Re-saturation of Sacramento - San Joaquin Delta Soils through Rice Cultivation

GHG Emissions Modeling Analysis and Recommendation

Credit to Michelle M Leinfelder-Miles 87257 original.jpg (4032×3024) (ucanr.edu)

Diana Zapata, Ph.D. (CARB) Nina Bingham, Ph.D. (CDFA HSP)

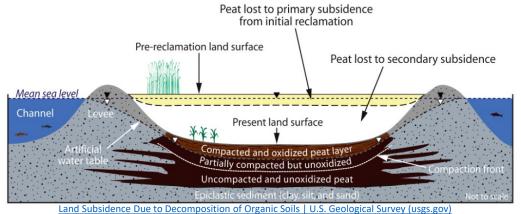
Presentation Overview

- 1. Introduction to New Practice Pathway
- 2. New Practice Definition
- 3. GHG Emission Modeling
- 4. Data Gaps
- 5. Program Recommendation

1. New Practice Pathway

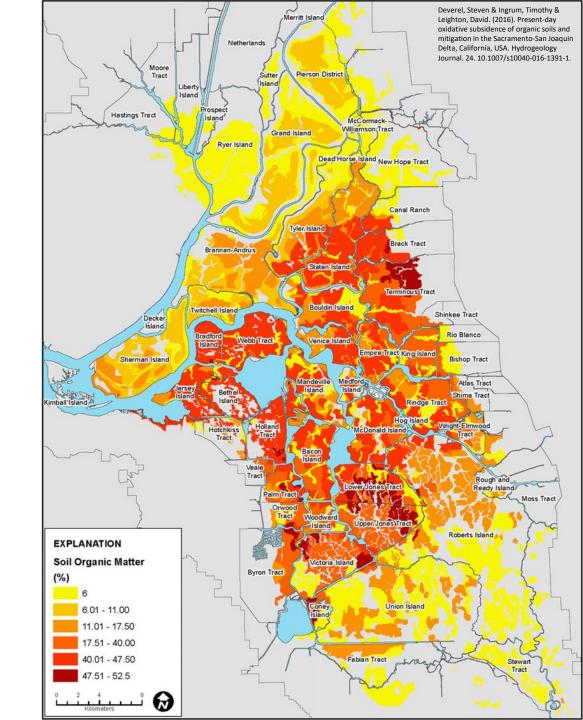
- HSP Call for New Practice Proposals in Summer 2020
 - Proposal for Re-saturation of Highly Organic Peat Soils in the Sacramento-San Joaquin Delta through rice cultivation or construction of managed wetlands
- New practice proposal underwent external review from a technical subcommittee Fall 2020 – Winter 2021
 - Reviewed favorably by external review to be incorporated into HS Incentives Program or HS Demonstration Program Type B, but noted quantification methodology for GHG emission reductions needed to be developed

• Quantification Methodology and Practice Guidelines development - 2022


- Outreach to subject matter experts at NRCS, CA Fish and Wildlife, UCCE, UC Researchers, Delta Conservancy
 - Practice Scoping remove construction of managed wetlands from practice
 - Modeling Scenarios baseline land use, BMPs
 - Potential practice cost and guidelines

2. Refined Practice Definition

Convert land use in the Sacramento-San Joaquin Delta region from annual, non-rice agriculture (e.g., corn, alfalfa, tomatoes) to rice cultivation to reduce net GHG emissions and stop/slow down land subsidence.


Practice Background

- Draining and farming of organic peat soils in the delta lead to oxidation of the organic matter
 - Emissions of GHGs
 - Organic Matter Loss
 - Land subsidence
- Original proposed solution: Re-saturating the land through rice production slows down or stops organic matter oxidation
 - Decrease Organic Matter Loss
 - Decrease net GHG emissions
 - Slows, reverses land subsidence

3. GHG Emissions Modeling

- This practice is implemented should support the Healthy Soils Program objectives 1) sequester carbon, 2) reduce atmospheric greenhouse gases (GHGs), and 3) improve soil health
- Use DNDC model to estimate new practice carbon sequestration and GHG emissions based on baseline scenarios and best management practice

DNDC Modelling

(Denitrification-Decomposition Model)

Site and soil characteristics

Twitchell Island (Sacramento County)
38.10875°N, -121.6530°W
Soil type: Silt loam

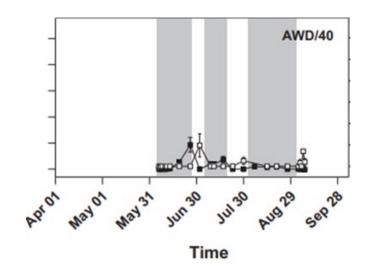
o pH: 6.2

Depth	Bd	SOC	C:N
(cm)	(g cm⁻³)	(%)	ratio
0 -30	0.65	15	14.1
30 -45	0.57	31	15.6

Modeling scenarios

o 24 years (1998 – 2021)

o Crops modeled:


1. Baseline scenarios cover majority land crop uses: Silage corn, alfalfa, processing tomato, fallow

2. Scenario for interest: Rice

DNDC Modelling - Rice management practices

1) Water management

- In-season: Continuous flooding
 vs. Alternate wetting and drying (AWD)
- Off-season: Continuous flooding vs. No flooding
- 2) Residue management Retained/removed - 50%

AWD: 7-15 days, once or twice per rice growing season.

Off-season irrigation: From December through February

DNDC Modelling

Net GHG reductions are shown in blue text and represented with negative values

Baseline	Rice growing season	Off-season	SOC	CH₄	N ₂ O	Net MT CO ₂ eq
	Residue	Irrigation	MT CO2eq/ha/yr		a/yr	
Corn						
Rice	Retained	Flooding	-3.7	5.1	-3.6	-2.2
Rice	50% retained	No flooding	-2.2	0.1	2.0	-0.1
Rice	50% Retained	Flooding	-2.7	1.3	-2.6	-4.0
Tomato						
Rice	Retained	Flooding	-1.4	5.1	-1.3	2.4
Rice	50% retained	No flooding	0.2	0.1	-2.2	-1.9
Rice	50% retained	Flooding	-0.3	1.3	-1.4	-0.5
Fallow						
Rice	Retained	Flooding	10.3	5.1	-2.5	12.9
Rice	50% retained	No flooding	11.9	0.1	3.0	15.0
Rice	50% Retained	Flooding	11.3	1.3	-1.5	11.1
Alfalfa						
Rice	Retained	Flooding	7.4	5.1	-4.8	7.8
Rice	50% retained	No flooding	9.0	0.1	-3.5	5.6
Rice	50% Retained	Flooding	8.5	1.3	-4.8	4.9

- Residue management (removal) drives GHG reductions (CH₄).
- Off-season flooding water table depth drives CH₄ emission, therefore GHG reductions.

4. Data Gaps

- Data Gaps for Modeling and Validation
 - Nitrous Oxide and Methane emissions
- Best management practices
 - Straightforward, practical for the region, but set practice up for net GHG emission reductions
 - BMP controls on emission modeling
- Payment Rate per Acre
 - Using USDA NRCS EQIP and CPS to constrain payment rates
 - Land Forming and Smoothing (NRCS CPS 462) or Dike/Levee Construction (NRCS CPS 356)
 - Wide range in potential payment rates

5. Program Recommendation

Proposal to include new practice *Re-saturation of Sacramento - San Joaquin Delta Soils through Rice Cultivation* as a Demonstration Type A Practice for next solicitation to fill data gaps

Type A Demonstration Projects require measurement of in-field GHG emissions and to conduct analysis on cost/benefits for adoption of proposed practice and anticipated barriers