chemistry on host selection, feeding and ovipositional behavior of GWSS

and its parasites.
a. assess host plant acceptance and subsequent feeding rate, host plant selection and acceptance for oviposition

and the survival and performance of early and late instar nymphs as a function of host plant species.
b. quantify the impact of these plant variables on the behavior and parasitism rate of eggs by Gonatocerus

ashmeadi.

RESULTS AND CONCLUSIONS
We examined GWSS host utilization with a series of choice and no-choice tests in cages containing example hosts most
relevant to California (Navel orange, Spanish Pink lemon, and Vitis sp. - > Chardonnay = grapes).  Glabrous soybean as a
standard was also included as soy is one of the few hosts on which immature GWSS consistently develop.  Cages with adult
GWSS (two types run separately - diapausing (late autumn), and reproducing (mid-summer)), and one plant of all 4 species
or with 4 plants of each species separately were used to assess host selection, consumption rates, oviposition, nymphal
development, growth and survivorship.  In choice-tests, Navel oranges were consistently the preferred hosts, 40-65% of
GWSS remained on Navel when examined for 10-22 day intervals.  Selection of other hosts was dependent on time of year;
Spanish Lemon was selected moderately by diapausing insects (25-40%) and Vitis and soy were not preferred (<20%).
Reproductively-active GWSS also preferred Navel 45-65%, followed by soy (20-30%), with Vitis and Lemon lowest (<20%).
Despite high selection of Navel (and lemon by diapausing leafhoppers), the two citrus hosts consistently had the lowest
consumption rates by adult GWSS.  Consumption rates were consistently 1-2 mL/day on Citrus while they were 4-7 mL/day
on the less preferred Vitis and soybean.  Consumption was not significantly different between diapausing and reproducing
GWSS suggesting that diapausing GWSS are still active in accumulating nutrients, albeit for storage of nutrients for
successful overwintering rather than egg production.  Navel oranges received the highest rates of oviposition, with Vitis also
receiving moderate levels of egg deposition.  Lemon and soy received very little oviposition.  Neonate nymphs (less than 24
hrs) introduced from neutral hosts quickly rejected both Vitis and Lemon (<5% remained on hosts after 5 days), and were
only able to develop to second instar on Lemon and fourth instar on grape.  In contrast, roughly 30% of neonates placed on
Navel remained for 5 days; however, these developed slowly and all perished before completion of the second instar.  On the
soy standard, ca. 35% successfully developed to adults.  Preferential selection of Navel thus appears related to reproductive
behavior (including oviposition and development of very young nymphs) rather than consumption rates.  Navel selection
occurred by diapausing as well as reproducing GWSS, indicating that generalized cues in Navel may be operative even when
GWSS is not seeking ovipositional sites.  We noted a decrease in preference (60 to 40%) for Navel over time by diapausing
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GWSS, suggesting that leafhoppers were very gradually shifting to better feeding hosts; for reproductively active GWSS,
choice of Navel actually increased with time.

Field evaluation of Vitis selection by GWSS:
We examined seasonal trends in GWSS abundance on 12 cultivars of Vitis.  These included the economically important Vitis
vinifera (cv.  Chardonnay, Chenin Blanc and Exotic), and rootstock species including V. champinii (cvs. Dog Ridge and
Ramsey), V. rupestris (cvs. St. George and Constancia), and V. simpsoni (cv. Pixialla).  We also examined 4 Southeastern
muscadine genotypes from V. rotundifolia (cvs. Carlos, Noble, Early Fry, Regale).  Vines (4-8 per genotype) were counted at
least once a week from late May until the present (late October).  GWSS populations on Vitis peaked in June with
abundances being greater on V. champinii, V. rupestris, and V. simpsoni (13-18 adult GWSS per vine).  Abundances were
significantly lower on V. vinifera (7.5 per vine) and V. rotundifolia was significantly lower than all other species (2.2 per
vine).  Populations on Vitis declined in mid-summer but these trends in selection continued until August, at which time
GWSS counts on V. vinifera rose to approximate those found on V. champinii, V. rupestris, and V. simpsoni.  Increased
selection of V. vinifera persisted until late season, when GWSS populations in Florida decline.  Selection of muscadine
grapes V. rotundifolia was always significantly less than all other Vitis species.  High suitability of V. champinii, V. rupestris,
and V. simpsoni for GWSS may be of interest as these species are often used as rootstocks.  We have previously established
that rootstocks largely determine xylem composition, and have shown in Florida that selection of rootstock can be used to
alter the preference of GWSS for cultivars of Prunus.  Rootstocks may be a tool for establishing grapes less suitable for
GWSS.

One of our primary objectives is to identify plant nutritional variables that may be operational in determining host
acceptance, consumption rates, ovipositional preference, etc.  Choice experiments were repeated using important host plants
from the leafhoppers home range including yaupon holly, burford holly, crape myrtle and soy.   Preliminary results of
chemical analyses from both sets of choice experiments indicate general trends we have found on Florida hosts previously.
Specifically, Navel has proportionally very low amide concentrations.  This is consistent with what we have found for other
hosts that are poor feeding hosts, but good ovipositional hosts.  In a field experiment we evaluated GWSS oviposition rate in
response to plant nutritional quality. There were some significant differences in host acceptance and oviposition rate.  We
also examined oviposition in no-choice experiments (cages with 4 plants of one host species rather a mix of four host
species). There were some significant differences in host acceptance and consumption rates indicating that feeding history
should be considered in future experiments and can impact GWSS host selection.  Completion of our analyses and further
experimentation should delineate chemical cues related to ovipositional selection.

Understanding the determinant mechanisms involved in parasitoid plant and host egg finding and recognition (selection and
acceptance) is also an objective.  We conducted experiments in the field and laboratory to elucidate the cues produced by the
plant, the vector or its eggs that parasitoids may be exploiting.  We have ostensibly eliminated many possibilities including
components of GWSS excreta, but to date we have not positively identified any specific cues directing parasitoid behavior.
More candidate cues both chemical and visual need to be evaluated while this work continues.

Understanding the mechanisms involved in adult GWSS host plant finding and recognition is also the subject of several
experiments. We have determined that the host plant appears to provide cues that GWSS may recognize in the air prior to
landing.  Other results suggest that host acceptance is determined by taste at the xylem tissue level.  We are presently
validating experimental methodologies to further tests hypotheses generated from current field results.

FUNDING AGENCIES
Funding for this project was provided by the American Vineyard Foundation and the University of California Pierce’s
Disease Grant Program.



-111-

MATING BEHAVIOR OF THE GLASSY-WINGED SHARPSHOOTER, HOMALODISCA COAGULATA

Project Leader:
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Reporting period:  The results reported here are from work conducted from April 2002 to November 2002.

INTRODUCTION
Mating behavior in leafhoppers is mediated by vibrational signals transmitted through plants (Claridge and de Vrijer 1994).
Leafhopper calls are species-specific and have proven useful in resolving taxonomic problems.  Furthermore, analysis of
intra- and interspecific variation in male calls has provided clues about speciation processes.  However, little is known about
mate-finding tactics at the habitat level or the specific cues used by males to locate females after mate recognition.
Theoretical and some experimental research on leafhoppers and planthoppers clearly indicates that seasonal patterns of
abundance and dispersal are intimately linked to a species mating system (Ott 1993).  Thus, determining rules that govern
mating behavior may ultimately contribute an understanding of population and community level processes.  Also, the
application of basic knowledge of leafhopper mating behavior to an applied problem such as developing a novel monitoring
device for the glassy-winged sharpshooter is virtually unexplored.

OBJECTIVES
1. Determine the role of vibrational signals in mate recognition, attraction, courtship, and copulation.  This objective will be

accomplished by describing variation in vibrational signals associated with mate recognition, attraction, courtship, and
copulation and by quantifying behavioral transitions that lead to mating.  Playback experiments will be done to confirm
the involvement of observed signals in mediating the above behaviors.

2.  Assess the feasibility of developing improved monitoring traps by using vibrational signals to attract adults.  This
objective will be accomplished by determining the effect of sticky traps augmented with vibrational signals on the
capture of glassy-winged sharpshooters.

RESULTS AND CONCLUSIONS
Laboratory observations and experiments are being conducted in an arena that provides a uniform background and both
reduced airborne noise and observer interference.  The arena is a 1.1 m x 0.7 m x 0.9 m box that is positioned on a vibration
isolation table.  The laser and vibrator (see below) are located inside the box.

We recorded vibrational signals using a laser Doppler vibrometer (LDV) (Polytec: model OFV 353 sensor; model OFV 2602
controller, 1.0 mm/s/volt setting) connected to a Macintosh computer equipped with a 16-bit Audiomedia III (Digidesign)
sound card.  The card was controlled using Peak 3.0 (BIAS) software.  Signals were digitized at a sample rate of 44,100 s-1

and stored on the hard drive of the computer.  Temporal and frequency features were measured using Canary 1.2.4 (Cornell
Laboratory of Ornithology) software.  The filter bandwidth for all frequency measurements was set at 43.71 Hz.  Calls
emitted by males have been recorded and characterized (Figure 1 and Table 1).  The male call consists of a long duration
whine that rises in frequency followed by a series of pulses.  Current efforts on male calling behavior focus on determining
daily patterns of calling activity.

At present I am investigating male/female interactions and male search behavior. Females respond to calls emitted by males
or to recordings of these signals by emitting a whine-like call that is similar in structure to the male call.  Males search in
response to female calls in a manner typical of other leafhoppers.  Results of this ongoing work will be used to plan specific
studies under objective 2.
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Figure 1. Sonogram (upper panel) and oscillogram (lower panel) of a typical call emitted by a male Homalodisca coagulata.
Male calls have two distinct sections.  Section one consists of a whine that increases in frequency.  Section 2 consists of a
series of pulses.  Refer to Table 1.

Table 1. Analysis of calls emitted by first generation males (N = 15) reared from adults collected on the UC Riverside
campus.
_________________________________________________________________________________________________________________________________________

Call Features Mean + SD
________________________________________________________________________________________________________________________________________

Section 1 duration (s)  1.71   + 0.167

Section 2 duration (s)  0.68  + 0.164

Section 1 initial frequency  75.20  + 9.871

Section 1 end frequency  115.60  + 19.036

Section 2 initial frequency  65.60  + 14.136

Section 2 end frequency  66.20  + 8.446

Number of pulses in section 2 6.4  + 1.789
________________________________________________________________________________________________________________________________________

All frequency (Hz) measurements are based on the fundamental frequency (i.e. the lowest high energy band).  Refer to Figure
1.
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INTRODUCTION
The glassy-winged sharpshooter (GWSS), Homalodisca coagulata (Say), is a serious pest of many tree and vine crops
(Turner and Pollard 1959, Nielson 1968).  The main concern of the presence of the GWSS in California is that this insect is
an efficient vector of the bacterium, Xylella fastidiosa, which causes vascular disease in multiple crops, including grapes,
citrus, and almonds, along with horticultural plants, including oleander and mulberries (Meadows 2001, Hopkins 1989,
Purcell and Hopkins 1996).  An adult GWSS need only encounter the Pierce’s disease causing bacterium, X. fastidiosa, once
while feeding on an infected plant and it will then be a vector of X. fastidiosa for the rest of its life (Frazier 1965, Purcell
1979, and Severin 1949).

Little is known about the reproductive biology of the GWSS.  It has been reported that GWSS has two generations per year in
Southern California (Blua et al. 1999).  Oviposition occurs in late winter to early spring, and again in mid-to-late summer.
Adult females live several months and lay small eggs side by side in groups of about 10, ranging from 1 to 27 (Tuner and
Pollard 1959).  The greenish, sausage-shaped eggs are deposited in the leaf epidermis of the host plants.  Our research is
focused on the reproductive morphology and physiology of the GWSS.  We are examining the seasonal differences in female
and male GWSS reproduction between summer and overwintering populations by studying oögenesis and spermatogenesis
cycles.  This knowledge is important in determining how GWSS might choose plant hosts in the landscape, which and why
these host plants are particularly suitable for GWSS ovarian development, and finally how control measures might best be
implemented based upon season and stage of reproductive development.  Better knowledge of reproductive biology might
also lead to better decision support including improved choices of chemical or non-chemical approaches to GWSS control.

OBJECTIVES
1. Collect and prepare GWSS specimens for studying the morphology and anatomy of female GWSS.
2. Study and describe the musculature associated with the female ovipositor.
3. Characterize the reproductive cycle of female GWSS.
4. Study effects of location on female GWSS reproductive cycle.
5.  Study effect of host plant type on female GWSS fecundity.

RESULTS AND CONCLUSIONS
Female and male GWSS were collected from June 2001 to October 2001.  Due to some problems with specimen
preservation, only specimens collected after September 2001 were useful for dissection purposes.  Samples were taken on
monthly or bimonthly intervals, and a random subsample of 10 females per month were dissected to determine ovarian
development of the specimens.  The stages of ovarian development were arbitrarily set from 1 to 8, with 1 being the least
developed stage associated with youngest adult females and 8 being the fully developed stage associated with the oldest adult
females.  Stage 1 has 2 small oöcytes per ovariole and no corpus luteum present.  Stage 2 has 3 small oöcytes per ovariole
and no corpus luteum.  Stage 3 has 2 small oöcytes per ovariole and one large ova per ovariole.  Stage 4 has 1 small and 1
medium oöcyte, and 1 large ova per ovariole.  Stage 5 has 2 small oöcytes per ovariole with a corpus luteum present.  Stage 6
has 1 small oöcyte and 1 large ova per ovariole with, or without, a corpus luteum present.  Stage 7 has 1 small oöcyte per
ovariole with a corpus luteum present.  In stage 8 there are only large ova present.  Stage 1 and 2 are previtellogenic.  Stages
3 to 8 are reproductively active females who are in the process of oviposition (Stages 3, 4, 6 and 8), or have already
oviposited at least once (Stages 5 and 7).  The average ovary rank per sampling date from October 2001 to June 2002 is
plotted in Figure 1.  We are still attempting to determine which generations are present on each sampling date.  The presence
of two generations of insects at most times of the year has led to variation in the ovarian development among the dissected
specimens and we are planning to dissect 10 additional specimens for each sampling date.  This will result in a total of 20
specimens dissected per sampling date.
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The oögenesis and spermatogenesis cycles will be further studied using histological and cytochemical methods as well as
transmission electron microscopy (TEM).  This study has recently been expanded to include a site in Ventura County, CA to
examine possible location effects in California.

Muscles of Ovipositor:
Musculature of the female ovipositor was determined using gross dissection techniques and drawings (Figure 2).  Muscle 1 is
a dilator, it originates on the VIII tergite (T) and inserts on the common oviduct.  Muscle 2, a retractor, connects the pygofer
to the VIII T.  Muscle 3, a depressor, originates on the VIII T and inserts on the first valvifers (vlf).  Muscle 4, a dilator,
originates on the pygofer and inserts on the third valvula (vl).  Muscle 5, also a dilator, originates on dorsal-posterior portion
of the first vlf and inserts on dorsal portion of second vlf.  Muscle 6, a retractor, originates on the apodeme of the pygofer and
inserts on the dorsal-most portion of second vlf.  This muscle consists of two portions: 6a, which originates on the posterior
edge of the pygofer apodeme; and 6b, which inserts on the apodeme ridge.  Finally, muscle 7 is a protractor, it originates on
the dorsal-posterior portion of the pygofer and inserts on the ventral-most portion of the second vlf.  The other muscles
illustrated are associated with movement of the abdominal segments and are not directly associated with oviposition.

The hypothesized sequence of muscle action during oviposition is described as follows.  1) The contraction of muscle 2
retracts the pygofer by pulling it toward the body and away from the tip of the ovipositor.  2) By the contraction of muscle 4,
the paired third valvulae are dilated ventrally to further expose the ovipositor (to reduce friction with the body).  3) Muscle 3
contracts to pull the first vlf dorsally and subsequently causes the first vl to depress and tilt away from body.  4) a. Muscle 7
contracts causing the second vl to protract away from the body, and b. simultaneous contraction of muscles 3 and 7 result in
the ovipositor being pushed away from the body.  5) Muscle 6a contracts pulling the second vl toward the body.  6) Muscle
6b contracts resulting in the rotation of the ovipositor.  7) Muscles 3 and 7 will relax as muscle 6a contracts causing the
ovipositor to move toward the body again, thus beginning the sawing motion. Muscles 3 and 7 will contract once again, and
the seesawing action continues.  When muscles 6 and 7 work oppositely, the second vl. – sawing portion – will move toward
and away from the body.  The simultaneous contraction of muscles 3 and 7 will accentuate the seesawing action of the
ovipositor (second vl. slides on a groove in the first  vl.).  8) Once a slit has been made in the leaf, muscles 1 and 5 contract
causing the opening up of the paired second valvifers, which expands the genital chamber to allow an egg to pass or for
copulation.  9) Once the orifice of the common oviduct into the genital chamber has been dilated, the egg will be deposited
into the genital chamber and further slide through the opening now present between the paired second valvifers.  The egg will
then slide down the middle groove of the ovipositor that is present between the paired first and second valvulae.

Oögenesis study:
The details of reproductive cycle of the female GWSS are still not clear based on our limited data.  Our data suggest that
from October to February, there is a gradual decrease in mean ovarian development rank, indicating that there is probably a
shift toward a higher proportion of younger insects in the population during the period.  The ovarian rank begins ascending in
March, indicating that the population largely consists of older female GWSS (Figure 1).

Host Plant Study:
The greenhouse study conducted this summer has shed light on differences in female fecundity reared on different host
plants.  In this study adult female and male GWSS were caged on citrus, grape, or oleander and allowed to mate and oviposit
on the plants.  We were successful in obtaining oviposition and in rearing GWSS from egg stage to adult stage on all three
types of host plants.  Data are still being collected, and have yet to be summarized for analysis.
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Figure 2. Lateral view of the musculature associated with the female Homalodisca coagulata ovipositor.
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INTRODUCTION
Despite the major research efforts presently underway to minimize the significant economic losses caused by the glassy-
winged sharpshooter and Pierces’s disease there are major gaps in our understanding of the basic biology of this insect and its
interactions with host plants.  There is little current literature dealing with the structure of mouth parts of the glassy-winged
sharpshooter.  Understanding the structure of the mouths parts and their interaction with host plant cells is essential to
determining how the insect transfers the bacterium from plant to plant.  Details of the mouth parts and feeding behavior may
also provide the information necessary to determine why some sharpshooters can feed on infected plants but not transfer the
bacteria to healthy plants on subsequent feedings.  There is speculation as to why the cavitation does not occur in the xylem
tissue despite the large water loss associated with sharpshooter feeding.  Preliminary evidence from our laboratory
demonstrates that both immature and adult insects probe leaf blades and petioles but never actually penetrate the xylem tissue
of the veins.  Are these insects actually feeding on cells outside of the xylem tissue?  The research outlined in this report will
contribute significantly to a greater understanding of glassy-winged sharpshooter feeding and its relationship to Pierces’s
disease.

OBJECTIVES
1. Describe the morphology and ultrastructure of the glassy-winged sharpshooter mouthparts.
2. Describe the process of stylet penetration and the function of each stylet pair during feeding.
3. Ascertain the path of the mouth parts from the epidermal layer to the vascular tissue of the host plant and to ascertain if

the sharpshooter has fed in parenchymatous or phloem tissue en route to xylem tissue.
4. Determine the ultrastructure of the salivary sheath and its association with all plant tissues encountered from the

epidermal layer to the xylem tissue.

RESULTS AND CONCLUSIONS
Glassy-winged sharpshooters (GWSS), Homalodisca coagulata, were field collected from citrus and eucalyptus in Ventura,
California, July 2002.  Additional insects and plants were obtained from the Oswald Street Biological Control Station,
Bakersfield California.  Light and electron micrographic studies were used to describe the sharpshooter mouth parts (Figures.
1-5) which consist of a labrum, labium, and stylet fascicle.  The three-segmented labium contains the fascicle bundle
composed of two external mandibular stylets and two internal maxillary stylets.  The stylets are capable of rapidly
penetrating leaf tissue or woody stems.

The crescent-shaped mandibular stylets taper to sharp points at their tips (Figure 2) and have elaborate sculpturing along their
borders (Figure 3).  Each stylet is manipulated by retractor and protractor muscles that allow independent movement of the
stylets.  On the medial surface of each stylet is a series of cup-shaped flanges that are more prominent near the tip of the
stylet.  The two mandibular stylets are morphologically distinct.

The maxillary stylets (Figure 4) are longer than the mandibular stylets and are semicircular in cross sectional view (Figure 5).
These stylets are interlocked along their entire length with the exception of the very tip.  They interlock similar to a mortise
and tenon type of joint forming a smooth central tubular food canal and salivary canal (Figure 5).  Dendritic canals are
evident in both the mandibular and maxillary stylets.

Sharpshooters can relocate from one feeding position to another and be producing exudate within thirty seconds.  Many of
the salivary sheaths formed are highly branched.  Although the sharpshooter is considered to be an exclusive xylem feeder, a
high proportion of the salivary sheath branches do not terminate in the xylem tissue (Figure 6).
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Figure 1. Mandibular and maxillary stylets extended beyond the tip of the labium.
Figure 2. Mandibular stylet tips of a nymph.
Figure 3. Dorsal view of an adult mandibular stylet.
Figure 4. Tips of the maxillary stylets of an adult.
Figure 5. Cross sectional view of the stylet fascicle.
Figure 6. Cross sections of  sunflower stems showing salivary sheaths.
Cc - cortex, Dc - dendritic canal, Fc - food canal, Lb - labium, Lg - labial groove, Pi - pith, Md - mandibular stylet, Mx -

maxillary stylet, Sc - salivary canal, Ss - salivary sheath, Xy - xylem.

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program.



-118-

RELATIONSHIP BETWEEN TOTAL POPULATION COUNTS OF GLASSY-WINGED SHARPSHOOTER
AND NUMBERS OBTAINED FROM VARIOUS SAMPLING METHODS

Project Leaders:
Matthew J. Blua, Rick Redak, and Carlos Coviella
Department of Entomology
University of California
Riverside, CA 92521

David Akey
USDA, ARS, PWA
Western Cotton Res. Lab
Phoenix, AZ

Reporting Period: The results reported here are from work conducted from July 18, 2002 to October 1, 2002.

INTRODUCTION
Most of our knowledge of the dispersion of Homalodisca coagulata (glassy-winged sharpshooter, GWSS) has been obtained
with relative sampling methods in vineyards and citrus orchards (Blackmer et al. 2001, Blua et al 2001, Puterka 2001).
Currently, sampling methods are being used to determine timing of pesticide treatments and to judge their efficacy (Blua and
Redak 2001, Henneberry et al. 2001).  This use implies that the sampling method used relates in a known way to population
density.  Unfortunately, this is not the case, and some important questions are raised.  If a given treatment against GWSS
results in “zero counts” by beat sampling, does that necessarily indicate that there are no GWSS in the area due to the
treatments, or could some GWSS be left alive but at density below the detection threshold of the monitoring tool?  Could an
unknown low density of GWSS be enough to vector PD within or between treated areas?  Does the relationship between
population sampling precision and accuracy change seasonally?  To answer these questions it is imperative to develop a
fundamental understanding between actual (=absolute) GWSS density in the field and any relative density estimates derived
from various sampling procedures.

OBJECTIVES
The overall goal of our research is to correlate the numbers of GWSS obtained by various sampling methods currently used
in population monitoring in citrus with their population density.  Part of this goal involves developing and testing sampling
methods.  Sampling methods chosen for examination were yellow sticky-card monitoring, beat-net sampling, and timed
counts.  Total sampling involved covering trees with tents, killing all GWSS inside with pyrethrum canisters, and counting
dead sharpshooters on cloth under the trees.

RESULTS AND CONCLUSIONS
To determine the efficiency of yellow sticky-card sampling we examined numbers of GWSS caught on the cards as a
function of the number of GWSS placed on the card before it was deployed in the field.  Mean numbers (and SE) of GWSS
caught on cards on which we placed 0, 25, 50, 100, and 200 GWSS was 45 (6.9), 38.4 (4.1), 39.4 (2.0), 30.8 (5.6) and 8.4
(3.3), respectively.  We detected a significant (p < 0.001) relationship between numbers of GWSS placed on the card and
numbers of GWSS caught (Figure 1).  This relationship should be considered depending on the use of yellow sticky-cards in
GWSS monitoring.

Because this project was initiated in mid July 2002, we have collected and analyzed sampling and total count data for only 7
dates.  Thus far, for adult and total GWSS no significant correlations were detected between absolute counts and beat-net
samples, timed counts, or sticky-card samples.  For adults, GWSS sticky-card samples did not significantly correlate with any
other sampling method.   For juvenile GWSS, absolute counts correlated significantly (p = 0.035) with timed samples.
Finally, for juveniles, adults, and total GWSS, beat-net samples correlated significantly (p < 0.01) with timed counts.
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Figure 1: GWSS capture as a function of the number of individuals placed on the yellow sticky card before
field deployment. Equation for line is Y = -8E-0.05X2 – 0.0022X + 6.5844, R2 = 0.708.
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INTRODUCTION
In spite of recent advances to reduce the spread and impact of Pierce’s disease spread, few advances have been made in
diagnostics of the pathogen, Xylella fastidiosa.  This is in part due to a perceived lack of need for better diagnostics.
Commercial and government laboratories routinely determine the presence of X. fastidiosa in plant tissue using serological
assays (i.e. ELISA), polymerase chain reaction (PCR), and culturing techniques.  Each of these techniques is valuable, the
choice depending on the circumstances surrounding their use.

Unfortunately, none of these techniques have been developed to routinely detect X. fastidiosa in sharpshooter vectors that are
known to spread X. fastidiosa.  Several laboratories have detected the bacterium in Homalodisca coagulata, including
laboratories under the supervision of D. Cook, D. Cooksey, H. Costa, T. Miller, A. Purcell, and R. Redak of the University of
California.  Thus far, the detection limit of X. fastidiosa in sharpshooter vectors is not established for any technique.  Nor is
the relationship between detection in H. coagulata and inoculation probability.

Why is it important to detect X fastidiosa in sharpshooter vectors?  Precisely so we can define the window of time during
which grapevines are most susceptible to an inoculation event leading to chronic/terminal infection.  An awareness of this
window of time will allow new and promising plant protection tactics to be deployed optimally.  Currently, we know that
systemic neonicotinoid insecticides not only induce GWSS mortality for several weeks after treatment, but also inhibit
feeding for much longer (Blua and Redak 2001, Bethke et al 2001).  This later characteristic may be more important to
reducing disease spread than the former.  If the sharpshooter does not feed, it cannot inoculate the pathogen into a non-
infected plant or acquire it from an infected plant.  In experiments that optimized X. fastidiosa transmission by the GWSS,
inoculation efficiency jumped from 2% after 1 hour of inoculation access time to 23% after 6 hours (A. Purcell, personal
communication).  Substances that limit feeding to seconds or minutes could reduce transmission efficiency to the point of
essentially blocking the spread of X. fastidiosa. Unfortunately, restraints on the use of neonicotinyl insecticides in grapevines
do not allow adequate protection throughout the year.  Thus, we need to determine when their use would have the greatest
impact on infectious GWSS. These arguments can be applied to other plant-protection tactics including the use of substances
that disrupt GWSS behavioral cues, and others that inhibit establishment of X. fastidiosa in grapevines.

OBJECTIVES
Our long-term goal is to identify the window of time during which grapevines are most susceptible to inoculation by glassy-
winged sharpshooters (GWSS) carrying the Pierce’s disease bacterium, Xylella fastidiosa.  In support of this goal we propose
first to generate a method of detecting X. fastidiosa in glassy-winged sharpshooter vectors that maximizes sensitivity, and is
amenable to large sample sizes.

RESULTS AND CONCLUSIONS
Several commercially available PCR preparation kits are useful in detecting X. fastidiosa.  These kits use different
combinations of cell lysing agents and DNA capture methods.  All kits we examined were relatively cheep, easy to manage,
and amenable to a large number of samples (Table 1).

All of the kits and procedures detected X. fastidiosa from pure culture with the exception of Cell Lytic from Sigma (Table 2).
A liquid nitrogen extract of H. coagulata heads interfered with Dneasy (Qiagen), FTA genecard (Whatman), and the Single
Fly procedure, even though DNA was detected from all extracts.  None of the kits detected X. fastidiosa from liquid nitrogen-
extracted H. coagulata heads that were collected from citrus at U.C. Riverside.  In a more extensive examination of the
gDNA Blood Mini Kit (Eppendorf) our lower detection limit was 9 x 102 CFU with a sharpshooter head background.

Our preliminary attempts to detect X. fastidiosa in H. coagulata that were allowed to feed on infected grapevines have shown
inconsistent results (Table 2).  Several issues need to be explored.  First, bacterial titer in H. coagulata that have acquired it
frequently may be lower than our detection limits.  Second, bacteria may be “trapped” in areas of H. coagulata mouthparts or
foregut in ways that inhibit extraction.  Third, interfering substances in the insect may inhibit extraction or PCR.  Further
studies will focus on these possibilities to optimize detection of X. fastidiosa in H. coagulata.
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Table 1: Aspects of PCR kits examined for the detection of Xylella fastidiosa.

Kit/Procedure Company LYSIS DNA Capture Time
(24 preps)

Cost
/sample

GeneClean Bio 101 SDS-Detergent Silica Glassmilk 1.0 hr $1.00
Dneasy tissue Qiagen Proteinase K Silica Gel Membrane 1.0 hr $2.00
DNAzol MRC Inc. guanidine-detergent Phase Separation 1.5 hr <$1.00
FTA genecard Whatman Chemical2 None <20 min <$1.00
gDNA Blood mini Eppendorf SDS/Proteinase K Silica Gel Membrane 1.0 hr $1.00
DNA extraction Fermentus Chemical2 Silica glass beads 1.5 hr $1.00
Cell Lytic Sigma Lysozyme/SDS/Chemical None 1.5 hr <$1.00
Single Fly1 N/A Proteinase K None 1.0hr <$1.00
Phenol Extract N/A Phenol Phase Separation Varies <$1.00

1Procedure that uses proteinase K for lysis and directly to PCR
2Proprietary information

Table 2: Detection of DNA and Xylella fastidiosa (X.f.) by PCR kits examined.

Method Company
Cultured

X. fastidiosa
Cultured X.f. +

H. coagulata
Field Collected
H. coagulata

X.f. from
H. coagulata

DNA X.f. DNA X.f. DNA X.f. DNA X.f.
GeneClean Bio 101 Yes + Yes + Yes - Yes -
Dneasy tissue Qiagen Yes + Yes - Yes - Yes -
DNAzol MRC Inc. Yes + Yes + Yes - Yes -
FTA genecard Whatman Yes + Yes - Yes - Yes -
gDNA Blood mini Eppendorf Yes + Yes + Yes - Yes -
DNA extraction Fermentus Yes + Yes + Yes - Yes +
Cell Lytic Sigma No - No - No - No -
Single Fly N/A Yes + Yes - Yes - Yes -
Phenol Extract N/A Yes + Yes + Yes - Yes -

Samples were from cultured X. fastidiosa (n=4), cultured X. fastidiosa with Homalodisca coagulata adult heads extracted
with liquid nitrogen (n=8), H. coagulata heads from adults collected in citrus and extracted as above (n=4), and heads
extracted as above from H. coagulata adults allowed to feed for 4 days on grapevines infected with X. fastidiosa (n=4).  PCR
used primers set 31 and 33 (Minsavage et al. 1994).
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Reporting Period: The results reported here are from work conducted from August 2000 to November 2002.

INTRODUCTION
The glassy-winged sharpshooter (GWSS), the leafhopper principally responsible for the spread of Pierce’s disease on grape
in California, is the species Homalodisca coagulata.  This special capacity relates to the tissue upon which all sharpshooters
(leafhopper subfamily Cicadellinae) feed: xylem, and the invasive status of the GWSS in California.  It is noteworthy that of
the19 species in the genus, only one other species occurs in California and 18 species occur outside the USA (6 of these also
occur in the USA).  The genus is common in Mexico and also occurs southward through Central America, northern South
America, and southeastern Brazil and Paraguay.  That is, most species of Homalodisca, were they to reach California, have a
destructive potential equal to the GWSS regarding the grape industry.  The genus Homalodisca contains two other species
that are already known to vector phytopathogens and it is practically expected that all species in the genus have the capacity
to be, or become, serious vectors.  Clearly, in a situation like this, we need to be clear about which species we are studying.
The genus has never been revised.

Words are the tools of efficient communication and taxonomy is the vocabulary of species.  By linking information to genus
and species names, a classification of species becomes at once a very efficient system for storage and retrieval of information,
and hence for meaningful communication, and a predictive tool, provided that classification is sound.  Linking that
information to species names that may be based on misidentifications, or belong to entirely different genera, will only add
confusion to vector studies.  In order to communicate effectively about the GWSS and its congeners, it is essential that
everybody use the same names for the same species.

Access to all information on any group of organisms, including Homalodisca, is severely impeded by arbitrary generic limits,
multiple names for some species and no name for others, or the absence of authoritative identification tools, or all three
factors.  The status of Homalodisca in this regard is below acceptable levels for a group of such economic importance.

OBJECTIVES
Broadly, the objective of the proposed research is to stabilize the classification of the genus Homalodisca so that all other
information gathered (host plants, ecology, physiology, genomics, etc., which are all identified as priorities in the PD
reasearch program) can be linked to the correct names for meaningful communication.  This will be accomplished through
three major objectives:
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1. Establish the limits of the genus Homalodisca though comparison to closely related genera, and the limits of all species
in the genus, determine their valid names, and describe new species as necessary.

2. Characterization of brochosome structure and related behavior to allow identification of egg masses and females for most
species.

3. Provide authoritative and electronically accessible identification aids and distribution data for all species, in addition to a
hardcopy publication of the Homalodisca revision.

Also important for a revision is determining the relationship of Homalodisca to closely related genera.  This is presently
being addressed by a Ph.D. student and proposal cooperator Daniela Takiya, with outside funding for four years and is
consequently not a major objective of this project.

RESULTS AND CONCLUSIONS
This is an incipient, two-year project involving both lab and field work.  The revision of Homalodisca (Objective 1) has
begun.  In addition to the specimens held by the National Museum of Natural History, over 1,000 specimens have been
borrowed from about one dozen institutions, locality data has been extracted and converted to decimal degree geographic
coordinates for 1,500 specimens, and characterization of species and intra- and interspecific variation has begun.  The closest
genera to Homalodisca are Phera, Pseudophera, and Oncometopia (which also contain known phytopathogen vectors), but
the distinctions are not satisfactorily established.  At present there are 26 names in the genus Homalodisca, thought to pertain
to 19 species.  The most comprehensive study of Homalodisca to date was by Young (1968) and was limited to the seven
species occurring in the United States.  As noted above, however, the genus is more common in Mexico and further south,
including Central America, northern South America, southeastern Brazil and Paraguay.  The morphology of Homalodisca
species, incorporating characters of the head, thorax (including wings and legs), abdomen, male and female genitalia, and
integumental fine-structure are being analyzed.

To allow identification of egg masses and females (Objective 2), brochosome structure and related behavior is being
characterized for as many species as possible, at present for six species.  Brochosomes are hydrophobic secretions of
malpighian tubules that are found only in leafhoppers.  At moulting, nymphs and adults spread the brochosomes over their
bodies, presumably to stay dry in wet conditions.  In Homalodisca and a few related genera, females coat egg masses with
these brochosomes, which vary in structure among species. This objective is most important for quarantine purposes,
especially with regard to the grape crops.

For Objective 3, an on-line, image-driven key will be produced and placed on the USDA/ARS Systematic Entomology
Laboratory server to maximize access and utility.  A traditional key to species will accompany the hardcopy generic revision.

Foreign expeditions to support all three objectives are being planned for Mexico, Costa Rica, and Venezuela and will consist
of examining existing collections (at the Universidad Nacional Autónoma de México, Instituto Nacional de Biodiversidad,
and Museo del Instituto Agrícola, Maracay, respectively), making new collections of Homalodisca and associated organisms,
such as host plants or natural enemies, and observing oviposition behavior in additional species.  All expedition team
members are leafhopper specialists with ample fieldwork experience.  Collecting in Mexico and Venezuela may reveal males
for two of the three Homalodisca species presently known only from females (the third species, H. ignota, occurs only in
Brazil) and will undoubtedly yield new locality records.  Obtaining more complete geographic coverage may result in
revealing additional variation, which would impact species delimitation, or even new species.  Specimens will be shared with
collaborating foreign institutions in accordance with host country regulations; all specimens brought to the United States will
be deposited in the National Museum of Natural History, Smithsonian Institution.

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program.
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INTRODUCTION
Although some of the American native Vitis species, particularly those originated from the southeastern United States have
been known for resistance to the Pierce’s disease (Lu 2000; Lu and Ren 2002), their resistant status against the glassy-
winged sharpshooter, Homalodisca coagulata (Say), GWSS, the vector transmitting Pierce’s disease (PD) pathogen (Xylella
fastidiosa), have not been reported.  It would be interesting to know if there is any correlation between resistance to the
disease and resistance to the insect vector transmitting the disease.  In addition, understanding the mechanism of host
resistance to the GWSS, and the insect/plant interactions will add new dimension to control the insect vector in addition to
the existed measures. In this connection, a study to survey the GWSS feeding preference on grapevines with different
genetic background was conducted at Florida A&M University, Tallahassee, Florida.  Our preliminary study indicated that
GWSS has feeding preference for certain grapevines.  Since one recommendation to manage the GWSS is establishing
riparian vegetation surrounding a vineyard, understanding the GWSS feeding habit on different grapes will also enable us to
select resistant grape materials against GWSS.  The long term goal of this project is to understand the mechanism of feeding
preference (or host resistance) among resistant and susceptible grapevines, and the genetic basis of the host resistance to the
GWSS.

OBJECTIVES
1. Determine the feeding preferences of GWSS on different grape species and cultivars.
2. Investigate the mechanisms of host plant resistance to GWSS.
3. Understand the interaction between GWSS feeding preferences and physiological responses of the host plant to feeding,

and the genetic basis of the host plant resistance to GWSS.

RESULTS AND CONCLUSIONS
The feeding preference of GWSS on different species/cultivars was evaluated in two different ways: 1) count the number of
GWSS feeding on grapevines of different species / cultivars in the field; 2) determine the feeding preference by measuring
the excretion of the GWSS feeding on difference grape species /cultivars.  For the field-count of GWSS on individual
grapevines, two separate investigations were conducted during last two seasons.  The first survey was conducted on highly
susceptible V. vinifera cultivars 'Chardonnay,' 'Cabernet Sauvignon', 'Thompson Seedless,’ and V. labrusca cultivars
'Concord' and 'Niagara', with muscadine grape as a resistant control.  One-year old vines grafted on muscadine rootstocks
(Ren and Lu, 1999) were used for this investigation.  The actual numbers of GWSS feeding on these grape cultivars were
counted on a daily basis between 10:00 and 12:00 in the morning from late June to the end of August.  As shown in Table 1,
the PD resistant grape cultivar V. rotundifolia (muscadine grape) had significantly fewer visits by GWSS than did the
susceptible grape cultivars ‘Chardonnay,’ ‘Cabernet Sauvignon,’ and ‘Thompson Seedless.’  The frequency of GWSS visits
to V. labrusca cultivars ‘Concord’ and ‘Niagara’, the native American grape susceptible to PD, was intermediate between
those found on V. rotundifolia and V. vinifera.

Table 1: Average number of GWSS on different grape cultivars.
_____________________________________________________________________________________________

Cultivars Average numbers of GWSS per vine per observation
_____________________________________________________________________________________________

6/25-30   7/1-10   7/11-20   7/21-31   8/1-10   8/11-20   8/21-31

Chardonnay 1.3 1.0 2.9 0.6 0.0 0.0 0.0
Thompson Seedless 1.1 3.4 5.1 4.1 1.7 1.4 0.3
Cabernet Sauvignon 3.3 6.0 6.6 3.8 1.6 0.8 0.3
Concord 1.3 1.4 1.1 0.3 0.1 0.0 0.0
Niagara 0.4 0.4 0.1 <0.1 0.0 0.0 0.0
Muscadine 0.3 <0.1 0.2 0.0 0.0 0.0 0.0
_____________________________________________________________________________________________
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For the second investigation, adults and nymphs of GWSS were assessed by weekly counts during the period when GWSS
were observed in the vineyard in 2002 (from June to October).  More than 100 accessions, including pure species and
complex hybrids, were included in this investigation.  However, only a representative of eight accessions / cultivars (Table 2)
was included in this report while the rest of the data are being dissected and analyzed.  Similar to the first investigation, the
PD resistant muscadine vines received very few visits of GWSS, while PD susceptible grape ‘Niagara’ received high GWSS
counts in the same vineyard.  PD tolerant Florida hybrid bunch grapes had an intermediate count of GWSS.  As expected, the
PD resistant Vitis species shuttleworthii and mustangensis had very low counts of GWSS. Interestingly, the PD tolerant V.
cineria accession had very high counts of GWSS.

Table 2: GWSS population on selected vines during the 2002 growing season.
_____________________________________________________________________________________________

Ssp. /cvs.                                  June July August September        October
Vitis rotundifolia

Fry    0.1+0.4  0.03+0.6  0.04+0.05 0 0
Carlos   0.1+0.4 0 0 0 0

Florida hybrid bunch grapes
Blanc du Bois        4.2+3.2  1.2+1.3  3.5+2.6  1.0+1.0 0
Suwannee         1.8+1.7  2.6+0.9  1.5+2.4  0.7+1.6 0

Vitis labrusca
Niagara 6.8+3.6 0.2+0.5 0.8+0.1 0.7+0.6 0

Vitis shuttleworthii (JL 2001) 0.5+0.6  0.2+0.4 0 0 0
Vitis mustangensis (DVIT 2232) 0.8+0.5  0.6+0.5  0.5+0.6 0 0
Vitis cineria (DVIT 2380)      14.8+7.1  2.8+3.1  1.8+1.3 0 0

The feeding preference was also measured on selected grapes, including resistant, tolerant and susceptible grape cultivars, by
collecting the excretion of the GWSS.  Two GWSS were introduced and confined in a 50-ml plastic tube in which a shoot was
running through for the GWSS feeding. Excretion was collected and used for determining the feeding preference.  The
experiment was repeated three times (June 24, July 15 and July 22) and two vines were used for each cultivar in each
experiment.  The data in Table 3 are the average excretion per tube (from two GWSS) collected two days after the GWSS
were introduced to the confined tube.  In general, more excretion was collected from the bunch grapes than from the
muscadine grapes.  Among the bunch grape cultivars, more excretion was obtained from the PD susceptible cultivars
(‘Chardonnay’, ‘Concord’, and ‘Niagara’) than PD tolerant cultivars (‘Blanc du Bois’ and ‘Blue Lake’) and PD resistant
cultivar (‘Champanelle’).

Table 3: Average excretion per tube collected two days after two GWSS were confined in a 50 mL tube with one shoot.
____________________________________
Cultivars Excretion
Muscadine Grapes
Carlos 0.34
Fry 1.83
Jumbo 0.49
Bunch Grapes
Blanc du Bois 0.50
Blue Lake 0.50
Orlando Seedless 1.80
Champanelle 0.45
Chardonnay 3.30
Concord 2.69
Niagara   1.33
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INTRODUCTION
Insect dispersal can be influenced by numerous factors, such as increasing population densities, reproductive status, biased
sex ratios, host breadth, declining host quality and changing environmental conditions (Denno 1979, 1985; Taylor 1985,
Denno et al. 1991, Blackmer and Phelan 1991, Blackmer and Byrne 1993a,b, 1999; Blackmer and Cross 2001).  A better
understanding of how these various factors influence the movement of the glassy-winged sharpshooter will be crucial in the
management of this pest and the spread of Pierce’s disease (PD).

OBJECTIVES
1. Compare rates of movement between glassy-winged sharpshooters (GWSS) and native smoke-tree sharpshooters (STSS)

to better understand changes in the spread of PD.
2. Correlate the effects of crowding, sex ratio, reproductive status, host-plant quality and environmental variables with

population dynamics and movement of GWSS as an aid to predicting insect and disease spread.

RESULTS AND CONCLUSIONS
Mark-release-recapture (MRR) studies with GWSS and STSS were conducted in 2001 in Moreno Valley in an abandoned
alfalfa field, and in 2002 additional releases of GWSS were carried out in an 11-ha Valencia orchard in Fillmore, California.
Temperature, relative humidity, barometric pressure, wind speed, and wind direction were monitored at the center of each
release site with a portable weather station.  Physiological parameters, such as egg load, weight and sex ratio were also
measured.  Recapture data generated from these studies were fit to a diffusion model (Turchin and Thoeny 1993) and model
results were used to estimate dispersal distances for each species in each habitat.  This model has been shown to accurately
describe the movement of numerous insect species (Kareiva 1983, Plant and Cunningham 1991, Turchin and Thoeny 1993,
Corbett and Rosenheim 1996, Rudd and McEvoy 1996).  At the Fillmore site, sharpshooters were collected and doubly
marked with an IgG protein solution (Hagler et al. 1992, Hagler 1997) and a light application of fluorescent pigment.  Four
colored pigments were used consecutively, which allowed us to separate released sharpshooters from the background
population, as well as track sharpshooters for up to 6 wks.  Sharpshooters were recaptured on cylindrical yellow sticky traps
that were attached at ground, mid-canopy (2-3m) and upper-canopy level (6-7m) to 7-m tall telescoping poles.  In a separate
study, at the Fillmore location, movement of GWSS was measured relative to time of day, environmental parameters, and
xylem flux.  Sticky traps were changed and xylem sap was collected at four-hour intervals from 0600 to 2200 hours (N=5).

Linear regressions of recapture data with the diffusion model provided significant fits to the data with high coefficients of
determination (R2) for all of the GWSS and 3 of the 4 STSS releases in 2001, and for 5 of the 6 releases in 2002 (Table 1).  In
2001, calculations of dispersal distances using the diffusion model showed that 50 and 95% of the GWSS moved 30 and 90
m in 5-6 hr, respectively, while 50 and 95% of the STSS moved 47 and 155 m, respectively (Table 2).  Approximately 7% of
the GWSS and 21% of the STSS flew beyond our most distance annuli (90m) in the 2001 releases.  In 2002, more than
83,000 GWSS were marked and released between July and early October.  Calculations of dispersal distances for these
releases showed that 50 and 95% of the GWSS moved 30 and 99 m in 72 hr, respectively (Table 2).  Parameters estimated in
these trials will be used in further experiments and modeling efforts to determine absolute rates of movement for GWSS.

In separate stepwise regression analyses, trap distance from the release site was the best predictor of trap catch (R2 = 0.38,
P<0.0001 for GWSS and R2 = 0.31, P<0.0001 for STSS in 2001; R2 = 0.23, P<0.0001 in 2002).  In 2001, the addition of trap
height, release date, height and distance interaction accounted for an additional 20-31% of the variability in trap catch.  In
2002, the addition of trap height, release date and cardinal position only accounted for an additional 10% of the variability in
trap catch.  Recapture rates were considerably lower in the citrus orchard as compared to the open field setting (1.6% in 72
hours vs. 12% in 6 hours).  Similar to 2001, more sharpshooters were recaptured on the two lower traps (below 3m) than on
the upper traps (P<0.05) for all six releases in 2002.  Egg loads were fairly even in July and August (3.77 ± 0.38; mean ±
SD), but declined in September and October to 0.65 ± 0.33 per female.  Weights for male and female sharpshooters
fluctuated little throughout the study (0.036 ± 0.003 g for females; 0.027 ± 0.002 g for males), even after egg loads declined.
A female biased sex ratio (0.72:1.0; male:female) was evident in the first two releases (in July), but thereafter, a male biased
sex ratio (1.2:1.0) was observed.
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In a separate study, that measured sharpshooter movement relative to time of day, environmental parameters and xylem flux,
we found that sharpshooters were most active, in terms of flight activity, between 1000 and 1400 hours (Figure 1).  Of the
environmental parameters tested, only temperature explained a significant amount of the variability in trap catch in 2002 (R2

= 0.58, P< 0.0001).   Sharpshooters were rarely trapped when temperatures fell below 18°C.
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Figure 1.  Number of female and male H. coagulata trapped
relative to time of day.

Table 1. Parameter estimation of diffusion model fit to glassy-winged sharpshooter (GWSS) and smoke tree sharpshooter
(STSS) dispersal data for 2001 in Moreno Valley and 2002 in Fillmore, CA.

GWSS – 2001 STSS – 2001 GWSS - 2002
Parameter Estimates

Trial A           B          P          R2 A        B       P      R2 A      B     P R2

1         134.71   26.98    0.022    0.86       27.45    47.71    0.076    0.70      106.27    37.03    0.011    0.69
2         186.42   26.76    0.017    0.89       27.79    48.29    0.002    0.97      108.01    23.05    0.002    0.88
3          60.60    21.65    0.012    0.91       23.27    30.96    0.009    0.92      136.58    26.33    0.009    0.78
4         107.23   25.26    0.014    0.90       32.63    31.88    0.005    0.95      323.32    17.61    0.0001  0.99
5 179.12    23.36    0.002    0.87
6          8.16        40.18    0.21      0.29
.Data for 2001 are recaptures at 6 hour intervals; data for 2002 are recaptures at 72 hr intervals.

Table 2. Estimates of the radius of a circle enclosing various proportions of dispersal distances for GWSS and STSS after
point release in an alfalfa field in 2001, and in a mature orange grove in 2002.

Proportion Estimated Radius (m) Estimated Radius (m) Estimated Radius (m)
Enclosed for GWSS-2001 for STSS-2001 for GWSS-2002

0.50 30 47 30
0.67 43 68 44
0.95 90 155 99
0.99 99 220 145
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INTRODUCTION
The management of Pierce’s disease (PD) spread by Homalodisca coagulata, the glassy-winged sharpshooter (GWSS) is
lacking a fundamental strategy and solid tactics.  Among tactics under development is the use of insecticides to minimize
numbers of GWSS and inhibit their feeding to reduce their ability to acquire the bacterium from infected vines and to
inoculate uninfected vines. Two aspects of insecticides are necessary for this tactic to be successful:  (1) they must affect
GWSS immediately after they arrive on a vine; and (2) they must remain efficacious for a long time.  Since 1998, we have
examined the impact of insecticides on grapevines against the GWSS (Blua et al 2000, Redak and Blua 2001).  We chose to
study insecticides of the chemical class known as neonicotinoids because of their reputed inhibition of feeding by sucking-
insects, and their long residual activity.

Anti-feedant qualities are one of the important aspects of neonicotinoids.  In a 1999 experiment conducted at the University
of California, Riverside, GWSS caged on field-grown grapevines treated with Admire (imidacloprid, Bayer Inc) did not feed
enough to generate visible amounts of excreta, which they normally produce in copious quantities.  In contrast, GWSS on
untreated vines generated a substantial volume of excreta.  We concluded that Admire inhibits feeding by the GWSS.  Our
most recent experiments showed this effect for other neonicotinoids, including soil-applied Actara (thiamethoxam)
(Syngenta, Inc) and foliar-applied Assail (acetamiprid) (Aventis, Inc) (Bethke et al 2001, Redak and Blua 2001).  Most
striking is our observation that neonicotinoids applied to grapevines in September of 1999 had a substantial impact on GWSS
feeding almost a year later.  This may, in fact, be more important to protecting plants from infectious sharpshooters then
inducing mortality.

OBJECTIVES
The overall goal of our research is to determine the impact of sub-lethal doses of neonicotinoids on the spread of Xylella
fastidiosa, the Pierce’s disease bacterium, to or from grapevines by the GWSS.  In support of this goal, we are examining the
impact of sub-lethal doses of Admire on GWSS feeding using electronic monitoring methods under development in the
laboratory of E. Backus (2001).

RESULTS AND CONCLUSIONS
Thus far, we have examined the relationship between the amount of Admire applied to potted grapevine seedlings and GWSS
mortality after a 24h exposure period.   We used these data to select a sub-lethal dose (3.75 mg Admire/pot) for our feeding
studies (Figure 1).  Ten days after treatment, this amount of Admire induced ca 50% GWSS mortality (Figure 1).

Our investigation of the impact of sub-lethal doses of Admire on GWSS feeding used a factorial experiment with two factors,
each with two levels.  The first factor was grapevines treatment with Admire or not, and the second factor was grapevines
infected with Pierce’s disease or not.  Feeding behaviors of GWSS on experimental grapevines were recorded with electronic
monitoring (Backus 2001).  This experiment has been completed and the data are currently being analyzed.
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Figure 1. Mortality of Homalodisca coagulata as a function of Admire (Bayer, Inc) treatment of potted grapevines.
Grapevine seedlings in 700ml pots were treated with 0.00, 0.94, 1.88, 3.75, and 7.50 mg Admire 10 d before H. coagulata
adults were caged on plants.  Mortality was measured 24h after exposure to plants.  Points represent means + SE (N=17).
Regression equation:  y = 0.099x + 0.143.
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INTRODUCTION
Pierce’s disease, caused by Xylella fastidiosa has become an increasingly important factor in grape production in California
since 1996.  The glassy-winged sharpshooter (GWSS) is a primary X. fastidiosa vector.  Serious grape and vine losses have
increased as GWSS numbers have increased in southern California (Blua et al. 1999).  Purcell et al. (1999) suggested that
diseases caused by X. fastidiosa are likely to become more prevalent with increased numbers and spread of GWSS.
Management methods are urgently needed for GWSS that are economically, ecologically and socially acceptable.  Cultural
and biological components of developing integrated pest management (IPM) strategies need to be melded with efficacious
GWSS chemical control and insecticide resistance management (IRM), and integrated crop management (ICM) inputs.  In
2000, we studied GWSS adulticides in grapes (Akey et al., 2001a).  Our objectives in the two-year trials (2001-2002) were to
identify selective, conventional and biorational insecticides that were efficacious for control of immature and adult GWSS in
citrus.

OBJECTIVES
1. Identify selective, conventional and biorational insecticides that were efficacious for control of immature and adult

GWSS in citrus.

RESULTS AND CONCLUSIONS
Experiments were conducted with naturally occurring GWSS populations during egg to nymph to adult development during a
4-mo.period (April-July), on 6-7 foot tall orange trees.  The experimental designs were two - 3 replicate randomized complete
blocks at University of California, Agricultural Operations, Riverside, CA.  Plots were 0.114ac in size; 25 by 22ft, 3 trees per
plot with guard rows on each side (except for Surround that had plots 3 times larger).  GWSS counts were made weekly
following applications of treatments (table 1) made with a windmill blast-type sprayer (John Bean Div., FMC) (compliant
with Good Lab Practices, GLP).  Spray delivery was at 200 psi at 300 gal/ac with 5 swivel-nozzle bodies (Tee Jet) on one
side.  There were 10 nozzles, each had a core 23, disc 6, and slotted strainer.  An adjuvant, Silwet L 77, (Loveland Ind.) was
used in all applications (except Surround).  Spray penetration was studied previously (Akey et al. 2001a,b).  LSD mean
separation tests were made if there were significant F values by analyses of variance.  Data were transformed by √(x + ½) to
adjust zeros in data sets.

Efficacies of materials evaluated for control are shown in table 2.  The pyrethroids, Baythroid, Capture and Danitol and
the neonicotinoids, Provado and Assail were highly effective against GWSS. Also, the insect growth regulator (IGR),
Applaud (1 application 0.9333 lb AI/ac), was highly effective against GWSS nymphs.  That Applaud rate was ca. half-
label and unlikely to affect beneficial insects (study needed).  Neem products (5 applications) were efficacious against
development of GWSS to large nymphs (neem products had no efficacy or repellency on GWSS adults on grapes;
unpublished data, summer/fall 2000).  GWSS nymphal control in 2002 (Table 2) with Applaud, Agroneem and Neemix,
and Baythroid confirmed our first-year results (Table 2, Akey et al. 2001b).  Novaluron (benzoylphenylurea group), a
chitin blocker, was more effective against nymphs than Micromite (also a chitin blocker), diflubenzuron (1 application of
each).  Sucrose octanoate had minimal efficacy (3 applications).  The repellant, Surround, significantly decreased numbers
of immature and adult GWSS (3 applications).

In summary, Applaud is a prime candidate for IPM programs on GWSS. Pyrethroids are effective conventional agents
against GWSS.  Neem products may have a place as one tool, combined with others, in organic programs against GWSS.
The biorational agents evaluated here will probably be more efficacious in area-wide programs.
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Table 2. Mean numbers (± SE) and insecticidal efficacy percentages following applications of selected chemicals
for glassy-wing sharpshooter control in citrus at Riverside, CA , 2001 and 2002.

2001 Treatments1,2 Small nymphs Large nymphs Adults
x 3 %4 x % x %

Baythroid 1 0.1 ± 0.1 99 d5 0.3 ± 0.1 95 e 4.3 ± 1.2 67 efg
Baythroid 2 0.1 ± 0.1 99 d 0.0 ± 0.0 100 e 2.7 ± 0.9 79 g
Capture 0.0 ± 0.0 100 d 0.0 ± 0.0 100 e 2.5 ± 0.9 81 g
Provado 0.2 ± 0.1 96 d 0.2 ± 0.1 97 e 3.4 ± 1.1 74 fg
Assail 0.1 ± 0.1 99 d 0.1 ± 0.1 99 e 2.8 ± 0.8 79 g
Fujimite 3.6 ± 1.0 45 bc 2.3 ± 0.6 68 d 4.7 ± 1.3 64 def
Applaud6 0.7 ± 0.5 90 d 0.0 ± 0.0 100 e 5.9 ± 2.3 55 cde
Esteem 6.7 ± 2.0 a 4.9 ± 1.3 31 bc 5.4 ± 1.4 59 cde
Agroneem 6.8 ± 1.8 a 5.3 ± 1.9 26 b 7.1 ± 1.9 39 bc
Neemix 5.6 ± 1.8 15 ab 3.0 ± 0.8 58 d 6.3 ± 1.4 52 bcd
Trilogy 2.3 ± 0.7 65 cd 3.4 ± 1.2 52 cd 7.9 ± 1.9 39 b
Control 6.6 ± 1.9 -- a 7.1 ± 1.7 -- a 13.1 ± 3.4 -- a

Table 1. Trade names, chemistry classes, formulations and rates per acre of foliar insecticides evaluated for
immature and adult glassy-wing sharpshooter control in citrus, Riverside, CA, 2001 and 2002.

Name Chemistry Per Acre
Year Trade              Generic Class       Formulation Product       lb AI Company

Conventional Insecticides
2001 Capture bifenthrin pyrethroid 2    EC 6.4 fl oz 0.50 FMC
2002 Danitol fenpropathrin pyrethroid 2.4 EC 21.0 fl oz 0.40 Valent USA
2001 Baythroid cyfluthrin pyrethroid 2    E 1.6 fl oz 0.010 Bayer Crop Sc
2001, 02 Baythroid cyfluthrin pyrethroid 2    E 3.2 fl oz 0.020 Bayer Crop Sc
2001 Fujimite fenpyroximate oxime 5    EC 4.0 pt 0.0933 Nichino Amer
2001 Assail acetamiprid neonicotinoids 70  WP 1.2 oz 0.0233 Bayer Crop Sc
2001 Provado imidacloprid neonicotinoids 75  WP 10.0 oz 0.2147 Bayer Crop Sc

Biorational Insecticides and Repellants
2002 Surround Kaolin clay surface film 100 WP 50.0 lb 50.0 Engelhard
2002 Aza-Direct azadirachtin neem IGR 1.2% wt 1.3 qt 0.0324 Gowan
2001, 02 Agroneem neem extract

& azadirachtin
neem IGR 15.0  %

0.15%
4.0 qt
4.0 qt

1.100
0.110

Agro Logistics

2002 Neemix azadirachtin neem IGR 4.5  % 1.0 qt 0.46 Certis USA
2001 Trilogy neem without

azadirachtin
neem IGR 70     % 5 gal 12.74 Certis USA

2002 Applaud buprofezin chitin inhibitor 70  WP 0.2 lb 0.1633 Nichino Amer
2002 Applaud buprofezin chitin inhibitor 70  WP 1.0 lb 0.7000 Nichino Amer
2001, 02 Applaud buprofezin chitin inhibitor 70  WP 1.3 lb 0.9333 Nichino Amer
2001 Esteem pyriproxyfen JH analog 0.86 EC 0.5 qt 0.03
2002 AVAChem

Sucrose
Octanoate

sucrose
octanoate

bio-soap 40  % 0.8%v/v 7.9 lb Ava Chemical
Ventures

2002 AVAChem
Sucrose
Octanoate

sucrose
octanoate

bio-soap 4  % 1.2% v/v 11.9 lb  Ava Chemical
Ventures

2002 Micromite diflubenzuron chitin inhibitor 80  WG 6.3 fl oz 0.3125 Uniroyal Chem

2002 Novaluron benzoylphenyl
urea group

chitin inhibitor 2.4  EC 4.2 lb 0.3125 Uniroyal Chem
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2002 Treatments Small nymphs Large nymphs Adults
n2 x % n x % n x %

Baythroid 12 0.1 ± 0.1 99 b5 18 0.1 ± 0.1 99 b 21 1.8 ± 0.7 71 b
Danitol 12 0.0 ± 0.0 100 b 18 0.0 ± 0.0 100 b 21 1.0 ± 0.4 85 b
Control 12 7.3 ± 3.8 -- a 18 15.2 ± 4.2 -- a 21 6.1 ± 1.6 -- a

Novaluron 12 6.8 ±2.3 56 b 18 2.1 ± 0.6 86 c 18 5.4 ± 1.7 22 a
Micromite 12 12.3 ± 1.8 20 a 18 5.6 ± 0.8 63 b 18 7.5 ± 1.6 -- a
Control 12 15.3 ± 3.2 -- a 18 15.2 ± 4.2 -- a 18 7.0 ± 1.8 -- a

Applaud7 21 6.3 ± 1.2 60 b 18 3.7 ± 1.0 78 b 18 2.1 ± 0.7 49 b
Applaud 21 5.4 ± 1.6 66 bc 18 2.4 ± 0.8 85 bc 18 0.8 ± 0.3 81 c
Applaud 21 2.3 ± 1.2 86 c 18 0.0 ± 0.0 100 c 18 1.2 ± 0.4 71 bc
Control 21 15.8 ± 2.6 -- a 18 16.8 ± 4.8 -- a 18 4.2 ± 1.3 -- a

Sucrose8 21 20.7 ± 3.6 -- a 15 10.0 ± 2.1 44 a 12 4.5 ± 1.7 -- a
Sucrose 21 8.2 ± 1.3 26 a 15 3.5 ± 0.7 80 b 12 2.1 ± 0.7 48 a
Control 21 11.2 ± 2.5 -- a 15 18.0 ± 4.7 -- a 12 4.0 ± 1.6 -- a

Surround 9 5.3 ± 1.4 65 b 9 2.1 ± 0.6 89 b 9 19.4 ± 5.9 -- a
Control 9 15.0 ± 4.0 -- a 9 19.4 ± 5.9 -- a 9 2.0 ± 0.9 -- a

Agroneem 12 12.0 ± 2.8 33 a 12 8.8 ± 2.8 68 b 12 20.3 ± 3.9 16 ab
Aza-Direct 12 9.3 ± 2.0 48 a 12 7.6 ± 2.1 72 b 12 15.3 ± 2.8 37 bc
Neemix 12 17.2 ± 5.7 41 a 12 10.3 ± 3.2 62 a 12 12.2 ± 2.4 50 c
Control 12 18.0 ± 4.7 -- a 12 27.2 ± 6.8 -- a 12 24.2 ± 5.4 -- a
1 Number of applications applied were:  one for Baythroid, Capture, Danitol, Assail, Provado, Applaud,

Novaluron, and Micromite; two for Fujimite, three for AVA Chem, Sucrose Octanoate, Surround; Agroneem
Neemix, and Trilogy, 2001, five for Agroneem, Aza-Direct and Neemix, 2002.

2 n = 3 replicates of each treatment times number of analyzed dates in which the life stage was present post
application(s); n 2001 was 21.

3 Means of 3 replicates of each treatment.
4 % efficacy = percent reduction from control.
5 Means in columns by group(s) with different letters, are significantly different by ANOVA and LSD at P ≤ 0.05,

analyses were based on  transformed data, √(x + ½ ) to adjust zeros in data sets.
6 2001, 0.93 lb AI/ac
7 2002, 0.16, 0.70 and 0.93 lb AI/ac, respectively.
8 0.8 and 1.2%, respectively.
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Reporting Period: The results reported here are from work conducted from March 2001 through August 2002.

INTRODUCTION
ARS and industry partners have developed two new insecticidal chemistries that offer significant insect control properties
with improved safety to human health and the environment.  Particle film technology (Surround WP, Engelhard Corp, Iselin,
NJ) is based on the inert mineral, kaolin, that forms a film that protects plants from insects and some diseases.  Surround WP
is exempt from tolerance, can be applied up to the day of harvest, has a 4 hour re-entry period, has virtually no mammalian
toxicity, and is listed as an approved organic production material.  Surround WP is unique among insecticides in that it has
the ability to repel insects from plants and prevents insect oviposition and feeding which could prevent transmission of
Pierce’s disease.  It has proven to be as effective as imidacloprid in controlling GWSS in citrus in recent small block tests in
California.  Sucrose octanoate received EPA registration in 2002, is made of food grade materials, is exempt from tolerance,
and has also shown levels of control of GWSS that is as good as other conventional insecticides.  The objectives of this
research were to determine how effective these materials were in controlling GWSS in lab and field experiments.

OBJECTIVES
1. Evaluation of particle film, Surround WP, effects on GWSS biology.
2. Efficacy of sugar esters a quick knock-down agents for GWSS control.
3. Prevention of GWSS infestations with season-long and timed spray applications of Surround WP.

RESULTS AND CONCLUSIONS
Effect of surround WP applications on nymphal behavior:
A series of studies were conducted on GWSS nymphs in free-choice and no-choice environments where they were offered
Surround WP treated and untreated lemon foliage.  The objectives of these studies were to determine if  Surround treatments
affected feeding preference and survival of GWSS nymphs.  In a free-choice study, twenty GWSS nymphs were release at the
base of a lemon seedling with one limb treated with Surround WP and one limb left untreated.  Nymphs per limb were
recorded 1 and 2 days after treatment.  This experiment was replicated 6 times in field cages during July, 2001.  In a no-
choice study, 20 GWSS nymphs were released at the base of a lemon seedling that was treated with Surround or left
untreated.  Numbers of nymphs per seedling were recorded daily for 4 days after initiation of the study.  This experiment was
replicated 6 times in field cages during July, 2001.

GWSS nymphs and adults refused to settle on Surround treated foliage when given a choice (Figure 1).  When given a no
choice, all adults and most nymphs refused to stay on Surround treated plants and cling to the cages until they died.  These
studies show that Surround is highly repellent to both GWSS nymphs and adults.
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Figure 1. Number of glassy-winged sharpshooter nymphs (n=20) and adults
(n=50) after being released in cages containing either a lemon tree treated
with Surround WP or left untreated in a no-choice test (right) or given a
choice between one limb treated with Surround WP and the other left
untreated (left).

Figure 2. Mean response of glassy-winged sharpshooter adults to 25.4 cm
plastic discs painted a spectrum of colors, coated with Tangle Foot™ (Grand
Rapids, MI), and placed at a height of 2.0 m in two citrus groves bordering
grape, Kern Co., CA.

Surround WP or left untreated in a no-choice test (right) or given a choice between one limb treated with Surround WP and
the other left untreated (left).

Response of GWSS adults to different colored traps:
A study was conducted to determine the response of GWSS adults to different colored sticky traps.  Although it is known that
GWSS adults are attracted to yellow, it is not known what other colors attract GWSS adults or if this attraction is temporal.
Directly related to our Surround studies was the need to determine how GWSS adults respond to the color white because
Surround turns plant foliage white.  Round plastic colored targets 10 inches in diameter and coated with Tangle Foot sticky
polymer were attached to bamboo poles 6 ft. above the ground.  The colored traps were then placed within citrus groves at 3
sites beginning in April, 2001 and were sampled year-around.  There were 9 colors with 4 replications per site.

Results during the 2001 season showed that yellow was the most preferred color followed by orange and that white was
among the least preferred colors we examined (Figure 2).  There was also evidence that GWSS adults responded more to
brown in the spring and orange in September while their response to yellow was consistent over the sample period.

Early season applications of Surround as a barrier to GWSS
movement from citrus into grape:
In March of 2001, research was initiated at 3 vineyard sites bordering
citrus near Bakersfield, CA, but only Site 1 produced enough GWSS
numbers for study. In this study, we examined the effect of a 247.5 m
Surround WP barrier treatment on grape to prevent GWSS adult
movement from citrus into grape.  Site 1 had treatment blocks 164.6 m
wide by 365.7 m long (6.5 ha) replicated 3 times in a mixed block of
table and wine grape.  Surround treatments only extended 247.5 m into
each block with the remaining 152.4 m left untreated while
conventional chemical treatments extended the entire 365.7 m distance
of the block in order to determine the effect of a 247.5 m treatment
barrier.  Yellow sticky traps were place in 2 transects per block and
spaced every 100 feet that began where grape interfaced citrus and
extended 396 m into the treatment blocks that went approximately 500
ft beyond the treated areas.  In addition, the trap transects were
extended into adjacent citrus groves for 100 ft.  Effects of the
treatments on oviposition was examined on May 4 by visually
sampling 25 leaves/vine every 30.5 m along the trap transects.  Three
bi-weekly treatments of Surround WP were compared to six
conventional chemical control program that applied various contact
insecticides weekly.  Surround treatments of 50 lb Surround WP/100
gal was applied at 50 to 70 gpa on March 13, March 30 and April 14.
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Surround treatments significantly reduced average GWSS trap
numbers in the 396 m transects in comparison to conventional
insecticides on 22 March and 6 April (Figure. 3).  At the grape-
citrus interface, Surround treatments reduced GWSS number
significantly more than the conventional treatments from 22
March to 6 April (Figure 3.).  Surround WP treatments also
significantly reduced GWSS to nearly zero in comparison to the
conventional treatment almost 3 weeks after the last Surround
application (Figure 4).  The strong repellency of Surround WP
treated plant foliage minimizes the chance of GWSS to vector
Pierce’s disease in grape.  In 2001, ARS plant pathologists (Ed
Civerolo and K. Tubajika, USDA, Parlier, CA) found Surround
treated blocks had 60% less Pierce’s disease than the
conventional blocks.  Based on these studies Surround WP offers
better protection against GWSS infestations than conventional
insecticides.

Sugar esters for control of GWSS adults:
Two sugar ester materials that are produced by AVA Chemical Ventures (Portsmouth, MA) were evaluated for efficacy
against GWSS adults in a field trial in Ventura Co., CA.  A range of concentrations were examined in comparison to another
soft insecticide, M-Pede insecticidal soap.  Applications were made in late-July, 2002 to 2.0 m citrus trees heavily infested
with GWSS.  Trees were caged in early morning and treatments were applied using a hand-gun sprayer.  Sucrose octantoate
was more effective than sorbitol octanoate and M-Pede at lower doses (Table 1).  Sorbitol octanoate and M-Pede performed
similarly.   There was recovery of GWSS adults over time in the sorbitol octanoate treatment which was not as evident for the
sucrose octanoate and M-Pede materials making sorbitol octanoate less than desirable for GWSS control.  However, further
evaluations of sucrose octanoate would be worthwhile.  Sucrose octanoate recently became registered as an insecticide with
the U.S. EPA as Sucrose Octanoate Esters and which is a new class of insecticide that is safe to humans and the environment.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service.

Tab le 1.  Comp arison of glassywinged s harps hoote r adult mortalities afte r
tre atme nt with  dif fere nt  of s ugar esters and ins ecticidal soap ap plie d to
oran ge tre es, Ve ntura Coun ty, CA, July, 2002.

M ortality over Tim e (±  std  err.)

Treatm ent Conc. 5 m in. 30  m in. 60 m in.

Sucrose O ctanoate 0.8% 93.0 ±  4.0a 79.0 ±  6.4bcd 69.0  ± 7.4cd

Sucrose O ctanoate 1.0% 89.0 ±  4.0a 86.0 ±  4.8abc 77.0  ± 6.6bc

Sucrose O ctanoate 1.2% 98.0 ±  1.2a 96.0 ±  1.8a 97.0  ± 1.2a

Sucrose O ctanoate 1.5% 98.0 ±  1.2a 98.0 ±  1.2a 97.0  ± 1.2a

Sorbito l Octanoate 0.8% 38.0 ±  7.8c 25.0 ±  7.5g 17.0  ± 4.6g

Sorbito l Octanoate 1.0% 76.0 ±  2.9b 55 .0±  7.9ef 37.0  ± 5.1f

Sorbito l Octanoate 1.2% 95.0 ±  1.5a 74 .0±  7.6cd 59.0  ± 9.2de

Sorbito l Octanoate 1.5% 91.0 ±  4.5a 91.0 ±  4.5ab 88.0  ± 5.8ab

M -Pede 0.6% 42.0 ±  9.7c 50.0 ±  10 .3f 49.0  ± 9.9ef

M -Pede 0.8% 64.0 ±  5.1b 69.0 ±  2.9de 65.0  ± 5.4cd

M -Pede 1.0% 74.0 ±  4.0b 76.0 ±  7.6bcd 77.0  ± 6.0bc

M -Pede 1.2% 99.0 ±  1.0a 97.0 ±  97 .0a 96.0  ± 1.8a

W ater 100% 0.0 ±  0d 0.0 ±  0.0h 0.0  ± 0.0h
M eans fo llowed by the same let ter within a co lum n are not s ignif icant, RE GWQ, P = 0.05

Figure 4. Mean number of glassy-winged sharpshooter eggs on
25 leaves/vine in the first grape vines in a vineyard bordering
citrus (Interface) and from samples taken every 30.5 m into each
treatment zone in Site 1, Kern Co., CA.
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CHEMICAL CONTROL OF GLASSY-WINGED SHARPSHOOTER:  ESTABLISHMENT OF BASELINE
TOXICITY AND DEVELOPMENT OF MONITORING TECHNIQUES FOR DETECTION OF EARLY

RESISTANCE TO INSECTICIDES

Project Leaders:
Nick Toscano, Nilima Prabhaker and Frank J. Byrne Steven J. Castle
Department of Entomology USDA, ARS
University of California Phoenix, AZ
Riverside, CA 92521

Reporting Period: The results reported are from work conducted from December 2001 through November 2002.

INTRODUCTION
The possibility of resistance development when insecticides are used necessitates the development of an effective resistance-
monitoring program that enables early detection of even low-frequency resistance alleles in natural populations.  The initial
step for monitoring of resistance is through development of appropriate bioassay techniques that can establish baseline
susceptibility data among populations.  Our goal for the first year was to study the effectiveness of selected insecticides that
represent various chemistries against GWSS and determine regional comparisons of GWSS responses to these insecticides.
Simple and suitable bioassay techniques were developed to detect toxicological responses and to establish baseline
susceptibility data of GWSS to various insecticides.  Three techniques, petri-dish, leaf-dip and systemic bioassays were
described in the previous report (Toscano et al. 2001).  Evaluation continued during the second season to assess any changes
in responses of GWSS to a wide range of chemistry.  The present report compares the toxicological responses of GWSS for a
period of two years.

Resistance does not evolve at the same rate for all pests that come under selection pressure.  Many factors influence the rate
at which resistance develops in a pest.  In the case of GWSS, we have no information on the potential for resistance
development in this species.  One method to estimate the potential for resistance risk is to artificially select resistant strains
under greenhouse conditions.

In addition to conventional bioassay methods, we have completed our development of a biochemical assay that measures the
levels of sensitivity of sharpshooter acetylcholinesterases (AChEs) to inhibition by organophosphate (OP) insecticides.
Insensitivity of the AChE target-site can seriously impair the effectiveness of the OPs in control programs.  The assay can be
used on all nymphal instars and adults, and is an excellent tool for monitoring the frequencies of AChE variants in
populations because it provides inhibition data for individual insects.  Monitoring populations of GWSS and smoke-tree
sharpshooter that have been exposed, either directly or indirectly, to OPs such as chlorpyrifos will enable us to detect
resistant AChE alleles should they arise.

OBJECTIVES
1. Develop reliable bioassay technique(s) to evaluate baseline toxicity of insecticides from major classes of insecticides

against all life stages of GWSS.
2. Monitor all life stages of GWSS populations collected from insecticide-treated citrus orchards and vineyards in

Riverside, Redlands, San Joaquin Valley and Temecula to determine baseline susceptibility to various insecticides.
3. Investigate the rate of development of resistance to a selected organophosphate (OP), pyrethroid and a neonicotinoid by

artificial selection in the greenhouse.
4. Develop electrophoretic techniques to identify esterase profiles in individual GWSS of all life stages including eggs.

RESULTS AND CONCLUSIONS
Results showing a two-year comparison of toxicity data to various insecticides using the three techniques are presented in
Table 1.  In general, GWSS populations are quite susceptible to most insecticides tested.  The LC50 values indicate
considerable variation in susceptibility to insecticides by both techniques.  Mortality increased in the treatments over time.
Monitoring data for chlorpyrifos and dimethoate indicated a difference of 10- and 15-fold between the two techniques.  No
significant changes in responses of GWSS to chlorpyrifos were observed from year to year.  A slight shift is observed to
esfenvalerate towards lower sensitivity.  Insects from Redlands appear to be more sensitive than other populations.  Similarly,
acetamiprid was also quite toxic to GWSS from Redlands with a lower LC50 compared to the Riverside or Ventura
populations.  Among the neonicotinoids, thiamethoxam appears to be slightly less toxic to GWSS populations in 2002 with
insects from Redlands showing more sensitivity to acetamiprid than the previous year.  No significant differences in
responses of GWSS from various locations to endosulfan are observed.  In conclusion, two-year comparison of toxicity
studies shows that GWSS are still quite susceptible to all insecticides tested so far with small variations between populations
from different regions.
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Table 1. A two year comparison of toxicological responses of GWSS to various insecticides.
2001 2002

Insecticide
Class Insecticides Sample

Location LC50
Petri dish

LC50
Leaf dip

LC50
Petri dish

LC50
Leaf dip

Riverside 0.001 0.013 0.0038 0.0124
Redlands 0.001 0.015 0.0067 0.0562Chlorpyrifos
Ventura 0.005 0.032 0.00208 0.045
Riverside 0.0091 0.038
Redlands 0.0176 0.0932Dimethoate
Ventura 0.0298 0.0699
Riverside 0.038 0.0023 0.0019
Redlands 0.004 0.0221 0.252Cyfluthrin
Ventura 0.0043 0.338
Riverside 0.0027 0.022 0.006 0.010
Redlands 0.00003 0.00004 0.0009 0.0042Esfenvalerate
Ventura 0.009 0.034
Riverside 0.042 0.168 0.044 0.551
Redlands 0.019 0.012 0.0812 0.376

Organophosphates

Fenpropathrin
Ventura 0.0202 0.1431
Riverside 0.006 0.00832 0.0723
Redlands 0.003 0.00349 0.0195Cyclodiene Endosulfan
Ventura 0.00104 0.0089
Riverside 0.01 0.091 0.005 0.072
Redlands 0.003 0.008 0.0009 0.014Acetamiprid
Ventura 0.04 0.097 0.025 0.074
Riverside 1.64 0.08
Redlands 0.61 0.034Imidacloprid
Ventura 1.92 0.121
Riverside 0.0037 0.0085 0.003 0.004
Redlands 0.0004 0.0012 0.002 0.008

Neonicotinoids

Thiamethoxam
Ventura 0.0052 0.0093 0.009 0.020

Figure 1. Inhibition of sharpshooter acetylcholinesterase activity by OP insecticides.  The response of both the GWSS and
the STSS was the same for each OP.  Inhibition at lower concentrations indicates greater sensitivity of the target enzyme.
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In a comparison of AChEs in the GWSS and the STSS, we found a similar response to a wide range of OP insecticides.  The
enzyme activity in both species was especially sensitive to chlorpyrifos, and was least affected by omethoate, the active form
of dimethoate.  Using a diagnostic concentration of 10µM paraoxon, we assayed insects from Riverside, Redlands and
Ventura citrus orchards.  We found that the AChE activity in insects from these areas was sensitive to this concentration,
thereby providing encouraging evidence for the absence of OP resistance based on insensitivity of the target site.

Selected strains of GWSS:
Selection of GWSS strains that are tolerant to an OP, a pyrethroid and a neonicotinoid is underway and will be maintained
under selection for a few more generations for further studies.
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LABORATORY AND FIELD EVALUATIONS OF IMIDACLOPRID AND THIAMETHOXAM
AGAINST GWSS ON CITRUS AND GRAPES

Project Leaders:
Nick Toscano
Department of Entomology
University of California
Riverside, CA 92521

Steve Castle
USDA-ARS
Phoenix, AZ

Cooperators:
Frank Byrne, Jian Bi and Nilima Prabhaker
Department of Entomology
University of California
Riverside, CA

Mac Learned
Bayer Corporation
Paso Robles, CA

Reporting Period: The results reported here are from work conducted from April 2002 to October 2002.

INTRODUCTION
Much evidence has accumulated over the past few years pointing to the significant role played by imidacloprid (Admire®) in
reducing GWSS populations.  In regions of California where imidacloprid has been used in area-wide control programs,
populations of GWSS have declined substantially relative to their pre-action levels.  For example, remnant GWSS
infestations in Temecula appear to be associated primarily with untreated tracts of vegetation such as organic citrus, while
their densities in conventional orchards and vineyards are extremely low.  Similarly, GWSS population densities have been
substantially reduced in southern Kern County as an outcome of the General Beale Road project. In contrast, other areas with
high populations of GWSS such as Ventura/Fillmore and Riverside/Redlands that have not yet participated in area-wide
control programs still retain high GWSS populations.  The significant reduction of GWSS densities in only those regions
where concerted action has been mounted is persuasive, even if it is only indirect evidence of the role that imidacloprid
treatments have played in curtailing GWSS populations.

By measuring temporal and spatial dynamics of imidacloprid uptake and distribution in mature citrus trees and grapevines,
then relating these data to GWSS densities on treated trees and grapevines relative to untreated ones, we have demonstrated
the capacity of a single imidacloprid treatment per season to reduce GWSS populations.  Questions that initially arose
following the first large-scale applications in Temecula in Spring, 2000 concerning the quantity, distribution, and persistence
of imidacloprid in citrus trees have now been addressed with the results from our studies.  Information that will derive from
this project should help optimize future GWSS control efforts.

OBJECTIVES
1. Evaluate the titer and distribution of imidacloprid and thiamethoxam within citrus trees and grapevines over time.
2. Develop and conduct bioassays of GWSS on field-treated citrus trees and grapevines tissue and relate mortality to plant

titers of imidacloprid and thiamethoxam.
3. Evaluate the behavior of GWSS adults and nymphs of citrus and grapevines treated with neonicotinoid insecticides.
4. Determine the impact of neonicotinoid insecticides on GWSS populations.

RESULTS AND CONCLUSIONS
Imidacloprid was applied to Valencia oranges in Riverside through an irrigation system equipped with microjet emitters at 32
oz. per acre on April 10 and April 4, 2001 and 2002, respectively.  Xylem samples were collected every two weeks thereafter
with a pressure bomb device and analyzed for imidacloprid concentrations using a commercial ELISA detection kit
(Envirologix, ME).  Consistently higher titers were observed in 2002 compared to the previous year (Figure 1).  By 16 May
2002, the mean titer had increased to above 20 ppb, then remained above 15 ppb until 25 July before declining.  In contrast,
mean imidacloprid titers in 2001 never exceeded 15 ppb, but remained between 10-15 ppb from 07 June through 20 July
(Figure 1).  Within-tree distributions of imidacloprid varied insignificantly among the four quadrants and two elevations from
which xylem samples were collected (Figure 2).  The near-uniform distribution of imidacloprid to all parts of the mature
orange trees had a severe impact on GWSS nymphs and adults (Figure 3).  Weekly samples collected from treated and
untreated trees revealed a sharp decline in nymphal densities approximately 6 weeks post-treatment that persisted through the
end of the nymph developmental season.  The emergence of adults in late June and early July coupled with a frenzy of flight
activity tended to mask any differences between treated and untreated trees save for the large numbers of dead adults that
were observed beneath treated trees.  By late July, however, adult densities decreased on treated trees and remained
significantly lower than untreated trees through the remainder of the year (Figure 3).
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Figure 1. Temporal pattern of imidacloprid titers in Valencia orange trees
during 2001 and 2002.  Each sampling date gives a scatter of points
representing titers of individual trees with the range of imidacloprid titers
identified by the vertical lines.  The mean titer for each date is defined by
the intersection of the traversing line with each vertical line.

Figure 2.  Within-tree distributions of imidacloprid in Valencia oranges
according to height (a) or directional location (b).  (Explanatory details for
this figure are the same as Figure 1).

Figure 3. Comparison of GWSS nymphal (top) and adult (bottom)
densities on imidacloprid-treated and untreated Valencia oranges. b)

Figure 4. an (±SEM) titers of imidacloprid in Cabernet grapevines in
Temecula treated with either 16 oz/16 oz (01 May and 26 July) or 32 oz  on
01 May 2002.  Note the higher titers in grapes compared to oranges as well
as the difference between 16 oz and 32 oz rates.

Figure 5. Imidacloprid titers in 1-year-old grapevines treated at 3 rates
and measured 8 weeks post-application.

The uptake and distribution of imidacloprid applied to grapevines at 16, 20, and 32 oz/acre were assessed for Cabernet
Sauvignon (Figure 4) and Syrah (Figure 5) varieties in Temecula vineyards from 01 May until 31 October 2002.  Uptake into
vines was rapid, reaching levels above 100 ppb within 10 days. This is in contrast to the uptake dynamics in citrus where
maximum levels were only reached at about 6 weeks post-treatment.  In particular, the persistence of imidacloprid in trees
and vines treated with the 32oz/acre rate was impressive, and gave a clear indication as to why this insecticide has proven to
be so successful in area-wide management programs.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service, the California Department
of Food and Agriculture, and the Bayer Corporation.
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EFFICACY OF INSECTICIDES USED FOR GLASSY-WINGED SHARPSHOOTER CONTROL
IN CITRUS NURSERY STOCK

Project Leader:
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Department of Entomology
University of California
Riverside, CA 92521
(Stationed at the Kearney Agricultural Center)

Cooperators:
Mark Campbell
Willits and Newcomb Nursery
Arvin, CA

Chris Reagan and Yuling Ouyang
Department of Entomology
University of California
Riverside, CA

Reporting Period: The results reported here are from work conducted from January 1, 2001 through December 31, 2002.

INTRODUCTION
Citrus nurseries located in glassy-winged sharpshooter (GWSS), Homalodisca coagulata, infested areas must ensure that the
plants that they ship to uninfested areas of California are free of GWSS.  Nurserymen accomplish this by treating the citrus
trees with pesticides and by careful visual inspection of leaves for signs of GWSS prior to shipment.  All stages of GWSS
could potentially be transported.  Experiments were conducted to determine the efficacy of various pesticides against adult
GWSS and their ability to deposit eggs, and against the nymphs as they attempt to emerge from egg masses.

OBJECTIVES
1. Evaluate the residuality and efficacy of various insecticides against adult GWSS.
2. Evaluate the efficacy of various insecticides against GWSS nymphs hatching from egg masses.

RESULTS AND CONCLUSIONS
Adult GWSS tests:
A combination of 66 lemon and 66 orange citrus trees (15 gallon potted plants) were treated with commercial rates of various
insecticides.  GWSS adults were collected from an untreated citrus orchard using sweep nets at weekly intervals and caged on
the treated trees.  The number of live adults after 24 hours and the number of egg masses deposited after 7 days were
recorded each week for 11 weeks after treatments were applied.

Residues began to break down as evidenced by survival of adults 2 weeks after treatments were applied for the
organophosphate Lorsban (chlorpyrifos), at 3 weeks for the carbamate Sevin (carbaryl), and at 3-4 weeks for the foliar
neonicotinoids Assail (acetamiprid) and Marathon (imidacloprid).  The systemic neonicotinoids Admire (imidacloprid)
caused high mortality for 8 weeks and Platinum (thiomethoxam, unregistered) caused complete mortality of adults for 11
weeks.  The pyrethroids Tame (fenpropathrin) and Talstar (bifenthrin) were highly effective, Talstar allowed only one adult
to survive 24 h and Tame allowed no adults to survive over the 11 week test period.

In this same experiment, GWSS were able to deposit egg masses one week after application in the Lorsban and Marathon
treatments, during week 2 in the Sevin treatment.  The foliar neonicotinoids Assail and Marathon prevented egg laying for 4-
5 weeks.  The Tame treatment allowed 1 egg mass to be deposited during week 4.  The other treatments (Admire, Platinum,
and Talstar) did not allow a single egg to be deposited during the 8 weeks of the experiment.

Overhead irrigation was applied for 30 minutes 3x per week to half of the trees and significant reduction in residuality of the
insecticides was observed for Sevin, Assail, Marathon and Tame.

Emergence of GWSS from egg masses:
In the second experiment, GWSS adults were collected from an unsprayed citrus orchard in Kern County and caged for one
week on nursery citrus (15 gallon potted lemons and oranges). The adults were removed, and trees treated with commercial
rates of various insecticides to determine if nymphs could successfully emerge from the egg cases.  Successful emergence
was defined as completely emerged and with fully developed wings.

Provado, Assail, and Sevin did not allow any nymphs to successfully emerge from the egg masses.  Actara, Talstar, and
Tame allowed 20-40% of the nymphs to successfully emerge, although all died shortly after emerging.  The insect growth
regulator Applaud (buprofezin) did not have any effect on nymphal emergence.
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In summary, these experiments suggest that pyrethroids and the systemically applied neonicotinoids are most effective
against adult GWSS and the carbamate Sevin and several of the foliar neonicotinoids are most effective against nymphs
attempting to emerge from the egg masses.  Based on these experiments, I would recommend that citrus nurserymen apply a
systemic neonicotinoid (imidacloprid is the only one registered at this time) 2-8 weeks before shipment is expected.
Immediately before shipment, a pyrethroid such as Tame or Talstar should be applied to ensure that the foliage is disinfested
of nymphs and adults.  In addition, Sevin, Assail, or Provado should be applied just prior to shipment to prevent nymphs
from emerging from egg masses.  Bethke and Redak (2001, 2002a, 2002b) and Bethke et al. (2001) demonstrated similar
efficacy of systemic neonicotinoids and pyrethroids against adult GWSS and efficacy of carbaryl against emerging nymphs
for ornamentals.

REFERENCES
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2000.  Arthropod Management Tests, Vol. 26, G51.
Bethke J.A., M. J. Blua and R. A. Redak. 2001. Effect of selected insecticides on Homalodisca coagulata (Homoptera:

Cicadellidae) and transmission of oleander leaf scorch in a greenhouse study. J. Econ Entomol. 94: 1031-1036.
Bethke, J. A. and R. A. Redak.  2002a.  Control of glassy-winged sharpshooter egg masses on Chrysanthemum under

greenhouse conditions using selected pesticides, summer 2001.  Arthropod Management Tests, Vol. 27, G29.
Bethke, J. A. and R. A. Redak.  2002b.  Control of adult glassy-winged sharpshooters on liquidambar under greenhouse

conditions, summer 2001.  Arthropod Management Tests, Vol. 27, G51.
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ROOTSTOCK VARIETY INFLUENCE ON PIERCE’S DISEASE SYMPTOMS IN GRAFTED CHARDONNAY
(VITIS VINIFERA L.) GRAPEVINES
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Reporting Period: The results reported here are for work conducted from November 1, 2001 to October 31, 2002.

INTRODUCTION
Rootstocks are already widely in use in viticulture to manage damage from soil-borne pests and provide adaptation to
particular soils.  Grape rootstocks can impact the symptom expression of diseased scions in at least one disease (fanleaf
degeneration).  In other crops, rootstock variety has been reported to impact expression of Xylella fastidiosa diseases in
scions (He et al. 2000, Gould et al. 1991). Pierce (1905) reported that rootstock variety affected expression of "California
vine disease" (now known as Pierce's disease) in grape.  Grape rootstock trials in Mississippi showed a large effect of
rootstock trial on vine longevity in a region recognized for high Pierce’s disease pressure (Loomis 1965, 1952, Magoon and
Magness 1937).  If grape rootstocks could contribute Pierce’s disease resistance or tolerance to their scions, this would be a
major benefit to viticulture in Pierce’s disease prone areas.  Elite wine, juice, and table grape varieties could be grown in
areas where viticulture is currently restricted to Pierce’s disease resistant and tolerant varieties whose consumer appeal is
low.

OBJECTIVES
1. Evaluate the impact of rootstock variety on expression of Pierce's disease symptoms in the scion.
2. Assess any relationship between Pierce's disease symptoms on ungrafted rootstocks and the expression of Pierce's disease

on susceptible scions grafted to those rootstocks.

RESULTS AND CONCLUSIONS
Chardonnay (Vitis vinifera) vines grafted on nine rootstocks and own-rooted Chardonnay vines were planted in Tallahassee,
Florida in the vineyard of the Center for Viticulture, Florida A&M University in the spring 2001 planting season (Table 1).
Ungrafted vines of the same nine rootstocks plus St. George were planted at the same location.  The vineyard site has a high
incidence of Pierce's disease and glassy-winged sharpshooters inhabit the site.  Pierce's disease (PD) symptoms were
evaluated on August 6 and October 25, 2002 for Chardonnay vines and August 6, September 9, and October 10, 2002 for
ungrafted rootstocks.  Symptoms on leaves were assessed and vines given a numerical score from 0 to 5, with 0 representing
no symptoms, 1 = minor symptoms up to 15% of leaves with marginal necrosis (MN), 2 = 15-30% of leaves with MN, 3 =
30-50% of leaves with MN, 4 = 50-75% of leaves with MN, 5 = over 75% of leaves with MN or vine dead.  There were four
replicates for grafted vines and five replicates for ungrafted rootstocks.  Each replicate consisted of two vines of the same
treatment, either grafted to the same rootstock or the same rootstock variety ungrafted.  The mean score of the two vines is
recorded as the score for that replicate.

Chardonnay vines showed symptoms on all rootstocks (Table 1).  Every Chardonnay vine showed symptoms at some level.
Symptoms were more severe than in 2001 and increased in average severity from the first to the second screening regardless
of the rootstock.  Apparent vine death was widespread by October 25.  It is likely that Xylella fastidiosa established in these
vines in 2001, with initial PD symptoms in that year and more severe symptoms in 2002 as PD progressed.  The preliminary
results indicate that none of the rootstocks evaluated provides amelioration of symptoms sufficient for fruit production under
these conditions.

Ungrafted vines of rootstock varieties exhibited a range of symptom levels (Table 1).  Ramsey and St. George showed the
fewest PD symptoms overall.  Although the first screening found other rootstock varieties had less severe symptoms than
Ramsey and St. George, those varieties showed a marked increase in symptoms as the season progressed.  In 2001 Ramsey
and St. George showed relatively more severe PD symptoms; it may be that these varieties are more susceptible when young
and increase in resistance with plant age.  O39-16 vines showed relatively few PD symptoms in 2001, reflective of the highly
PD resistant Vitis rotundifolia parentage in this variety.  In contrast, in 2002 O39-16 showed severe PD symptoms.  The
population of bacteria, level of inoculation, or cultural or climatic conditions could be impacting the PD symptom expression
in O39-16.  At the experimental vineyard site, PD pressure is sufficiently high that even some muscadine grapevines (Vitis
rotundifolia) show PD symptoms.  However, these muscadine vines do not succumb to PD, but recover.  It may be that the
O39-16 vines will recover in a similar manner.  Loomis (1952, 1965) reported that a different rootstock with V. vinifera and
V. rotundifolia parentage extended the life of susceptible scions in Mississippi, but even Chardonnay on O39-16 showed
severe PD symptoms in this trial.
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Additional rootstocks grafted to Chardonnay and Cabernet Sauvignon were planted in spring 2002 to further investigate the
possible influence of rootstock on PD expression.  The rootstocks Dog Ridge, 161-49C, and Lenoir are of special interest.
Dog Ridge and 161-49C have been reported as increasing vine longevity in areas of high PD pressure (Loomis 1952, 1965).
Pierce (1905) suggested Lenoir as a rootstock to manage this disease.

Table 1. Symptom expression in grafted Chardonnay scions, own-rooted Chardonnay, and ungrafted rootstocks.  0 =
absence of symptoms, 5 = 75-100% of leaf area symptomatic.

Grafted Chardonnay,
by rootstock variety

Mean Symptom Expression Ungrafted
rootstocks,
by variety

Mean Symptom Expression

Screening date (2002) Aug 6 Oct 25 Sum Aug 6 Sep 9 Oct 10 Sum
O39-16 3.4 4.9 8.3 Ramsey 1.6 1.0 1.3 3.9
5BB 3.8 4.6 8.4 St. George 1.2 1.3 1.6 4.1
3309C 3.8 4.8 8.6 101-14 0.7 1.7 2.8 5.2
Ramsey 3.9 4.9 8.8 5C 1.4 1.5 2.9 5.8
5C 3.9 4.9 8.8 110R 1.6 1.5 2.8 5.9
101-14 4.0 5.0 9.0 5BB 1.0 1.8 3.5 6.3
Own-rooted 4.6 5.0 9.6 44-53M 2.0 1.8 3.3 7.1
44-53M 4.6 5.0 9.6 O39-16 1.1 2.7 3.4 7.2
Freedom 4.6 5.0 9.6 Freedom 2.6 2.8 4.3 9.7
110R 4.8 4.9 9.7 3309C 2.6 3.1 4.1 9.8
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INTRODUCTION
Decision-making in knowledge-based pest management depends upon sampling methods that provide reliable information on
pest densities and distributions.  Practical sampling methodology must balance sample precision with simple and cost-
effective collection techniques.  Four methods are currently being evaluated in citrus orchards as part of our effort to develop
a sampling program for glassy-winged sharpshooter (GWSS).  These include both hand (bucket and beat net) and gasoline-
powered (D-Vac and A-Vac) samplers.  In addition, yellow-sticky traps have been used simultaneously to determine the level
of correlation between the foliage samplers and commonly used yellow-sticky traps.  Data sets for each device will be
analyzed for mean-variance relationships according to Taylor’s power law and sample-size estimates generated according to
fixed levels of precision.  Ultimately, sequential and binomial sampling plans will be developed for the precise estimation or
classification of population density of GWSS for research and pest management application.

It is well recognized that the major threat of GWSS populations is the potential for vectoring Xylella fastidosa to uninfected
plant hosts, in particular grapevines in commercial vineyards.  One practical application of a sampling plan would be to
precisely estimate densities of GWSS within an orchard or vineyard and then determine what proportion are positive for X.
fastidiosa.  Accurate identification of individuals positive for X. fastidiosa is an essential part of an overall appraisal of the
risk constituted by a particular population.  Work began in April exploring ELISA, PCR, and culturing techniques for the
detection of X. fastidiosa in GWSS.  Sampling and evaluation of the proportion-positive among various southern California
populations of GWSS is continuing.

OBJECTIVES
1. Develop, test and deliver statistically-sound sampling plans for estimating density and inoculum potential of GWSS for

research and management applications.

RESULTS AND CONCLUSIONS
Evaluation of the four sampling devices continued in citrus orchards in Riverside, CA with the onset of the spring generation
of GWSS nymphs in April, 2002.  To date, a total of 500 Valencia orange trees have been sampled with each of the four
devices to generate 25 data points (n=20 per point) that describe the respective mean-variance relationship for each device.
The bucket sampler is the most versatile and easiest to use with its extendable pole allowing access to foliage 15-20 ft above
ground.  Samples obtained with the bucket sampler are also cleaner than those obtained with the beat net, the other hand-
operated device, and therefore require less handling during sample processing.  The mechanical devices are more expensive
to purchase, more cumbersome to use, and do not yield superior results to the hand-operated devices.  The range and mean
counts of GWSS adults collected with the bucket sampler closely matched the counts obtained with the D-Vac sampler while
generally exceeding those obtained with either the A-Vac or beat net samplers (Figure 1).  Regressions of log variance upon
log mean for each device (Figure 2 - two devices only) yielded the regression parameters a and b (Table 1) that will be
incorporated into Taylor’s power law (S2=amb ).  The results presented here are for adults, but similar processing and data
development towards a final sampling plan will be completed for GWSS nymphs as well.
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Figure 1. Range (defined by vertical lines spanning each set of points) and mean (intersection of the vertical and traversing
lines) counts of GWSS adults collected by each of four sampling devices in Riverside, CA during 2002.

Figure 2: Mean-variance relationships for GWSS adults Table 1: Slope and intercept parameters generated
collected by the bucket (a) and D-Vac (b) samplers. by the regression of log variance on log mean for

our sampling devices.
a) Bucket Sampler                 b) D-Vac Sampler

Samples of GWSS adults and nymphs were collected every two weeks from the sampling orchards and frozen for subsequent
testing for X. fastidiosa.  Various methods are being explored to determine the most effective detection system for X.
fastidiosa in GWSS individuals.  For ELISA detection using Agdia, Inc. (Indiana) reagents, different extraction buffers have
been examined to determine which one controls nonspecific binding best without suppressing IgG binding to X. fastidiosa.
When GWSS adult populations from Piru and Riverside were tested by ELISA using either grape extract or NsS buffers,
lower optical density readings were obtained for negative controls using NsS buffer.  There appeared to be no suppression of
positive readings as a similar number of positives were obtained with the NsS buffer and the grape extract buffer (Fig. 3).  A
higher proportion of the population from Piru tested as strong ELISA positives for X. fastidiosa compared to the Riverside
population (Fig. 3).

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program, and the USDA
Agricultural Research Service.

Device Parameter
a

Parameter
b R2

A-Vac 1.18 1.15 0.98
Bucket 1.35 1.28 0.97

D-Vac 1.28 1.36 0.97
Beat Net 1.17 1.35 0.98
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INTRODUCTION
The glassy-winged sharpshooter (GWSS) Homalodisca coagulata is native to the southeastern United States (Young 1958)
where it is a known vector of various strains of the bacterium Xylella fastidiosa. Since its introduction into California, it has
become established in large numbers in certain areas.  PD has been a problem in California for more than 100 years, but the
GWSS is a more effective vector of X. fastidiosa because it can feed on the xylem of seemingly dormant woody stems.
Unlike sharpshooters native to California, GWSS can reproduce in grape.

One of the crucial components and cornerstones of integrated pest management is the monitoring for the presence and density
of a pest.  Proper detection methods allow for optimum integration of biological, cultural, physical, chemical and regulatory
measures to manage a pest.  Yellow sticky traps have been used extensively in the southeastern U.S. for monitoring
leafhoppers including GWSS in peach (Ball 1979) and citrus (Timmer et al. 1982).  However, the reliability of these methods
to detect the GWSS in California is questionable, and traps specifically designed for GWSS do not currently exist.  To
compound the situation, current methods are not standardized.  For example, different sizes and shades of yellow sticky traps
are being used in monitoring programs. The AM designation on certain traps actually refers to the apple maggot for which
the trap was designed.  Furthermore, the relationship of trap catches to actual populations of GWSS in grape or citrus are
currently unknown.

Trap designs based on the behavior and biology of the insect in question have a much higher chance of success than relying
on trial and error of traps designed to monitor other insects.  Female GWSS secrete and deposit brochosomes on the
forewings just prior to egg laying (Hix 2001a).  These spots are then scraped off during egg lying.  Furthermore, white spots
are secreted before each egg mass is laid, and female GWSS can only produce rod shaped brochosomes after mating.  It is
therefore feasible to relate preovipositional females with white spots and residues to egg masses in associated vegetation
analysis.  The white spots are very visible on females caught in traps (Hix 2001a).  Many leafhopper species produce
brochosomes, but only females are known to produce the rod shaped brochosomes (Rakitov 2000).  As reported here in 2001,
data from the intercept traps and colored plates clearly indicated that GWSS are attracted to yellow as well as orange.
Attraction to these colors was statistically significant (Hix 2001b) and demonstrated that even though the AM type trap may
have reliability issues, it is clearly not a “blunder trap.”

OBJECTIVES
This research addresses: 1) which hue of yellow is the most attractive to GWSS; 2) what is the field longevity of a trap before
weather and photo degradation impact trap reliability; 3) how does trap catch relate to populations of GWSS in citrus and
grape; 4) GWSS spectral sensitivity; 5) how does temperature affect trap catch; 6) the feasibility of using certain wavelengths
of light to enhance trap catch of GWSS in vineyards and associated orchards; 7) develop and evaluate sticky barriers to trap
and detect GWSS nymphs within a vine or tree canopy.

RESULTS AND CONCLUSIONS
Traps were deployed in wine grape vineyards in Temecula with known high populations in addition to vineyards with lower
populations.  These vineyards were either under organic farming practices or were minimally farmed.  Trap types tested
included plates, commercially available yellow sticky cards (6), and nymph traps (3 colors).   Traps were checked weekly and
visual count of egg masses, nymphs, and adults were made.  GWSS were sexed, and females with forewing spots of
brochosomes or residue were noted.

The data indicated relationships between the number of females trapped and oviposition in associated vegetation.  The
number of females trapped in July August and September 2002 showed a strong relationship to the number of nymphs found
in searches.  A search consisted of 3 sets of 25 vines near a designated trap.  Analysis of the data from the vineyards provided
the expression y = 3.4X - 2.4 where y = number of nymphs per search and X is the number of females captured per trap (R2 =
0.97, F = 378.7, P =0.003).  This expression is only valid in situations where vineyards have not been treated for GWSS.

Yellow plates caught statistically more GWSS than commercially available sticky traps while orange traps usually caught
more than the commercial traps.  The nymph traps caught first to fifth instar nymphs in moderate populations.  These traps
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are easy to deploy in grape canes in situations where it could take hours of searching to locate nymphs.  Low populations of
GWSS nymphs in a vineyard may pose threats of moving X. fastidiosa from vine to vine within trellises.  Two of the
vineyards studied had high populations of GWSS nymphs.  GWSS phenology in wine grapes was determined (Figure 1).
Moderate GWSS populations can clearly establish and reproduce in vineyards when it is not managed even if nearby GWSS
populations are low.

GWSS Phenology in Grape
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Figure 1. Glassy-winged sharpshooter phenology in wine grapes as determined from vine searches in 5 commercial
vineyards in Temecula during the 2001-02 seasons.  A search consisted of thorough examination of 3 sets of 25 vines.
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INTRODUCTION
The glassy-winged sharpshooter (GWSS) is an invasive species that is threatening California agriculture.  GWSS live on
many different host plants, but the main concern is their potential to vector Pierce’s disease in grapes.  Pierce’s disease can
kill susceptible grape vines within 2 years after infection (Varela et al. 2001).  An area-wide management program is
underway in Kern County to manage outbreak populations of GWSS and slow their northward spread in the San Joaquin
valley.  To be successful, large scale regional insect management programs require an accurate assessment of pest density
and distribution to provide decision support for program managers (Liebhold et al. 1993, Roberts et al. 1993).  This report
details program activity aimed at understanding the spatial distribution of GWSS populations in Kern County.

OBJECTIVES
1. Determine the spatial distribution and density of GWSS in a diverse agricultural setting.
2. Determine the within field distribution of GWSS and movement between citrus and other perennial host crops.
3. Determine the correlation between yellow sticky trap data and direct observations taken in the field.

RESULTS AND CONCLUSIONS
A trapping program was initiated to provide pest location and density information.  Sticky trap data was collected from a
pilot project area consisting of 1457ha (3600ac) of citrus, 1255ha (3100ac) of grapes, and 688ha (1700ac) of other perennial
hosts including almond, blueberries, cherries, nectarines, peaches, and pistachios.  GWSS adults are highly visually oriented
in searching for hosts.  Recent work (Hix et al. 2001, Puterka et al. (submitted)) demonstrated that yellow is the most
attractive color for trapping.  Yellow sticky traps with 36cm2 of trapping surface from Seabright Laboratories (Emeryville,
CA) were placed throughout the area in a 402m (¼ mile) grid and serviced weekly by CDFA.  Traps are placed on 2m
bamboo poles to standardize the height of trapping across the entire grid.  Within citrus groves and other tree fruits, traps
were placed within the row between 2 trees near the corners of the field.  Traps in grapes were placed within the trellis 0.1m
above the canopy on bamboo poles near the corners of the field.  The trapping grid has been expanded from the original pilot
project area to include most of the grape/citrus producing areas in Kern County.  Over 4000 traps in citrus and grape are
serviced on a weekly basis to provide managers detailed information on GWSS locations and density.

In addition to the standard grid, yellow sticky traps were set up in an intensive grid at 11 sites within the pilot project to look
at GWSS movement at crop interfaces. Citrus was the common crop at each site.  The other crops included 4 grape
vineyards, 4 cherry orchards, 2 peach/nectarine orchards, and 1 almond orchard.  Trapping grids consisted of 3 transects of
traps.  Each transect was comprised of 16 traps with 8 traps located in each crop.  The traps extended 200m into the crop
away from the interface and were approximately 24 m apart.  Traps were checked weekly as part of the regular trapping
program run by CDFA.  Data collection began at the end of February with the first reporting date on March 1, 2001.

When averaged across all sites, the overall trapping pattern for each crop was similar for the entire year, with a few
exceptions (see Figure).  Early in the season GWSS adult were trapped in the highest numbers in citrus prior to the foliar and
systemic treatments in citrus that were applied as the management strategy.  Levels in citrus remained low all season due to
these treatments.  From July to October most GWSS trap captures occurred in grape and cherry.  The highest numbers
occurred in the site with organic grapes. Late in the year numbers peaked in traps of one peach/nectarine orchard as the
grower was pruning the trees and putting on a dormant oil / insecticide treatment.  This winter activity points to the need to
trap continuously through out the year to detect populations in areas where they may be overwintering.
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Direct observations in the pilot project were made on a monthly cycle with all citrus orchards being sampled at a rate of 10
observations per 40 acres. Grapes and other host crops were sampled at the interface sites where trapping occurred.  Two
different sampling methods were used in each crop, and these varied based on differences in plant morphology between
crops.  In citrus, visual counts and beat net sampling methods were used.  Two minute visual counts were made of the
number of adult GWSS on the terminal growth on approximately ½ of the tree to a height of 2m, and then recorded onto a
data sheet.  Then, the terminal foliage is beat with a 2.5cm dowel rod to dislodge GWSS into a 62.5cm canvass net.  This
sample is then transferred to a labeled sealed plastic bag for counting at the laboratory.  In the case of grapes, ten equally
spaced visual counts are conducted on 4.3 linear meters of canes and recorded.  When grape foliage is present, it is swept 20
times with a 37.5cm canvass net over an equivalent area as the visual count.  Visual count and beat net sampling methods are
used in tree crops, while visual and sweep net sampling methods are used in vine and shrub crops (i.e., blueberries).  Finally,
each sample unit (tree, vine, etc.) is recorded with a unique GPS coordinate.  These results are being mapped and correlations
made with sticky trap captures.
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INTRODUCTION
The glassy-winged sharpshooter (GWSS) Homalodisca coagulata is an exotic insect in California and is an important vector
of Xylella fastidiosa that causes Pierce’s disease (PD) in grapes.  Citrus is a favored host of GWSS throughout the year, and it
has been well documented from studies of the Temecula PD epidemic that the proximity of citrus groves to vineyards has
influenced the incidence and severity of PD in grapes.  It is imperative that effective control strategies be implemented to
curb the spread of the vector-vital to this would be establishing the host plant range of the GWSS and determining the
physiological and biochemical mechanisms for host selection.  One of the key factors contributing to the successful
establishment of the GWSS in California has been its ability to utilize more breeding habitats and plant hosts than native PD
vectors.  Although a comprehensive list of suitable hosts has been identified, comprising 75 plant species in 35 families, little
is known about the physiological and biochemical mechanisms involved in host selection of GWSS in California.
Elucidation of the physiological and biochemical mechanisms may be usable for developing host plant resistance as a
sustainable component of integrated pest management program.

Dietary nitrogen and carbohydrates are important nutritional indices impacting survival, growth and reproduction of
phytophagous insects.  These nutrients are particularly limited for xylophagous insects, such as GWSS, because xylem fluid
consists of over 95% water and is the most dilute food source for herbivores.  There are two ways in which the GWSS could
compensate for the poor nutrient quality of the xylem fluid.  Firstly, they could feed for extended periods of time.  This is, in
fact, known to be the case, as those of us who have witnessed the sharpshooter rain at first hand will attest.  Indeed, it has
been estimated that GWSS can process up to 10 ml of xylem fluid per day.  Secondly, efficient assimilation of available
nutrients during prolonged feeding periods would enhance the nutritional value of xylem.  Different host plants may contain
different levels of dietary nitrogen and carbohydrate during the year and the differences could play a role in GWSS host
selection.

OBJECTIVES
1. Investigate the seasonal population dynamics of GWSS on orange and lemon trees.
2. Study the relationship between densities of GWSS on orange and lemon trees and the nutritional quality of the xylem

fluid upon which the insects feed.

RESULTS AND CONCLUSIONS
A lemon and orange mix-planted orchard was used for the experiment.  Three blocks of 30 orange and 30 lemon trees were
used.  Five trees of lemon or orange were randomly selected from each block to monitor the GWSS population dynamics and
to extract xylem fluid.  A bucket-sampling device was used to sample both immature and adult GWSS.  Population dynamics
of both adult and immature GWSS was monitored on a weekly basis throughout the season.  Xylem fluid in one-year old
stems from each of the trees was collected bi-weekly to determine levels of free amino acids, soluble proteins and
carbohydrates.

Adult GWSS numbers on oranges were highest from late June to late November 2001 and a smaller peak was observed from
early March to early April 2002 (Figure 1).  The adult numbers on lemons peaked from mid-July 2001 to late January 2002.
The adult numbers were 0.4- to 4.9-fold higher from late June to late July on oranges in comparison with those on lemons,
whereas the adult numbers were up to 10.7-fold higher from early August 2001 to late February 2002 on lemons than on
oranges.  The numbers were 8.7- to 16.4-fold higher from early March to early April 2002 on oranges than on lemons.

Peak immature counts on oranges occurred between late April and early July 2001 and the numbers gradually reached to zero
the rest of the year (Figure 1).  Peak immature densities on lemons were observed from mid-May to late June 2001.  The
immature counts were 0.9- to 3.9- fold higher on oranges than on lemons from late April to mid-May 2001.  Despite the
higher adult counts on lemons between November 2001 and January 2002, nymph counts in the following months were still
higher on oranges.  The mini-peak of adult numbers that appeared on oranges after January 2002 suggests that the adults had
migrated from the lemons to the oranges to reproduce.
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Throughout the experimental season, glucose and fructose levels were generally higher in xylem fluid from lemons (Figure
2).  Sucrose levels were generally higher in lemon xylem fluid except during the period of early December 2001 to mid-
February 2002 when orange xylem fluid had higher levels.  During August 2001, levels of xylem asparagine, glutamine,
tyrosine, phenelalanine, isoleucine, valine, threonine, histidine, methionine and lysine were generally higher in lemons
whereas from February to April 2002, levels of these xylem amino acids were higher in oranges, in correspondence with the
higher adult GWSS numbers on these trees (Figure 3).

In summary, from early spring to mid summer adult GWSS numbers were generally higher on oranges and from belatedly
summer to late winter the numbers were higher on lemons.  Levels of some xylem amino acids were in positive
correspondence with the higher GWSS numbers.

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program.

Figure 1: Seasonal population dynamics
of GWSS on orange and lemon trees

Figure 2: Seasonal variation of soluble sugar levels
in the xylem fluid of orange and lemon trees

Figure 3: Seasonal variation of some amino acid
levels in the xylem fluid of orange and lemon.
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AREA-WIDE MANAGEMENT OF THE GLASSY-WINGED SHARPSHOOTER IN THE TEMECULA VALLEY

Principal Investigators:
Raymond Hix, Nick Toscano, Rick Redak, and Matthew Blua
Department of Entomology
University of California
Riverside, CA 92521

Reporting Period: The results reported are from work conducted from March 2002 to November 2002.

INTRODUCTION
The Temecula viticultural area was the first in California to be seriously impacted by the glassy-winged sharpshooter
(GWSS) Homalodisca coagulata and the spread of Xylella fastidiosa, the causative agent for Pierce’s disease (PD).  While
PD problems were first identified in 1996, it was realized by 1999 that the situation was dire.  As a result, this ongoing
cooperative demonstration project was initiated in 2000 to examine the impact of area-wide management strategies on GWSS
populations and PD incidences in the Temecula Valley.  The Temecula advisory committee consists of representatives from
wine grape growers, citrus growers, University of California-Riverside, USDA, CDFA and the Riverside County Agricultural
Commissioner’s Office.

The key strategy is to reduce and limit the vector (GWSS) and remove the reservoirs (infected vines).  Another strategy in
conjunction with the Riverside Agricultural Commissioner’s Office was to facilitate the removal of abandoned citrus and
vineyards in Temecula.

In the 2000 season, the opportunity to treat nearly the entire commercial citrus in the Temecula viticultural area was seized
upon in an effort to destroy a substantial portion of the regional GWSS population.  The emergency treatment of 1300 acres
of citrus in Temecula, CA with Admire® (imidacloprid) during Apr and May 2000 represented a pivotal shift toward an area-
wide management of GWSS.  In Mar and Apr 2001, 269 acres of citrus were treated with Admire and an additional 319 acres
were treated with foliar applications of Baythroid® on an “as needed” basis.  Many grape growers treated their grapes with
Admire and/or made foliar applications of Provado®, or Danitol® in 2002.  Recommendations were made to remove sick
vines in order to remove bacterial reservoirs.  Though response was slow initially, growers are aggressively removing sick
vines.

Although wine grapes are the most vulnerable due to the risk of PD, other crops were scrutinized for contributions to GWSS
population growth.  Citrus was the most important year long reproductive host of GWSS in Temecula.  Citrus also seemed to
concentrate GWSS over the winter months when grapes and most ornamental hosts were dormant.

OBJECTIVES
1. Determine the impact of the 2000 area-wide management program on GWSS populations in citrus, grapes, and other

plant hosts in the ecosystem in the 2001 season.
2. Determine the impact of the area-wide program on GWSS adult oviposition and nymphal development.
3. Determine the impact of the GWSS program on beneficial citrus insects, pest upsets and GWSS parasitism.
4. Evaluate the biological and economic effectiveness of an area-wide insecticide program of GWSS.

RESULTS AND CONCLUSIONS
GWSS weekly monitoring in citrus and grapes began in March 2000 and has been continued to December 2002 by trapping
(500 traps), visual counts (adults, nymphs, egg masses), beats in citrus, and A-vacuuming in grapes.  This monitoring will
continue through at least 30 June 2003.  Although good in most cases, Admire was not 100% efficacious on citrus in 2000.
Improper application of Admire or weak trees will affect uptake by citrus trees preventing it from reaching the target site.
The results from the 2000 project indicated that every tree or acre does not need to be treated.  GWSS numbers remained low
in citrus treated with Admire in 2001.  The populations also remained low in citrus treated with Admire in early 2000, but
GWSS were observed at low numbers in some of these groves in July and August 2002.

Troublesome areas or hot spots were identified during early monitoring in January-April 2002.  This led to the treatment of
137 acres of citrus with Admire in April 2002.  An additional 95 acres of citrus were treated as needed with foliar
applications of Assail between July 21 and August 15, 2002. A helicopter was used to make Assail applications to 49 acres
with 46 acres treated by speed sprayer. Gavacide C 440 oil was applied to 148 acres of organic citrus in 2002.  As in previous
years, grape growers were responsible for treatments to grape.  Several grape growers treated grapes with Admire or as
needed with foliar applications of Danitol, Baythroid, or Provado.

Organic citrus groves and grape vineyards were the problematic areas and populations remained highest in these groves
(Figure 1).  The results from Gavacide C treatments were promising in 2001, and with the lack of other alternatives in
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organic situations, additional treatments were made with 1.25% Gavacide C and water on August 7, 2002 (750 gallons per
acre) by speed sprayer to 109 acres of organic citrus.  Gavacide C was applied on October 23, 2002 by helicopter to an
additional 42 acres that were inaccessible by speed sprayer.  The rate applied by helicopter was 15 gallons Gavacide C in 85
gallons water per acre.  CCOF and OMRI currently allow the use of most 415 and 440 oils for organic use.

During July and August 2002, it became apparent that some citrus treated with Admire in early 2000 has become re-infested
with GWSS.  As a result, Admire or Assail treatments are planned for 500-600 acres of citrus in 2003.  Based on the success
of the program over 2000, 2001, and 2002, it would seem that this level of treatment in citrus every 3 years would keep
GWSS populations suppressed in the Temecula viticultural area. This would be coupled with GWSS management within
vineyards throughout the valley on a yearly basis.

Some vineyard replanting occurred in 2002 (2% or less) especially in high visibility areas for both aesthetic reasons and to
explore the feasibility of reestablishing lost vineyards.  Based on a survey of 5 Temecula wineries, 2001 wine grape
production ranged from 47% to 77% of what it was in 1995 with production ranging from 3.7 to 7.8 tons per acre in 1995 to
4.3 to 6.0 tons per acre in 2001.  However, Temecula is providing few wine grapes to other areas due to economic forces.  As
a result, the 2000 and 2001 harvests were more than adequate to sustain the Temecula wineries with substantial surplus.  In
the future, Temecula will likely concentrate on producing quality wine grapes for Temecula’s wineries.
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Figure 1.  Comparison of GWSS (left to right) trapped in untreated organic citrus, 440 oil treated
Organic citrus, Admire treated citrus, organic grape, Admire treated grape, Danitol treated grape
Adjacent to oil treated organic citrus.  Bars = ± SEM.   N = 15 to 20.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service, the California Department
of Food and Agriculture, Riverside County, and the City of Temecula.
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IMPACT OF LAYERING CONTROL TACTICS ON THE SPREAD OF PIERCE'S DISEASE BY
THE GLASSY-WINGED SHARPSHOOTER

Project Leaders:
Rick Redak and Matthew Blua
Department of Entomology
University of California
Riverside, CA 92521

Reporting Period: The results reported here are from work conducted from June 2001 through October 2002.

INTRODUCTION
Solutions to managing and controlling Pierce's disease of grapes are often conceptualized as ways of breaking at least one
two-way interaction among the insect, plant, and bacteria components that are required for successful disease spread and
propagation.  Hypothetical solutions may also involve altering the abiotic and biotic environment within which these
interactions take place.  On the basis of our understanding of Pierce's disease epidemics, as well as other insect transmitted
plant pathogen systems, one single control tactic (especially focused upon the insect) will not be sufficient to substantially
reduce vector populations such that the incidence of disease is below an economically acceptable level.  One management
and control strategy that potentially may be utilized to limit the damage brought about by Pierce's disease involves layering
separate vector and disease management tactics together such that vector population densities are reduced, their interactions
with grapevines are inhibited or disrupted, and the interface between grapevines and the disease organism, Xylella fastidiosa,
is disrupted.  Here we report on our efforts to simultaneously implement (i.e. "layer") various control strategies currently
available to limit the spread of Pierce's disease transmitted by the glassy-winged sharpshooter, Homalodisca coagula.

OBJECTIVES
Our specific objectives are to determine the ability of a variety of treatment and treatment combinations on 1) their ability to
reduce glassy-winged sharpshooter density and feeding and 2) their ability to reduce the rate of spread of Pierce's disease in
newly planted vineyards.

RESULTS AND CONCLUSIONS
The research site was established in April of 2001 at the Agricultural Operations facility located on the campus of the
University of California, Riverside.  One thousand grape vines were acquired from SunRidge Nursery in early may and
planted on May 16, 2001.  The variety utilized in this study is Chardonnay 04 on S04 rootstock.  Vines were planted with 6 ft
spacing between plants and 12 ft spacing between rows and watered with drip irrigation.  At total of 10 rows of 100 vines per
row was planted.  Treatment and treatment combinations evaluated are 1) imidacloprid at full rate, 2) imidacloprid at 1/2 rate,
3) a combination of imidacloprid plus acetamiprid, 4) metalosate, 5) kaolin, 6) imidacloprid-acetamiprid combination plus
kaolin, 7) imidacloprid-acetamiprid combination plus metalosate, 8) metalosate plus kaolin, 9) imidacloprid-acetamiprid
combination plus kaolin plus metalosate, and 10) control (water only).  Treatments involving acetamiprid could not be
evaluated until Fall of 2002.

Results indicated that there was a significant difference among treatments with respect to the number of sharpshooters found
on experimental plants for both 2001 and 2002 (2001: F8,91 =17.14, P<0.0001, 2002: F9,90 =20.74, P<0.001, Figure 1).  As
replicates involving acetamiprid are only included in the 2002.  As expected plants treated only with metalosate (a potential
prophylactic treatment for Pierce’s disease) supported similar numbers of sharpshooters as untreated control plants.  Overall
plants treated with kaolin demonstrated reduced numbers of sharpshooters relative to the untreated controls, and plants
treated with imidacloprid exhibited the lowest numbers of sharpshooters.  There were no significant differences in the
numbers of sharpshooters found on plants treated with kaolin as compared to the numbers found on insecticide treated plants.
These patterns have been maintained for the duration of the experiment thus far.  No experimental treatment has yet resulted
in complete protection from sharpshooters; consequently, all treated plants remain at risk of exposure to X. fastidiosa. With
the exception of metalosate, all treatments were reasonably effective in reducing sharpshooter numbers throughout the fall
season.  Differences among treatments were lost as sharpshooter numbers naturally declined at the end of fall.  A
combination of imidacloprid, acetamiprid and kaolin was most effective at reducing overall sharpshooter numbers; however,
it should be noted that a significant number of sharpshooters was found on all treated plants throughout the growing season.

Results of our latest feeding trials demonstrated that imidacloprid, imidacloprid-acetamiprid, and imidacloprid at half-rate
applied per twice year significantly reduced sharpshooter feeding (Figure 2).  Regardless of treatment type, imidacloprid
reduced sharpshooter feeding by approximately 95%.  Treating with imidacloprid at half-rate twice a year or combining full
rate imidacloprid with acetamiprid did not significantly reduce feeding any further than a single application of imidacloprid at
the full label rate.
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As of September 2002, several treatments have significantly reduced the incidence of Pierce's disease symptoms in
experimental plants.  Imidacloprid at full rate, kaolin, kaolin plus metalosate imidacloprid-acetamiprid-kaolin, imidacloprid-
acetamiprid-metalosate, imidacloprid plus acetamiprid plus kaolin plus metalosate all significantly reduced the incidence of
Pierce's disease relative to untreated controls.  Other treatments and treatment combinations (including just metalosate) did
not significantly reduce the incidence of PD.  Unfortunately, while the above treatments did reduced the incidence of PD
relative to controls, they still suffered an approximate average of 30% infections (30% of the treated plants showed
symptoms after 1.5 years).  Control treated plants displayed an average of 69% infection.

Figure 1: Effect of
treatments on numbers of
glassy-winged
sharpshooters detected in
grape plants.

Figure 2: Effect of
treatment on feeding rate
of glassy-winged
sharpshooter on grapes

FUNDING AGENCIES
Funding for this project was provided by the California Department of Food and Agriculture.

Date

17-Aug 31-Aug 14-Sep 28-Sep 12-Oct 26-Oct 8-Nov 26-Nov 20-Dec 25-Apr 9-May 23-May 6-June 21-June 3-July 18-July 2-Aug 16-Aug 30-Aug 13-Sept26-Sept

N
um

be
r o

f G
W

SS
 (a

rc
si

ne
(s

qr
t(#

))

0.0

0.5

1.0

1.5

2.0 CONTROL
METALOSATE
KAOLIN
MET+KAOLIN
IMIDACLOPRID
IMIDACLOPRID-1/2
MET-IMID-ACET
KAOLIN-IMID-ACET
MET-KAOLIN-IMID-ACET
IMID+ACETA

2001 2002

Treatment
Control Imidacloprid Imida+Aceta Imida-1/2 Kaolin

Ex
cr

et
io

ns
 (3

 G
W

SS
/2

hr
)

0.00

0.05

0.10

0.15

0.20

0.25



-161-

MYCOPATHOGENS AND THEIR EXOTOXINS INFECTING GLASSY-WINGED SHARPSHOOTER:
SURVEY, EVALUATION, AND STORAGE

Project Leaders:
Russell F. Mizell, III
University of Florida. NFREC-Quincy
Quincy, FL 32351

Drion G. Boucias
Department of Entomology and Nematology
University of Florida
Gainesville FL

Cooperators:
Peter C. Andersen
Department of Horticultural Sciences
University of Florida

Serguei Triapitsyn,
Department of Entomology
University of California
Riverside, CA

Shi-Yih Hung
University of Florida

Reporting Period:  The results reported here are from work conducted in 2002.

INTRODUCTION
Excluding the observations reported by Turner and Pollard (1959), we know of no studies that have examined the
entomopathogens associated with GWSS populations.  In general, the lack of pathogens (viral, bacterial, or protozoa) in
leafhopper populations may be related to their piercing-sucking feeding behavior.  In most cases, these pathogen groups are
transmitted orally and would likely need to inhabit the xylem tissue to infect leafhoppers. Pathogens that are transmitted per
os are typically affiliated with insects with chewing mouthparts.  Thus, entomopathogenic fungi, which do not need to be
ingested in order to infect insects, are considered to contain the primary pathogens of sucking insects.

Based on a preliminary survey of GWSS (Boucias and Mizell, unpublished 2001) and 20 years of field experience, we expect
that the proposed multi-seasonal collections will yield an array of novel mycopathogens that are active against GWSS.  This
study, will provide a source of mycopathogens with potential for GWSS biological control along with a GWSS microbe
collection that will be screened for novel metabolites (exotoxins). In collaboration with an industrial partner, broth filtrates
will be screened against an array of eukaryotes and prokaryotes.  Of particular interest are the Hirsutella spp. isolates
affiliated with this insect (Boucias and Mizell, unpublished 2001).

OBJECTIVES
This research will investigate the disease complex associated with glassy-winged sharpshooters in the Southeastern United
States.  Specific objectives include to:
1. Identify and archive all the major pathogens affiliated with GWSS populations.
2. Estimate the distribution, frequency and seasonality of the major diseases of GWSS.
3. Screen the pathogens for exotoxins with potential toxicity to GWSS and other arthropods.
4. Confirm infectivity of the isolates and the exotoxins and determine which if any pathogens may serve as microbial

controls of GWSS and other leafhopper vectors.

RESULTS AND CONCLUSIONS
We have not received final approval of the contract for this grant and cannot proceed full speed until we do.  However, we
have completed surveys of entompathogens in field populations of GWSS in north and central Florida with some success.
During summer 2002, populations of Homalodisca coagulata were sampled at sites in Gainesville and Quincy, Florida, and
Cairo, Georgia.  Insects were collected and held in sleeve cages on crape myrtle for 2-4 weeks for the detection of pathogens.
Sharpshooter cadavers were collected and incubated in a warm, moist environment and observed for fungal and bacterial
growth.  Populations in Gainesville were observed in low densities on red crape myrtle.  There was no indication of fungal
infection in these insect populations.  Sharpshooter populations in Quincy, Florida were observed in much higher densities on
citrus, crape myrtle, and holly, among other hosts plants. Sharpshooters collected in late June experienced a rapid die-off but
displayed no signs of fungal infection.  The die-off seemed instead to be associated with a bacterial infection, the nature of
which has yet to be determined.  Cultures of bacteria and fungus associated with the cadavers from this collection are
awaiting further identification.  In southern Georgia, sharpshooters were sampled on hollies at two different nursery sites.
One site yielded a great many mycosed cadavers, whereas the other site yielded only healthy insects.  Mycosed cadavers
collected from hollies at the infected site were incorporated into a preliminary transmission study.  In this experiment,
mycosed cadavers were placed on crape myrtle with the live sharpshooters collected from both infected and uninfected areas.
Horizontal transmission did not appear to occur within the two week exposure period.  Only samples taken from the infected
area showed signs of fungal infection.  Cultures of the fungi associated with these specimens were examined under SEM and
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were identified as a Hirsutella spp.  Currently selected ribosomal genes are being sequenced to confirm identification of this
fastidious fungus.

Some initial work has been done on the composition and function of brochosomes, a unique excretion of GWSS that is used
to cover the integument and eggs.  Brochosomes may play a role in preventing infection, and are therefore of interest as to
how they may interact with fungi or bacteria.  Also of interest is the presence of internal parasites in a closely-related
sharpshooter, Ocometopia spp.  Strepsipterans were observed in ca. 20% of Oncometopia spp. adults collected in north
Florida and south Georgia.  No data have shown that the strepsipterans found in the Oncometopia spp. can infect H.
coagulata as well, but more study is needed.

REFERENCES
Turner, W.F. and H.N. Pollard 1959. Life histories and behavior of five insect vectors of phony peach disease. USDA

Technical Bulletin 1188.

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program.
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EXPLORATION FOR FACULTATIVE ENDOSYMBIONTS OF SHARPSHOOTERS

Project Leader:
Alexander H. Purcell
Division of Insect Biology
University of California
Berkeley, CA 94720

Cooperators:
Russell Mizell, III
University of Florida
Quincy, FL

Chris Carlton
Louisiana State University
Baton Rouge, LA

Reporting period:  The results reported are from work conducted from July 1, 2002 to November 1, 2002.

INTRODUCTION
Improved biological control of the glassy-winged sharpshooter (GWSS), Homalodisca coagulata, in California has been a
major objective of research attempts to lower the incidence of this vector of Xylella fastidiodsa (Xf), a bacterial pathogen of
grapes, almonds, alfalfa (in California), citrus, coffee (in Brazil) and a variety of other plants (Purcell and Feil 2001).  So far,
the most promising biological control approaches have been to seek new parasitic wasp species that attack the eggs of GWSS
and to discover ways to enhance their effectiveness (Triapitsyn et al. 1998).  Pathogens of GWSS have not been employed to
date largely because none are known, although recent research is directed towards discovering viruses of GWSS.

Endosymbiotic bacterial associates of leafhoppers are little-understood and unexploited components of their biology that we
believe could make a significant contribution to control of these pests.  The gravity of the threat posed by GWSS justifies
research into this unexplored aspect of its biology.  Biological control by itself is unlikely to provide a solution to the
GWSS/PD dilemma, but hopefully will serve as a cornerstone to an integrated approach by lowering populations of GWSS to
the point where combinations of other control methods such as insecticides, repellents, and habitat management can lower the
numbers of infective GWSS in affected crops to manageable levels.

Of particular interest to us are bacterial associates that are facultative (also referred to as “secondary”), i.e., that occur in some
individuals or populations but not others, and that could be introduced into, or augmented in pest populations.  We use the
term symbiont here in the biological sense of ‘living together” and do not imply mutual benefit (Douglas 1994).  Facultative
bacterial associates have been described in a variety of Homoptera including leafhoppers (Swezy and Severin 1930,
Schwemmler 1974, McCoy et al. 1978, Purcell et al. 1986).  The only leafhopper facultative symbiont studied in some depth
is BEV, a bacterium that occurs in Euscelidius variegatus in France, but apparently not in California (Purcell et al. 1986).
Uninfected females of E. variegatus inoculated with cultures of BEV transmitted the bacteria transovarially to their offspring.
Subsequently, infected leafhoppers had drastically reduced fecundity (by 80%), slowed development (double the normal
development time), and increased mortality, relative to uninfected controls (Purcell et al. 1986, Purcell and Suslow 1987).
They also transmitted phytoplasma bacteria at drastically reduced rates, but we do not anticipate this would occur with Xf.

It is clear from our studies of facultative bacteria in aphids (Chen et al. 2000, Montllor et al. 2002) as well as from the study
of BEV, that endosymbiotic associations are complex and have critically important effects, both positive and negative, on the
physiology, population biology and vector potential of their hosts.  Any component of leafhopper behavior, physiology, or
ecology that affects their ability to vector plant pathogens can have major implications for the spread of plant diseases.  The
most likely impacts that facultative symbionts might have on the control of GWSS involve their potential ability to:

• decrease populations of GWSS to lower equilibrium levels (may be temperature dependent)
• change (+ or -) the rate of successful parasitization by biological control agents
• decrease GWSS fecundity
• facilitate production of GWSS parasitoids (if discovered to be limited by bacterial symbionts)

OBJECTIVES
1. Survey glassy-winged sharpshooter and other sharpshooters in California and the Southeastern U.S. for facultative

bacterial endosymbionts.
2. Determine by DNA sequencing the identity of any bacteria discovered.
3. Depending on type of microorganism and relative frequency in surveyed insects, select candidate symbionts to (a) attempt

to culture, (b) determine whether they can be transmitted by injection of hemolymph from infected to uninfected GWSS
or to other sharpshooter species, (c) determine whether they are transovarially transmitted, (d) determine whether they can
be horizontally transmitted through plants and (e) determine whether any are beneficial or pathogenic to GWSS in terms
of life history traits (growth, fecundity, longevity, parasitism).
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RESULTS AND CONCLUSIONS
Glassy-winged sharpshooters have been collected in Louisiana, Florida and California (two locations) in spring and summer
2002.  Four other species of sharpshooters have also been collected in California in summer 2002.  DNA has been extracted
from hemolymph samples of 170 insects.  To date, the 16s ribosomal DNA from 88 of these samples has been amplified with
universal eubacterial primers.  About 60% of the samples contained enough amplified DNA to detect by electrophoresis,
indicating either that some insects do not have detectable bacteria in the hemolymph, or that the hemolymph sample collected
was too small.  Eubacterial DNA from 25 individual GWSS from Florida, Louisiana and California was digested with the
endonuclease Hinf l as an initial screen for differences in the amplified bacterial DNA.  These digests have been analyzed by
electrophoresis, yielding distinct band patterns.  Five different digest patterns have been found to date in these GWSS, and at
least two band patterns have been documented from each locality.  There appears to be overlap in band patterns among the
three localities (i.e., common patterns in insects from the three areas), though this is not yet certain.  The presence of a variety
of band patterns indicates that several types of bacteria are present in our samples.  Although great care has been taken to
avoid contamination of hemolymph samples, we do not yet know whether some of the bacterial DNA in our samples might
come from an exogenous source.  We have also extracted DNA from the primary symbionts of GWSS, which occur in
structures called bacteriomes, and which can easily be dissected out of the insect, and from BEV-infected leafhoppers, for
comparative purposes.
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INTRODUCTION
The year 2002 marks the second of a proposed three year study to develop and demonstrate the Areawide Management of
Glassy-winged Sharpshooter (GWSS) in Kern County, CA.  The first year successfully demonstrated the areawide concept as
a strategy that will reduce GWSS to very low population densities in a robust multi-crop perennial growing system.  Critical
to this success is a well organized and coordinated delivery system that growers can adapt to their present pest management
programs.  The strategy in 2001 was to treat citrus using an action threshold of greater than one GWSS/tree which resulted in
1830 acres out of 3600 receiving a foliar, knockdown, insecticide.  All citrus received a single systemic application of
Admire ® following the foliar treatments.  All acreage, approximately 13,000 acres, is monitored utilizing a combination of
direct observations and sticky traps arrayed in a ¼ mile grid.

Grower interest in the results of the pilot study in 2001 culminated in a request to initiate an areawide program in Kern
County.  An expanded program was implemented in the county.  This areawide program utilized the strategies developed in
the first year of the pilot study.

OBJECTIVES
1. Adjust management strategies based on current GWSS population levels.
2. Test compatibility of selected insecticides and biological control agents.
3. Develop and implement biological control based strategies. (See Report by Isabelle Lauziere)
4. Implement an area-wide pest management program in Kern County.

RESULTS AND CONCLUSIONS
Results from the monitoring program suggested that in 2002 three of the groves treated last year in the pilot study required
treatment with a systemic insecticide.  Four groves required only a foliar treatment. Although the GWSS populations in these
groves were below the action threshold used in 2001, the decision was made to treat these as hot spots and prevent the
possible reinfestation of adjacent groves.  Monitoring data indicates that the groves still infested in 2002 were adjacent to
eucalyptus windbreaks that border the groves.  The windbreaks were initially treated with a foliar insecticide treatment but
did not receive a systemic treatment to prevent recurring populations of GWSS.  We are currently waiting for an approved
label to treat these windbreaks.

GWSS population monitoring in the pilot project study area during 2002 indicates very low levels of infestation.  Insecticide
inputs during the second year of the study were minimal, suggesting that the area-wide approach to treatment may provide
adequate control of the pest over multiple years.  The addition of natural enemies in the form of augmentative releases of egg
parasitoids may extend this control, potentially building in a long-term sustainable regulating component into the area-wide
program.

Limited fiscal resources for an expanded area-wide program in Kern County required the county to be divided into zones that
could be effectively managed with available funds.  Four zones have been established and are monitored for GWSS
populations using a trapping grid of one trap/per 32 acres.  The Northern Zone, Edison area, has historically been troubled
with large populations of GWSS.  This is the first zone to be treated.  The management strategy followed the established
protocol from the pilot study.  The current population of GWSS has been reduced to almost non-detectable levels in citrus.
Since Pierce’s disease is known to occur in this area of the county, vineyards that continued to have GWSS after harvest were
treated to prevent their return into citrus.  Hot spot treatments for GWSS in grapes have reduced this population to similar
levels as seen in the citrus.

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service.
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MONITORING AND CONTROL MEASURES FOR PIERCE’S DISEASE IN KERN COUNTY

Project Leader:
Jennifer Hashim
UC Cooperative Extension, Kern County
Bakersfield, CA 93307

Cooperators:
Alexander H. Purcell
Division of Insect Biology
University of California
Berkeley, CA

Barry Hill
California Department of Food and Agriculture
Plant Pest Diagnostics Branch
Sacramento, CA

Reporting period: The results reported here are from work conducted from April 2002 through December 2002.

INTRODUCTION
Pierce’s disease (PD), caused by the bacterium Xylella fastidiosa, is a killer of grapevines.  Significant vine loss from PD has
occurred in southern California, north coast regions and portions of the southern San Joaquin Valley such as Tulare and
Fresno counties over the last 100 years.  Native sharpshooters, including the blue-green sharpshooter and the red-headed and
green sharpshooters have been largely responsible for PD spread.  With the arrival of the glassy-winged sharpshooter
(GWSS), a more effective vector, the transmission of the bacterium and subsequent disease threatens Kern County, a major
grape production area of the state with more than 87,000 bearing acres and a farm gate value of approximately $438 million
dollars.

Approaches to disease management have changed in Kern County, due largely to an increase in the incidence of disease
where PD had not known to exist prior to the introduction of GWSS.  To date growers have tried to control the insect and the
disease with a combination approach of using both soil-applied and foliar pesticides and roguing out vines expressing PD-
like symptoms during the summer.  However, there is no data to support whether these strategies will be successful to combat
the spread of PD.  Many management decisions are currently being made based on anecdotal evidence, testimony and
projections.  The county provides a unique environment in which to map the incidence of PD, track the spread of the disease
over time and investigate the interaction between the insect and the disease, given that both inoculum and the insects are
present.  Such information would be useful to determine the economic impact of GWSS on California agriculture as well as
provide fundamental data on epidemiological factors including but not limited to, host susceptibility to disease, GWSS
presence, proximity to preferred hosts of GWSS, proximity to alternative hosts of Xylella and individual grower insecticide
and disease management programs.

OBJECTIVES
1. Estimate the incidence of PD over time in both GWSS infested regions as defined by the Kern County Agricultural

Commissioner’s Office and detection efforts by the CDFA and USDA and in areas with no GWSS finds.  Data will be
collected by mapping case study vineyards for PD in order to determine the quantitative relationships of recorded
variables to disease incidence over time.

2. Provide individual support to growers and pest control advisors to ensure that they are aware of the critical nature of PD
in the presence of GWSS.  The key to this objective is getting grower support to develop their own field monitoring
programs and control strategies.  This includes individual field meetings if there are questions regarding symptom
identification, encouragement of tissue sampling, collecting and shipping samples to the CDFA diagnostic lab,
communicating results, providing information on PD management and follow up support.

RESULTS AND CONCLUSIONS
This study focuses on vineyards in Kern County because of its importance as a major grape production area and its short
history of GWSS infestation.  This situation enables the project to follow the epidemiology and progression of the disease
beginning with the arrival of the insect vector, particularly in the northern area of the county (Delano and Highway 65).  A
number of vineyard blocks throughout the county were selected as case studies for the project (Table 1.).  The acreage
surveyed within the project represents roughly 5% of the total bearing grape acreage in the county.  A profile was created for
each vineyard and the variables recorded include: GPS coordinates, cultivar, vine age/plant date, row x vine spacing, pruning
and trellising system, weed index, proximity to other host crops of GWSS and Xylella fastidiosa, pesticide use information
when available and presence and population levels of GWSS.  Fifteen cultivars of varying ages were examined during the
project and the levels of tolerance to PD are presented in Table 2.  All data will be sent to the Center for the Assessment and
Monitoring of Forest and Environmental Resources (CAMFER) at University of California at Berkeley under the direction of
Barry Hill and Sandy Purcell.  The center will compile the data and create a GIS based data set.  The resulting data, maps,
and information will be shared with collaborating plant pathologists, statistical analysts, agricultural economists, and other
legitimate researchers to maximize the opportunity to understand the changed epidemiology of PD, to manage the disease,
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and to generate projections for potential economic consequences and risk assessment.   Information from this project will be
useful in the future in those viticulture areas of the state where the GWSS may become established.

Table 1. Summary of the Pierce’s disease survey effort in Kern County.
Areas surveyed for

Pierce’s disease
Total number of
blocks surveyed

Total number of
acres surveyed

Number of tissue
samples collected

Number of PD +
samples

General Beale Pilot Area 42 888.2 1976 908
North:  Edison/Bena 7 234 145 109

South A:  Arvin 22 314.4 39 6
South B:  Arvin 28 259 84 9
Central:  Arvin 2 32 0 0
West:  Hwy 166 32 801 56 6

Hwy 65 and Delano 83 1586.8 In progress In progress
Total 216 4115.4

Table 2. Cultivars included in the study and their respective tolerances to Pierce’s disease.

Cultivar

Vine susceptibility
Most susceptible=3
Less Susceptible=2

Most tolerant=1
Resistant=0

Green                            Calmeria 3
French Columbard 2

Jade Seedless 3
Muscat N/A
Perlette N/A

Thompson Seedless 1
Superior Seedless N/A

Red Christmas Rose N/A
Crimson Seedless 2
Flame Seedless 2

Redglobe 3
Ruby Seedless 2

Purple Autumn Royal N/A
Black Emerald N/A

Fantasy Seedless N/A

All V. vinifera cultivars are susceptible to Pierce’s disease.   Levels of tolerance were assigned based on the rate of spread of
bacteria within the plant.  Relative tolerances are adapted from Pierce’s disease, UCANR Pub. 21600, Varela et al.

FUNDING AGENCIES
Funding for this project was provided by the University of California Pierce’s Disease Grant Program.
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DETECTION OF DNA POLYMORPHISMS IN GLASSY-WINGED SHARPSHOOTERS
(HOMALODISCA COAGULATA) BY PCR-BASED DNA FINGERPRINTING METHODS

Project Leaders:
Jesús H. de León and Walker A. Jones
USDA-ARS, Beneficial Insects Research Unit
Subtropical Agricultural Research Center
Weslaco, TX 78596

Reporting Period: The results presented here are from work conducted from FY2001 to FY2002.

INTRODUCTION
The glassy-winged sharpshooter Homalodisca coagulata (Say) (Homoptera: Cicadellidae), is a xylem feeding leafhopper that
is a serious pest because it vectors a strain of Xylella fastidiosa, a bacterium that causes Pierce’s disease of grapevines (Turner
and Pollard 1959; Nielsen 1968).  DNA markers have proved to be valuable tools for population genetic studies.  DNA
fingerprinting methods that do not require prior knowledge of genome sequences include ISSR-PCR (Inter-Simple Sequence
Repeat-Polymerase Chain Reaction), RAMP (Randomly Amplified Microsatellite Polymorphisms), SAMPL (Selective
Amplification of Microsatellite Polymorphic Loci) and RAPD (Random Amplification of Polymorphic DNA). RAPDs
produce dominant markers, whereas ISSR-PCR, RAMP, and SAMPL incorporate Simple Sequence Repeats (SSR) and are
capable of identifying co-dominant markers if utilizing 5’-anchored or compound ISSR primers (reviewed in Karp and
Edwards 1997), but without known family relationships (segregation/backcrosses) these markers are scored as dominant.

OBJECTIVES
Develop molecular genetic markers for the glassy-winged sharpshooter by the following methods ISSR-PCR, RAMP,
SAMPL, and RAPD to estimate the most sensitive and efficient procedure.  Screening of the methods was initiated with a
small number of insects (3).  Identification of DNA polymorphisms (POPGENE software) in natural populations was
determined with 10-30 insects with the various DNA fingerprinting methods.

RESULTS AND CONCLUSIONS
Initially, one insect was utilized to screen with the four DNA fingerprinting methods, than three insects (Weslaco, TX) per
primer or primer pair (pp) (46 total) were used to estimate the sensitivity and efficiency of each method.  The results of this
small scale screening procedure are presented in Table 1.  A total of 205 polymorphic markers were generated with the four
methods, with ISSR-PCR, pp-ISSR-PCR, RAMP, SAMPL, and pp-RAPD producing 34, 41, 58, 32, and 40 polymorphic
markers, respectively.  The Efficiency Ratio (number of polymorphic markers/number of primers amplified) of each method
was as follows: 6.83 (pp-ISSR-PCR), 6.80 (ISSR-PCR), 4.83 (RAMP), 3.33 (pp-RAPD), and 2.91 (SAMPL).  The Screening
Efficiency (number of polymorphic markers/number of primers screened) indicated that both pp-ISSR-PCR (2.41) and ISSR-
PCR (2.27) were the most efficient methods.  To test the utility of some of these DNA fingerprinting methods on identifying
DNA polymorphisms in a natural population of glassy-winged sharpshooters (Weslaco, TX), 10-30 insects were employed
(Table 2).  Depending on the sample size, the number of polymorphic loci ranged from 5 (pp-RAPD, reaction #6) to 32 [ISSR
compound primer 13, A(CA)7(TA)2T] and percentage polymorphic loci was 100% for most primers or primer pairs.  Gene
diversity ranged from 0.095 to 0.263 for ISSR compound primer 10, G(TG)4(AG)4A and pp-RAPD reaction #6, respectively.
A small-scale geographic or multi-populations analysis was conducted with ten insects each from Weslaco, TX and
Bakersfield and Riverside, California and RAMP (reaction #54).  A dendrogram based on Nei’s genetic distance by the
method of UPGMA and the multi-populations genetic variation statistics are demonstrated on Figure 1.  The two California
cities, Bakersfield and Riverside formed a cluster that was separated from Weslaco, Texas.  The Weslaco population
demonstrated the greatest genetic diversity (0.20).  Geographic specific markers may also be an indication of subdivided
populations.  The present results confirmed the utility of the DNA fingerprinting screening procedure and demonstrated
extensive genetic variation in natural populations of glassy-winged sharpshooters by the four PCR-based DNA fingerprinting
methods.

REFERENCES
Karp, A. and J. Edwards.  1997.  DNA markers: a global overview. In: DNA markers- protocols, applications, and overviews,

G. Caetano-Anolles and P.M. Gresshoff (eds.).  Wiley-Liss, Inc., New York, NY. pp. 140-150
Nielson, M. W.  1968.  The leafhopper vectors of phytopathogenic viruses (Homoptera, Cicadellidae) taxonomy, biology, and

virus transmission.  USDA Tech. Bull. 1382, 81-84.
Turner, W.F. and H.N. Pollard.  1959. Life histories and behavior of five insect vectors of phony peach disease.  USDA

Tech. Bull. 1188: 28 pp.

FUNDING AGENCIES
Funding for this project was provided by the USDA Agricultural Research Service.
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Table 1. Summary of the DNA fingerprinting methods screening procedure.  pp, methods incorporating primer pairs.
________________________________________________________________________________________________

No. Primers No. Primers No. Polym. Efficiency Screening
Method Screened Amplified Markers Ratio Efficiency
________________________________________________________________________________________________

ISSR-PCR 15 5 34 6.80 2.27
pp-ISSR-PCR 17 6 41 6.83 2.41
RAMP 93 12 58 4.83 0.62
SAMPL 40 11 32 2.91 0.80
pp-RAPD 45 12 40 3.33 0.88

Total 210 46 205
________________________________________________________________________________________________

Table 2. Summary of selected results from the various DNA fingerprinting methods.  P, polymorphic loci; %P, percentage
polymorphic loci; G. D., gene diversity.
_________________________________________________________________________________________________

Reaction (#) Sample
Method or primer (p) Primer(s) Tm Size Loci P %P G. D. (SD)
_________________________________________________________________________________________________

ISSR-PCR p-9 CCAG(GT)7 52° 30 28 28 100 0.147 (0.124)
ISSR-PCR p-10 G(TG)4(AG)4A 41° 30 25 25 100 0.095 (0.097)
ISSR-PCR p-13 A(CA)7(TA)2T 54° 30 32 32 100 0.121 (0.091)
pp-ISSR-PCR #7 KKVRVRV(TG)6 47° 10 15 14 93.3 0.171 (0.116)

C(CT)4(GT)4G
RAMP #54 G(TG)4(AG)4A 43° 10 15 15 100 0.231 (0.117)

OPM-02
RAMP #75 C(AC)4(AG)4A 41° 30 21 21 100 0.197 (0.153)

OPV-14
SAMPL #34 E + AGC 58° 30 14 14 100 0.102 (0.074)

C(AC)4(AG)4A
pp-RAPD #1 OPA-03/A-10 36° 10 11 10 90.9 0.194 (0.165)
pp-RAPD #6 OPA-03/M-02 36° 30 5 5 100 0.263 (0.155)
pp-RAPD #17 OPA-10/V-14 36° 30 15 15 100 0.165 (0.158)
_____________________________________________________________________________________________________

Figure 1. Small-scale geographic populations genetic analysis.   High molecular weight genomic DNA from ten insects from
each location was amplified by RAMP with reaction #54.  GSM, number of geographic specific markers.
______________________________________________________________________________________

_______________________________________________________________________________________

+-------------- Bakersfield, CA 10       55.6 0.16 (0.19) 0
+---------------1

--2                +-------------- Riverside, CA 10       44.4 0.11 (0.15) 1
!
+------------------------------ Weslaco, TX 15       83.3 0.20 (0.14) 6

Multi-populations: 18     100.0 0.17 (0.12)

P %P G. D. GSM0.26               0.52               0.78
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AC AND DC EPG WAVEFORMS OF GLASSY-WINGED SHARPSHOOTERS
ON CHRYSANTHEMUM AND GRAPE

Fengming Yan1,2, Javad Habibi1, Elaine A. Backus1

1Department of Entomology, University of Missouri-Columbia, MO 65211
2College of Life Sciences, Peking University, Beijing 100871, China

Glassy-winged sharpshooter, Homalodisca coagulata (Homoptera: Cicadellidae), is a new vector of Piece’s disease
bacterium, Xylella fastidiosa, threatening  production of grape and other fruits in California.  Long-term management of this
disease will rely on host plant resistance, which will be (could be approached) aided by a complete understanding of the
vector’s feeding behaviors associated with bacterial transmission.  EPG (electrical penetration graph) monitoring is a
powerful tool to investigate feeding behaviors of sucking insects on plants. Both AC and DC EPG were used for the first time
to study recorded feeding behaviors of sharpshooters on Chrysanthemum and grape. The waveforms were categorized into
pathway, xylem ingestion and interruption phases, and were correlated and verified with feeding sites on the plant, insect
body postures, watery excretory droplets, and histological observation of salivary sheaths within plant tissues.

USE OF A TRIPARENTAL MATING SYSTEM TO INTRODUCE GREEN FLUORESCENT PROTEIN MARKED
TRANSPOSON INSERTIONS IN THE PLANT PATHOGEN XYLELLA FASTIDIOSA

Xiaoting Qin, Wenbin Li, and John S. Hartung
United States Department of Agriculture, Agricultural Research Service, Fruit Laboratory,
10300 Baltimore Avenue, Beltsville, Maryland, USA.

Xylella fastidiosa causes many serious diseases of fruit trees in North America, particularly Pierce’s Disease of grapevine and
‘Phony’ disease of peach.  In South America the pathogen causes the recently described Citrus Variegated Chlorosis and
Coffee Leaf Scorch diseases, both of which are widespread in Brazil.  The magnitude of the disease problems caused by this
bacterium led to the organization of a consortium in Brazil, which has determined the complete nucleotide sequence of the
genome of a citrus strain of the pathogen.  Teams in the United States and Brazil have  subsequently sequenced the genomes
of grapevine, oleander and almond strains of the pathogen. However in order to exploit the genomic sequence data to enable
effective disease control, systems for genetic manipulation of the pathogen are necessary, but have thus far been completely
lacking.  We report the introduction of foreign DNA into a citrus strain of Xylella fastidiosa by use of a triparental mating
system.  With this system we have introduced a mini-Tn5 transposon that encodes a Green Fluorescent Protein (GFP) gene
optimized for expression in bacteria.  The mini-Tn5 derivative was inserted into different sites of the genome in independent
transconjugants as determined by Southern blotting.  The position of the insertions was determined by reference to the
genomic sequence data. The GFP gene was also expressed well in Xylella fastidiosa, and to different levels in different
transconjugants.  Four independent transconjugants were separately used to inoculate sweet orange and tobacco seedlings.
The transconjugants were able to colonize the plants and were subsequently re-isolated from points distal to the inoculation
sites.  When the relative fluorescence of the transconjugants that had been passed through either tobacco or sweet orange was
compared to that of the same transconjugant maintained continuously in vitro, we observed that passage through either plant
host significantly increased the level of expression of the GFP.  The increased level of expression of GFP was transient, and
was lost upon further culture in vitro.  We have developed a system for the introduction of marked mutations which will be
useful for both in vitro and in planta analysis of gene expression of Xylella fastidiosa.
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CITRUS AND COFFEE STRAINS OF XYLELLA FASTIDIOSA INDUCE PIERCE’S DISEASE IN GRAPEVINE

W.-B Li, C.-H Zhou, USDA-ARS Beltsville, MD 20705
W. D. Pria, Jr., D. C. Teixeira, V. S. Miranda, E. O. Pereira, A. J. Ayres
Fundecitrus, Araraquara, 14807-040, SP, Brazil
C.-X He, P. I. Costa, Institute of Chemistry, UNESP, Araraquara, SP, Brazil
J. S. Hartung, USDA-ARS Beltsville, MD 20705.

Xylella fastidiosa causes citrus variegated chlorosis disease in Brazil and Pierce’s disease of grapevines in the United States.
Both of these diseases cause significant production problems in the respective industries.  The recent establishment of the
glassy-winged sharpshooter in California has radically increased the threat posed by Pierce’s disease to California viticulture.
Populations of this insect reach very high levels in citrus groves in California, and move from the orchards into the vineyards,
where they acquire inoculum and spread Pierce’s disease in the vineyards. We now show that strains of Xylella fastidiosa
isolated from diseased citrus and coffee in Brazil can incite symptoms of Pierce’s disease after mechanical inoculation into
seven commercial Vitis vinifera L varieties grown in Brazil and California.  Thus any future introduction of the CVC strains
of X. fastidiosa into the United States would pose a threat to both the sweet orange and grapevine industries. Previous work
has clearly shown that the strains of X. fastidiosa isolated from Pierce’s disease and citrus variegated chlorosis affected plants
are the most distantly related of all strains in the diverse taxon X. fastidiosa.  The ability of citrus strains of X. fastidiosa to
incite disease in grapevine is therefore surprising, and creates an experimental system with which to dissect mechanisms used
by X. fastidiosa in plant colonization and disease development using the full genome sequence data that has recently become
available for both the citrus and grapevine strains of this pathogen.

ULTRASTRUCTURE OF THE BACTERIOME-ASSOCIATED ENDOSYMBIONTS OF THE GLASSY-WINGED
SHARPSHOOTER, HOMALODISCA COAGULATA (HOMOPTERA: CICADELLIDAE)

Rosemarie C. Rosell1 and Heather S. Costa2

1Biology Department, University of St. Thomas, 3800 Montrose Blvd.  Houston, TX  77006
2Entomology Department, University of California, Riverside, CA  92507

Light and transmission electron microscopy were used to examine the intracellular endosymbionts of the glassy-winged
sharpshooter, Homalodisca coagulata.  The organisms described are contained within bacteriocytes, forming organs referred
to as bacteriomes.  In glassy-winged sharpshooter, bacteriomes consisted of paired reddish organs associated with yellow
glandular-like structures located in the ventro-lateral anterior portion of the abdomen.  Three morphologically distinct
bacteria-like organisms were observed.  One spherical in shape, one rod shaped, and one larger, highly pleomorphic organism
that often appeared elongated.  The red portion of the bacteriome appeared to contain only the spherical organisms, while
sections of the yellow portion contained all morphological forms.  In some cases individual cells in the yellow portion
contained more than one type of organism.
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EPIDEMIOLOGY OF XYLELLA FASTIDIOSA DISEASES IN CALIFORNIA

K.M. Tubajika and E.L. Civerolo, USDA-ARS, Parlier, CA
G.J. Puterka, USDA-ARS, Kearneysville, WV
D. Bartels, USDA-APHIS, Mission, TX
J.M. Hashim and D. Luvisi, UCCE, Bakersfield, CA
G. Wittenborn, Sunview Vineyards, CA

Incidence of Pierce’s disease (PD), caused by Xylella fastidiosa, continues to increase in many grape varieties in California
due to the establishment and spread of the vector, the glassy winged sharpshooter, Homalodisca coagulata. Eleven vineyards
were surveyed during the 2001 and 2002 production seasons. Each vineyard was assessed visually for PD symptoms and
geo-referenced using GPS technology.  Commercially available materials [e.g., Particle film barrier (Surround WP)
containing 95% kaolin and systemic acquired resistance inducer (Messenger) containing 3% harpin] were also evaluated  for
their effects on reducing X. fastidiosa transmission, and preventing X. fastidiosa infections and PD development.  The spatial
patterns of Pierce’s disease epidemics in grower-managed vineyards naturally affected by PD were analyzed by ordinary
runs, indices of dispersion, and two-dimensional distance class analyses.  Disease incidence ranged from < 1% to 80%. The
spatial disease gradient analyses consistently described the non-randomness of the patterns of diseased vines, and an increase
in the degree of clustering of diseased vines as disease incidence increased. Three grapevine varieties (Flames Seedless,
Chenin Blanc, and Thompson Seedless) in four blocks were treated on March 13, March 30, and April14, 2001, with
Surround WP.  During the 2-year study, PD development was lower (6%) in Surround treated plots than in conventional
insecticide treated plots (14%). No Surround by grapevine variety interaction was observed in either year.  PD incidence
among grapevines in a commercial field in Tulare County was 13%, 7%, and 6% with 2.25, 4.50 and 6.50 oz Messenger,
respectively. PD incidence in untreated control vines was 18%.  Based on these results, effective PD management is likely to
be based on practices that reduce initial inoculum and use of resistant varieties.  Also, X. fastidiosa-infected vine removal and
monitoring of surrounding vines for new X. fastidiosa- infections should be practiced. A greenhouse study to determine the
effects of Surround, Admire and Messenger on X. fastidiosa transmission and PD development is currently in progress.
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	Figure 3.Mean number of egg masses per plant, obtained from femaleH. coagulatacollected from citrus at UCRAgricultural Operations and reared inthe greenhouse on grape, oleander, or citrus (3 July 2002 to 7 November2002).
	Figure 4.Total number of adults per each host plant type (totaledover all replicates), hatched from egg masses offemaleH. coagulatacollected from citrus at UCR Agricultural Operations and reared in the greenhouse on grape,citrus, and oleander (3 July 2002 to 7 November 2002).
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	this reason, we will change methodologies in 2003 to determine firstX. fastidiosapresence in resident host plants, and thencage and collect GWSS on these plants.
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	Figure 1.Average densities (±SEM) of GWSS (nymphsand adults) were significantly different among perennialhost plants, Tukey’s HSD atP< 0.05.
	Figure 2.Average densities (±SEM) of GWSS adultswere significantly different among perennial host plants,Tukey’s HSD atP< 0.05.
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	Figure 4
	Figure 3.Average densities (±SEM) of GWSS eggmasses were significantly different among perennial hostplants, Tukey’s HSD atP< 0.05.
	Figure 4.Average densities (±SEM) of GWSS nymphswere significantly different among perennial host plants,Tukey’s HSD atP< 0.05.
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	Figure 6
	Figure 5.Average densities (±SEM) of GWSS separatedby development stages, Tukey’s HSD atP< 0.05.
	Figure 6.Average densities (±SEM) of spiders weresignificantly different among perennial host plants, Tukey’sHSD atP< 0.05.
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	Figure 2.Insect on plant, Admire treated only.
	arena
	avg. location changes
	choice(+/-)
	2.81 (± 0.47)
	no-choice (+/+)
	4.38 (± 0.52)
	no-choice (-/-)
	2.5 (± 0.45)
	Table 1.  GWSS movement.
	BGSS No-choice:  The average mortality rates were about 10% for both of the plant combinations.  The numbers of BGSS onplants were similar throughout the day (Figures 4 and 5).  In contrast to GWSS, the frequency of the insects moving arounddid not differ among the plant combinations, and BGSS moved less frequently than GWSS (data not shown).
	BGSS Choice:The mortality rate was similar to the no-choice arenas.Within the choice arenas, there was no differencebetween the number of BGSS on the Admire-treated and untreated plants(Figure 6).  The location change of the insects didnot differ from that of the no-choice arenas (data not shown).
	time
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	Figure 5.Insect on plant, treated only.
	BGSS location: no choice (-/-)
	time
	Figure 4.Insect on plant, untreated only.
	BGSS location : choice (+/-)
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	Figure 6.Insect on plant, treated and untreated.
	BGSS location: no choice: control
	Figure 7.Insect on plant, untreated only.
	BGSS location: choice
	Figure 9.Insect on plant, treated and untreated.
	BGSS location: no choice: Surround
	Figure 8.Insect on plant, Admire-treated only.
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	Figure 2.
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	plus acetamiprid plus kaolin significantly reduced the number of egg masses deposited on plants.  All other treatments werenot different from the control with respect to oviposition.  None of the treatments significantly affected egg parasitism byMymarid parasites relative to the control (Figure 2).
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	Figure 3.Profiles of imidacloprid titers in the xylem sap of 2-year old and20-year old grapevines treated with16 oz. per acre Admire on June 19th,2003
	In Vineyard II (Chardonnay grapes) vines were at least 20years old.  Similar rates were applied as in Vineyard I,and the progressive increases in application rates resultedin a concomitant rise in imidacloprid levels within thexylem sap.  Although the initial rate of uptake was slowerfor all three rates in Vineyard II, the overall degree ofprotection attained from the 8 and 16 oz. rates were better.In both vineyards, the 32 oz. rate resulted in titers ofimidacloprid within the xylem sap that were far inexce
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	C
	A
	Control
	Large aggregates/mL
	A
	A
	3G10RFeGSHGlnGluMgPR
	Biofilm/Cell insuspension
	B
	B
	0.12
	Biofilm Formation
	Not collected.  In Autumn 2003, all plants were too young tocollect stem tissue.  In Winter 2004, California grape was
	In progress.
	Table 2.Summary of up-regulated and down-regulated transcripts between resistant and susceptiblegenotypes among three tissues following ofXfinfection
	Stem8
	Leaf1
	Shoot16
	Stem8
	Leaf3
	Shoot7
	Genotypes
	Tissue
	Up Regulated
	Down regulated
	Resistant(9621-67)
	6
	2
	3
	Susceptible(9621-94)
	5
	2
	2
	Figure 1.Functional category of putative genes of among 63 differentially expressed transcripts.
	Figure 2.Taq-Man gene expression analysis wasused to analyze expression during PD development.Here is an example of the putative pathogenesis-related gene, which increased more than 10 times thetranscriptional levels in the 8th week afterinoculation in the susceptible genotype (9621-94) ascompared to the resistant genotype (9621-67).
	FUNDING AGENCIES
	Figure 1.Vineyards (red) in the Coachella Valley,and sites where PD was confirmed in 2002, 2003, and2004.
	Spatial and temporal abundance of sharpshooters
	We discuss the trap data in two distincttime periods.  The first, from May 2001through January 2003, preceded the CDFAtreatment program in citrus while the second period from February 2003 to the present has been during the implementation ofthis areawide program.  During the early part of this period, GWSS vastly outnumbered STSS (Figure 2A).  While averagedensities did not exceed 3 GWSS per week, some sites had veryhigh GWSS catches; up to 160 insects per week weretrapped (Figure 2B).  During the second pe
	Figure 2.(A) Average number of GWSS (pink) and STSS (blue) trapped per week from2001 - 2004 in the Coachella Valley.  (B)Maximum number of GWSS (pink) and STSS(blue) trapped per week.
	Figure 4.Sites with PD and maximum GWSS numbers inthe Coachella Valleyfrom 2001-2004.
	Figure 5.Vineyards (red) in the Coachella Valley, andsites where PD was confirmed in 2002,2003,and 2004.
	a
	b
	c
	ControlEthylene
	CONCLUSIONS
	REFERENCES
	FUNDING AGENCIES
	Table 2B.
	Figure 1
	Figure 1.The seasonal average for host plant preferenceGWSS adults and nymphs was clearly towards oleanderand Xylosma at this sampling site.  Data of the seasonalaverage are skewed by the large spring GWSSpopulation density.
	Figure 2.Average densities (±SEM) of GWSS(nymphs and adults) were significantlydifferent among perennial host plants, Tukey’sHSD atP< 0.05.  Data are seasonal averages,and biased towards host species preferred inJune and July, when GWSS densities were thehighest.
	Figure 2.Theefficacy of the internal (left graph) and external marking procedure (right graph) (n=8 to 16 per treatment). Allof the GWSSs assayed 3, 5, and 7 days after marking yielded positive ELISA responses for the presence of rabbit IgG.  All ofthe unmarked GWSSs yielded negative ELISA responses.
	Results indicate that the protein markingprocedure works for at least 7 days after marking GWSS.  The next phase of ourresearch (in progress) will be to mark individual GWSSs using the methods described above.  Specifically, 10 individualGWSSs will be marked, each witha unique protein (see Table 1).  The 10GWSSs will then be placed in a field cagecontaining various predator species. The predator assemblageexamined will represent those predators commonly found inareas inhabited by GWSS (JRH, pers. obs.).  A 
	Table 1.A listing of the proteins that will be
	used to mark 10 individual GWSS.
	Individual GWSSProtein marker
	1RabbitIgG
	2
	Guinea pig IgG
	3EquineIgG
	4Mouse
	IgG
	5Dog
	IgG
	6Pig
	IgG
	7Bovine
	IgG
	8Cat
	IgG
	9Rat
	IgG
	10Sheep
	IgG
	Table 2.A listing of the arthropod assemblage to be examined.
	SpeciesStage\1
	Classification\2
	Likely GWSS prey\3
	Adult/immatureCarnivoreEgg
	Zelus renardii
	Adult/immatureCarnivoreNymph/Adult
	Geocoris punctipes
	AdultOmnivoreEgg/early instar nymph
	Adult/immatureCarnivoreNymph/Adult
	Earwig
	Adult/immatureOmnivoreEgg, nymph, adult
	Chrysoperla carnea
	ImmatureCarnivoreEgg
	Preying mantis
	Adult/immatureCarnivoreNymph, adult
	Syrphid fly
	ImmatureCarnivoreEgg
	Coccinella septempunctata
	Ad
	Egg
	ult/immatureCarnivore
	3/The most likely GWSS life stage that will be attacked.
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	♀
	♀
	BGSS NBGSS nymphs + parasitoidsymph and Parasitoid
	Number Trapped
	Sample Period
	Two-week sample period
	Number Emerged
	60
	Percentage
	40
	GWSS
	STSS
	Survivorship ofH. coagulata
	Days
	Table 1.Meanadevelopmental duration and size of three biometric parameters of immature stages of GWSS reared onexcised cowpea leaves.
	InstarImmature duration ± SE (days)Biometric parameter ± SE (mm)
	N
	FemaleMale
	N
	HCWBDLHTL
	Table 2.Fecundity and life table parametersof GWSS reared on excised cowpea leaves.
	Parameter
	nFecundity*rm
	R
	GDT
	λ
	Mean193.7
	0.044
	33.6
	79.3
	15.6
	1.045
	15
	95% LCI95% UCI
	Figure 2.Distribution of head capsule widths of GWSSnymphs and adults.
	Storage time (d)
	Storage time (d)
	Storage time (d)
	% Emergence
	Storage time (d)
	Development time (SE) at age:
	Density
	1d3d5d7d9d
	No. parasitoid / host% Emergence
	Development time
	Parasitoid-host ratio
	N
	Mean ±SEN2
	Mean ±SEN3
	Mean±SE
	FUNDING AGENCIES
	timed might drive the GWSS population below its critical density, thus leading to its local extinction.  To fulfill this goal,wepropose the following objectives:
	Valencias
	Lemons
	Figure 1.Actual adult GWSS densities (solid line)and newly produced adults per date (dotted line) in anuntreated Valencia grove.
	Figure 2.Actual adult GWSS densities (solid) andnewly produced adults per date (dotted) in anuntreated Lemon grove.
	Figure 3.Actual adult GWSS density since Fall 2003in an untreated Tangerine grove.
	Tangerines
	Figure 4.Actual adult GWSS density since Fall2003 in an untreated Grapefruit grove.
	A more interesting analysis using the population samples from Valencia and Lemon trees is presented in Figures 5 and 6.  Weplotted the total adult and the newly emerged (red-veined) adult density using a logarithmic scale. We then used a forecastingtechnique on these data for Valencia and Lemons separately, i.e. the lines in Figures 5 and 6 which show what would happenif the current trend is extrapolated untilit reaches zero.  Although it is unlikely thatGWSS will ever reach zero, we use theseplots to estim
	Figure 5.Logarithm of total and new adults in
	Valencias with trend lines showing expected “zerodensity” dates.
	Figure 6.Logarithm of total and new adults in
	lemon with trend lines showing expected “zerodensity”  dates.
	If the current trend continues for severalyears the adult GWSS will reach their minimum densities within the next three to sixyears.  However, as new data are collected and plotted on these graphs a more refined minimum density will be obtained butit is extremely unlikely that the GWSS densities will becomeextinct.  A second and even more powerful technique can beused to analyze the GWSS dynamics (figures 7 and 8).  These figures need some explanation. What they show is a plot ofGWSS adult densities at any 
	Parasitism 2004
	% parasitism
	Julian Date
	From March-May, each tower averaged 16.4BGSS.  Of these, 88.3% were caught at 15feet or lower.For the entire season,each tower averaged 23.5 BGSS.  Of these, 89.7% were caught at 15 feetor lower.  The patterns of trap catches for the earlypart of the season and the fullseason were nearly identical.
	BGSS Flight Height
	Trap height (ft.)
	02468
	Ave. BGSS catchesAll towers except #10  (n=10)
	BGSS Flight Height
	Trap height (ft.)
	24
	20
	15
	10
	5
	0
	5
	10
	Ave. BGSS catchesAll towers except #10  (n=10)
	15
	Figure 2.
	Figure 3.
	The Coast Live oak tree adjacent to Tower 10 was apparently a preferred host plant at this time.  If BGSS commonly residein tall trees during the spring, then the effectiveness of barriers will likely be reduced.  Additional studies are needed to betterelucidate the early spring host preferences of BGSS in riparian zones, especially at higher elevations in the riparian canopy.
	BGSS Flight Height
	BGSS Flight Height
	REFERENCES
	Nielson, M. W. 1968. The leafhopper vectors of phytopathogenic viruses (Homoptera, Cicadellidae) taxonomy, biology, andvirus transmission. USDA Technical Bulletin 1382.
	Ann-1BajaBakersfieldDixonFresnoOak 92-8PD 1 FDR 65R 76rc75 OliveTemecula
	Figure 1.Left. Biofilm formation bycsrA-Ecoliis suppressed byX. fastidiosa rsmAand(Right),rsmAmutant ofX.fastidiosaform more biofilm than their wilt typersmA+parents.
	Gene name
	Function
	Volume Ratio(A19/A05)
	several species; however, additional studies must be completedto further elucidate the role of this pathogen in causingwidespread disease in the urban setting as well oncrops of agronomic importance in California.
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