MEETING AGENDA
February 23, 2016
10 AM to 4 PM
Stanislaus County Agricultural Commissioner Office
3800 Cornucopia Way
Room G
Modesto, CA 95358
916-654-0433

REMOTE ACCESS
Please join the webinar (registration required):
https://attendee.gotowebinar.com/register/6887826093800006913
Webinar ID: 155-775-155
Call-in information
1-877-238-3903
Passcode: 6655460

Some presentation materials will be posted at the following link prior to the meeting:
https://www.cdfa.ca.gov/EnvironmentalStewardship/Meetings_Presentations.html

EFA SAP MEMBERSHIP
Don Cameron, Member and Chair
David Bunn, Resources Agency, Member
Jocelyn Bridson, MSc, Member
David Mallory (CalEPA), Acting Member
Jeff Dlott, PhD, Member
Luana Kiger, MSc, Subject Matter Expert
Doug Parker, PhD, Subject Matter Expert

1. Introductions
2. Updates
 • Minutes from previous meetings
 • Healthy Soils Initiative
3. The State Water Efficiency and Enhancement Program (SWEEP)
 • Update on program
 • ARB QM Methodology and Tool
 • Opportunities for additional enhancements – subsurface drip irrigation in field crops
 1. Dr. Daniel Putnam – UC ANR, UC Davis
 2. Dr. Daniel Munk – UCCE, UC Davis
 3. California Ag Solutions – Mikel Winemiller
4. Public Comments on SWEEP
5. Next meeting and location

Chair Cameron
Chair Cameron
Dr. Gunasekara
Cari Anderson (ARB)
Bailey Smith (ARB)
Chair Cameron
Chair Cameron

Amrith (Ami) Gunasekara, PhD, CDFA Liaison to the Science Panel

All meeting facilities are accessible to persons with disabilities. If you require reasonable accommodation as defined by the American with Disabilities Act, or if you have questions regarding this public meeting, please contact Amrith Gunasekara at (916) 654-0433.
More information at: http://cdfa.ca.gov/Meetings.html and http://www.cdfa.ca.gov/EnvironmentalStewardship/Meetings_Presentations.html
Panel Members

Don Cameron, Member and Chair
Mike Tollstrup, Member
Jeff Dlott, PhD., Member
Bruce Gwynne (Alternate), Natural Resources Agency
Jocelyn Bridson, MSc., Member (via webcast)

Subject Matter Experts

Doug Parker, PhD., Subject Matter Expert
Luana Kiger, MSC, Subject Matter Expert

State Agency Staff

Amrith Gunasekara, PhD. (CDFA)
Jenny Lester Moffitt, Deputy Secretary (CDFA)
Evan Johnson (CalRecycle)
Carolyn Cook (CDFA)

AGENDA ITEM 1

The meeting was called to order at 10:10 AM by the Chair, Mr. Don Cameron. Panel Chairman Mr. Cameron introduced the Healthy Soils Initiative (HSI) as an issue of relevance to all farmers. Introductions were made. Members present at the meeting include Mr. Cameron, Dr. Dlott, Mr. Tollstrup, and Mr. Gwynne (alternate for Dr. Bunn from Natural Resources Agency). A quorum was established.

AGENDA ITEM 2

Welcome Address- CalRecycle Deputy Director, Howard Levenson and CDFA Deputy Secretary Jenny Lester Moffitt

Deputy Secretary Moffitt welcomed the panel and audience to the meeting and provided background information on the Healthy Soils Initiative. CDFA was charged with leading
the Healthy Soils Initiative as described in the Governors January 2014-15 budget proposal and under the authority of the Environmental Farming Act of 1995. Dr. Levenson welcomed the group on behalf of EPA and Cal Recycle.

AGENDA ITEM 3
PREVIOUS MEETING MINUTES

CDFA staff presented the minutes from the previous May 14, 2015 meeting. The motion was made to accept the minutes as presented by Mr. Tollstrup, and seconded by Mr. Gwynne. The motion was moved by all members present and was accepted without further changes.

STATE WATER EFFICIENCY AND ENHANCEMENT PROGRAM (SWEEP)

Dr. Gunasekara provided an update on the State Water Efficiency and Enhancement Program (SWEEP). $10 million are available through the current fiscal year for grants to farmers to install irrigation systems that reduce water use and reduce greenhouse gas emissions. The application period closed on June 29, 2015. 345 applications were received, totaling $30.3 million in requests. The program was oversubscribed by 300%. A technical review period of the application had begun. Dr. Gunasekara noted that he would continue to update the Science Panel members at each meeting on SWEEP since the program continues to receive funding.

VACANT POSITION ON EFA SAP

Dr. David Bunn, Director of the Department of Conservation, has been appointed to serve on the EFA SAP from the Natural Resources Agency. Bruce Gwynne was filling in for Dr. Bunn at this meeting.

AGENDA ITEM 4 – HEALTHY SOILS INITIATIVE

A. IMPACT OF SOIL ORGANIC MATTER ON NUTRIENT CONSERVATION AND SOIL HEALTH – DR. WILLIAM HORWATH

Dr. Horwath provided an overview of soils, soil organic matter (SOM) and its role in soil health. Dr. Horwath also discussed the microbial environment and its contribution to building SOM. He also discussed the abiotic contribution to building SOM such as climate and moisture. His presentation included a case study and research studies which attempted to build SOM. Dr. Horwath facilitated questions from the Science Panel members and the public following his presentation.

MICROBIAL COMMUNITIES, COMPOST AND IMPLICATIONS FOR SOIL HEALTH – DR. GARY ANDERSEN
Dr. Gary Anderson of U.C. Berkeley presented on thermophilic aerobic decomposition (composting) and discussed some benefits of compost to soil health. Dr. Anderson’s research team has been studying which microbes are active in compost production. They are using microchip technology to detect different bacteria and archaea and understand how the different microbial species play different roles in the compost process and who dominates when and at what stages of the composting cycle. Dr. Anderson answered questions from the Science Panel members and the public following his presentation.

CALRECYCLE EFFORTS TO DATE ON COMPOST – DR. HOWARD LEVENSEN

Dr. Howard Levenson of CalRecycle provided an update on current policies and progress on promoting composting in California. He noted that California has policy drivers for increasing composting, including a statewide goal of 75% of solid waste diverted from landfills by 2020. Since organic waste makes up one-third of solid waste, composting will be a critical component of meeting that goal. Dr. Levenson noted that CalRecycle is engaged on several research initiatives on compost and suggested future research needs. Dr. Levenson answered questions from the Science Panel members and the public following his presentation.

A TOOL FOR INCENTIVIZING SOIL HEALTH IN AGRICULTURE (COMET-PLANNER) – DR. ADAM CHAMBERS

Dr. Adam Chambers provided an overview of a new tool (Comet-Planner) developed to quantify the GHG benefits of various farm management practices. Dr. Chambers showed how to use the tool and find background information and quantification methodology for each practice. He noted that soil health is an important priority and there is the goal of 111-124 MMTCO₂e reduction by 2025. USDA NRCS used historical accomplishments in soil health through EQIP since 1997 to extrapolate what can be accomplished by 2025. Dr. Chambers facilitated questions from the Science Panel and the public following his presentation.

PUBLIC COMMENT AND DISCUSSION

Daniel Morash, California Safe Soil: They are exploring California aerobic enzymatic digestion. Additionally, unless we can prove the value of these products to farmers then projects won’t be successful. Need research to back up and prove benefits to farmers.

Niles Brinton, Char Born: Commented that he was encouraged by the initiative. He suggested that the addition of biochar to compost can reduce off-gassing of ammonia and methane. The finished compost product also has a higher nitrogen content, possibly leading to less fertilizer demand. Biochar is a needed solution for dealing with woody biomass waste (ex; forest).
Pablo Garza, Nature Conservancy: Excited regarding the Healthy Soils Initiative and potential incentives for landowners, but also concerned about application of compost on rangelands because it can lead to a decline in biological diversity. Requested that rangelands are discussed in the subcommittee on compost application rates.

Calla Rose Ostrander, Rathmann family foundation: Has maps and materials to share with the panel on various waste sources. Wants to promote a systems approach and management of organics in a way that protects air and water quality and gets organics back on land.

Cole Smith, UC Cooperative Extension: Inquired on the next steps in education and outreach. Hard to organize and disperse scientific information to the public.
Dr. Gunasekara responded that CalRecycle and CDFA can reach out to UC Extension and try to involve them in the discussion.

Pelayo Alvarez, Carbon Cycle Institute: Inquired on the timeframe of the Healthy Soils Initiative. Inquired on how public input will be collected and how the public can participate.
Dr. Gunasekara replied that this meeting is part of the public process in the development of the program. The EFA SAP meeting will continue to be the public venue for Healthy Soils discussions and open to the public. Interagency coordination is also occurring; there is a 2-page document available on goals for the initiative on CDFA Environmental Stewardship webpage.

Adam Kotin, CalCAN: Inquired if there have been further conversations on goals for the initiative or opportunities for public involvement.
Dr. Gunasekara responded that there would be further public and stakeholder conversations on the potential of setting SOM goals.

Nick Lapis, Californians Against Waste: The 2-page document on the initiative includes interesting short term and long term goals. Commented that it would be helpful to know how we are going to reach these goals.
Dr. Gunasekara responded that this meeting is part of reaching the goals. Multiple agencies are participating. Different agencies will take different actions. CDFA is using SAP to determine what to focus on.

AGENDA ITEM 5 – ADJOURN

Chair Cameron adjourned the meeting at 2:47 PM.

Respectfully submitted by:

______________________________ _______________________
Amrith Gunasekara, Ph.D. Date
THE HEALTHY SOILS INITIATIVE
An Update

February 23, 2016

Environmental Farming Act Science Advisory Panel

Amrith (Ami) Gunasekara, PhD
Science Advisor to the Secretary
INTERNATIONAL YEAR OF THE SOIL

Claire Chenu: ‘Take a closer look at the earth beneath your feet’
Claire Chenu speaks with authority and conviction when it comes to soils.

Solving real-world problems in the agricultural, environmental, and human sciences to produce a better world, healthier lives, and an improved standard of living for everyone.

IN FOCUS

Latest blog posts

Las bibliotecas de las Islas Canarias organizan actividades de concienciación sobre los suelos
02/10/2015
La inversión de los Patos

Soil Health

- Improved Water Quality
- Reduced Salinity
- Improved Plant Health and Yields
- Improved Water Quality
- Sequester and Reduce GHGs
- Build Soil Organic Matter
- Reduced Fumigant and Synthetic Inputs
- Reduced Sediment Erosion and Dust
- Water Retention
- Reduced Salinity
- Improved Water Quality

Institutions:
- CalRecycle
- CalFire
- CDFA
- DPR
- California Water Boards
- CV SALTS
- California Conservation
GOVERNORS JANUARY BUDGET

• $20 million for CDFA HSI in budget proposal
• For new incentive program and demonstration projects
• Proposing to use Comet-Planner
 • (ARB needs to approve QM)
• Program framework to be developed
 • starting in July, 2016
 • Required public comment and feedback
• Plan to use EFA SAP for feedback and public comment

Healthy soil = adequate soil organic matter or humus
NRCS Practice Standards for Greenhouse Gas Emission Reduction and Carbon Sequestration

<table>
<thead>
<tr>
<th>Qualitative Ranking</th>
<th>Practice Code</th>
<th>Practice Standard and Associated Information Sheet</th>
<th>Beneficial Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUTRAL</td>
<td>227</td>
<td>Conservation Cover Information Sheet</td>
<td>Establishing perennial vegetation on land retired from agriculture production increases soil carbon and increases biomass carbon stocks</td>
</tr>
<tr>
<td></td>
<td>229</td>
<td>Residue and Tillage Management No Till/Strip Till/Direct Seed Information Sheet</td>
<td>Limiting soil-disturbing activities improves soil carbon retention and minimizes carbon emissions from soils</td>
</tr>
<tr>
<td></td>
<td>266</td>
<td>Anaerobic Digester Information Sheet</td>
<td>Biogas capture reduces CH₄ emissions to the atmosphere and provides a viable gas stream that is used for electricity generation or as a natural gas energy stream</td>
</tr>
<tr>
<td></td>
<td>267</td>
<td>Ridges and Contours</td>
<td>Capture of biogas from waste management facilities reduces CH₄ emissions to the atmosphere and captures biogas for energy production. CH₄ management reduces direct greenhouse gas emissions.</td>
</tr>
<tr>
<td></td>
<td>372</td>
<td>Combustion System Improvement</td>
<td>Energy efficiency improvements reduce on-farm fossil fuel consumption and directly reduce CO₂ emissions.</td>
</tr>
<tr>
<td></td>
<td>379</td>
<td>Multi-Story Cropping</td>
<td>Establishing trees and shrubs that are managed as an overstory to crops increases net carbon storage in woody biomass and soils. Harvested biomass can serve as a renewable fuel and feedstock.</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>Waterway/Wetland Establishment Information Sheet</td>
<td>Establishing tree plantings of woody plants increases biomass carbon stocks and enhances soil carbon.</td>
</tr>
<tr>
<td></td>
<td>381</td>
<td>Shrub Establishment</td>
<td>Establishment of trees, shrubs, and compatible forages on the same acreage increases biomass carbon stocks and enhances soil carbon.</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>Forage and Biomass Planting Information Sheet</td>
<td>Deep-rooted perennial biomass sequesters carbon and may have slight soil carbon benefits. Harvested biomass can serve as a renewable fuel and feedstock.</td>
</tr>
</tbody>
</table>

Evaluate potential carbon sequestration and greenhouse gas reductions from adopting NRCS conservation practices

NRCS Conservation Practices included in COMET-Planner are only those that have been identified as having greenhouse gas mitigation and/or carbon sequestration benefits on farms and ranches. This list of conservation practices is based on the qualitative greenhouse benefits ranking of practices prepared by NRCS.

- Cropland Management (9 Items)
- Cropland to Herbaceous Cover (10 Items)
- Cropland to Woody Cover (15 Items)
- Grazing Lands (3 Items)
- Restoration of Disturbed Lands (5 Items)
INCENTIVE PROGRAM

- Comet-Planner

NRCS Conservation Practices included in COMET-Planner are only those that have been identified as having greenhouse gas mitigation and/or carbon sequestration benefits on farms and ranches. This list of conservation practices is based on the qualitative greenhouse benefits ranking of practices prepared by NRCS.
4. What is CDFA going to do?

INCENTIVE PROGRAM

- Comet-Planner

NRCS Conservation Practices
(Click Practice Name for Documentation)

<table>
<thead>
<tr>
<th>Practice Name</th>
<th>Acreage</th>
<th>CO₂ (tonnes)</th>
<th>N₂O (tonnes)</th>
<th>CH₄ (tonnes)</th>
<th>CO₂-Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windbreak/Shelterbelt Renovation (CPS 650)</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 2

INCENTIVE PROGRAM

http://www.comet-planner.com/
4. What is CDFA going to do?

INCENTIVE PROGRAM

- Comet-Planner

How are your carbon sequestration and greenhouse gas emission reduction estimates calculated?

Emission reduction coefficients were derived from recent meta-analyses and reviews. Coefficients were generalized at the national-scale and differentiated by dry and humid climate zones. More information on quantification methods can be found in the COMET-Planner Report.

Each emission reduction is calculated using the following equation:

Emission reduction = Area (acres) * Emission Reduction Coefficient (ERC)

Emission Reduction Coefficients (ERC)
(tonnes CO₂ equivalent per acre per year)

<table>
<thead>
<tr>
<th>Greenhouse Gases</th>
<th>Carbon Dioxide (CO₂)</th>
<th>Nitrous Oxide (N₂O)</th>
<th>Methane (CH₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRCS Conservation Practices</td>
<td>Windbreak/Shelterbelt Renovation (CPS 650)</td>
<td>0.21</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Recommended use of COMET-Planner

This evaluation tool is designed to provide generalized estimates of the greenhouse gas impacts of conservation practices and is intended for initial planning purposes. Site-specific conditions (not evaluated in this tool) are required for more detailed assessments of greenhouse gas dynamics on your farm. Please visit COMET-Farm if you would like to conduct a more detailed analysis.

Please contact Amy Swan (Amy.Swan@colostate.edu) for more information

http://www.comet-planner.com/
COMPOST USE

- Not in Comet-Planner (yet)
- Set up scientific subcommittee of the CDFA EFA SAP to determine agronomic application rates for compost so it can be included in any future CDFA incentive program
- Discussed interagency the available nitrogen component
- Results presented at last meeting and included white paper report for public comment
- Established public comment period from January 18th to February 12th (4 weeks)
- Received 20 comment letters – CDFA will review and provide edited report and suggestions from EFA SAP consideration at next meeting.
Thanks...

Important Contacts:
Kelly Gravuer (UC Davis and CDFA)
PhD Candidate
kelly.gravuer@cdfa.ca.gov

Geetika Joshi, PhD.
Environmental Scientist (CDFA)
Geetika.Joshi@cdfa.ca.gov

Amrith Gunasekara, PhD
Liaison to EFA SAP
Amrith.gunasekara@cdfa.ca.gov
SWEEP
An Update

Amrith (Ami) Gunasekara, PhD
Science Advisor

Carolyn Cook, MSc
Senior Environmental Scientist
Seasonal Drought Outlook

Author:
Brad Pugh
NOAA/NWS/NCEP/Climate Prediction Center

Valid for December 17 - March 31, 2016
Released December 17, 2015

Depicts large-scale trends based on subjectively derived probabilities guided by short- and long-range statistical and dynamical forecasts. Use caution for applications that can be affected by short-lived events. “Ongoing” drought areas are based on the U.S. Drought Monitor areas (intensities of D1 to D4).

NOTE: The tan areas imply at least a 1-category improvement in the Drought Monitor intensity levels by the end of the period, although drought will remain. The green areas imply drought removal by the end of the period (D0 or none).

- Drought persists
- Drought remains but improves
- Drought removal likely
- Drought development likely

http://go.usa.gov/3eZ73
Northern Sierra Precipitation: 8-Station Index, January 4, 2016

Percent of Average for this Date: 88%

 MSC - Mount Shasta City
 SHA - Shasta Dam
 MNR - Mineral
 QRD - Quincy
 BCM - Brush Creek
 SRR - Sierraville RS
 BYM - Blue Canyon
 PCF - Pacific House

Source: DWR
San Joaquin Precipitation: 5-Station Index, January 4, 2016

Percent of Average for this Date: 112%

Water Year (October 1 - September 30)

Cumulative Daily/Monthly Precipitation (inches)

CVT - Calaveras Big Trees
HTH - Hetch Hetchy
YSV - Yosemite HQ
NFR - North Fork RS
HNT - Huntington Lake

Source: DWR
U.S. 2014 Billion-Dollar Weather and Climate Disasters

- Rockies/Midwest/Eastern Severe Weather, May 18–23
- Michigan and Northeast Flooding, August 11–13
- Midwest/Southeast/Northeast Winter Storm, January 5–8
- Midwest/Southeast/Northeast Tornadoes and Flooding, April 27–May 1
- Western Drought, Historic in California, Entire Year
- Rockies/Plains Severe Weather, September 29–October 2
- Plains Severe Weather, June 3–5
- South/Plains Severe Weather, April 2–3

This map denotes the approximate location for each of the eight billion-dollar weather and climate disasters that impacted the United States during 2014.

STATE WATER EFFICIENCY AND ENHANCEMENT PROGRAM (SWEEP)

- Emergency drought legislation bill (SB 103) signed by Governor Brown on March 1, 2014.
 - $10 million – for 2014-15
- AB 91 allocated additional funds in March 27, 2015.
 - $10 million – for 2015-16
- SB 101 signed by Governor in September 24, 2015, allocated additional funds
 - $40 million – for 2016-17

...from the California Climate Investments fund (Cap and Trade Revenue $) for the California Department of Food and Agriculture to invest in irrigation and water pumping systems that reduce water use, energy use and greenhouse gas emissions.
STATE WATER EFFICIENCY AND ENHANCEMENT PROGRAM (SWEEP)

“coordination with the Department of Water Resources and the State Water Resources Control Board….”

"…to provide financial incentives to agricultural operations to invest in water irrigation treatment and distribution systems that reduce water and energy use, augment supply and increase water and energy efficiency in agricultural applications."

The SWEEP was implemented under the authority of the Environmental Farming Act of 1995.

Division 1, Part 1, Chapter 3, Article 8.5, Sections 560-568

Section 566 (a)
The department shall establish and oversee an environmental farming program. The program shall provide incentives to farmers whose practices promote the well-being of ecosystems, air quality, and wildlife and their habitat.
SWEEP by the NUMBERS

• SWEEP 2014-15 funded $17.8 million for 233 different projects
• Total requested was $63.7 million for 798 applications
• Total matching funds was $10.5 million

• 67% - Soil moisture monitoring systems for better scheduling
• 37% - Micro-irrigation/drip systems
• 26% - Energy efficient pumps (switch to electric or solar)
• 28% - Use of ET data and scheduling
• 15% - Use of variable frequency drive (VFD) pumps
• 5% - Use of low pressure irrigation systems

• Cap at $200,000

• Most recent numbers – 299 applications for $ 34.8 million

• More $ available in April 2016 ($19 million)
SWEEP by the NUMBERS

2014-15 GHG and Water Estimates

• GHG reductions = Estimated 54,600 Tonnes CO$_2$e/yr (life of practice is 10 years)

Equivalent to removing the following number of vehicles from the road (based on 4.7 Tonnes of CO2e/yr per vehicle – U.S. EPA from 21.6 miles per gallon and 11,400 miles per year) = 11,630 vehicles/yr

• Water savings = Estimated 37,400 acre feet/yr

Number of 15,000 gallon (average pool size) pools per year = 814,000 pools per year

Number of 1 gallon bottles = 12.2 billion
NEW REQUIREMENTS AND STAFF

• Post-project quantification of GHGs and Water Savings = 3 yrs
• All growers must maintain records to support savings = 3 yrs
• Will continue to contract with RCDs on verification
• Two additional staff starting on March 2, 2016 – Responsible for Northern and Southern Regional SWEEP Coordinators
 - CDFA staff will partner with RCD staff on verifications
 - Lead Technical Staff on projects
 - Assisting in leading public workshops
 - Conduct post project GHG and water quantification
• Growers must use QM methodology and tool
California Climate Investments

What's New?

- ARB CVRP Market Sustainability Metrics Work Group Meeting Feb. 19 - Sacramento
- CVRP Long-Term Program Considerations Work Group Meeting Feb. 23 - Sacramento
- Light Duty Pilot Project Work Group Teleconference Feb. 25
- TIROCPre-application Meetings Feb. 22 - 26
- AHSC Notice Of Funding Availability (NOFA) - Concept applications due March 16
- FY 2016-17 TIROC Funding Available - Project Applications due April 5

Climate Change Events Calendar
What's New Archive

Background and Resources

- State Budget Appropriations
- Investment Plan
- Implementing Legislation
- Annual Report to the Legislature
- Expenditure Records
- CalEnviroScreen
- CalEPA Identifies Disadvantaged Communities

Current Activities

- Funded Programs and Upcoming Events
 - Transportation
 - Energy
 - Resources and Waste

ARB Guidance for Agencies

- Guidance and Maps for Investments to Benefit Disadvantaged Communities
- Funding guidelines for administering agencies
- Quantification Materials
- ARB Workshops and Public Meetings

www.arb.ca.gov/cc/capandtrade/auctionproceeds/auctionproceeds.htm
Cap-and-Trade Auction Proceeds

Quantification Materials

The Air Resources Board (ARB) is required to develop quantification methods for agencies receiving Greenhouse Gas Reduction Fund (GGRF) appropriations per SB 862 (Senate budget and Fiscal Review Committee, Chapter 36, statutes of 2014). For Fiscal Year (FY) 2013-14, some administering agencies developed interim GHG quantification methodologies in consultation with ARB. For FY 2014-15, ARB prioritized the development of quantification methods based on program timelines, with an initial focus on programs using GHG emission reductions as part of the criteria to score projects in a competitive process. The tables below provide links to the GHG quantification methods developed by ARB in consultation with administering agencies. As the GGRF program continues, quantification methodologies for all programs will continue to be developed or updated and posted below as necessary.

Note: These quantification methods have been developed specifically for the Greenhouse Gas Reduction Fund Programs and are not intended for use in other programs.

For questions about any of the quantification methods below, please email us at GGRFProgram@arb.ca.gov. To help us serve you better, please provide the following information: name and company/industry, contact information, and question or comment.

<table>
<thead>
<tr>
<th>Agency / Department</th>
<th>Quantification Materials</th>
</tr>
</thead>
</table>
| High-Speed Rail Authority (HSRA) | High-Speed Rail (HSR)
 • Quantification Methodology for FY 2014-15 (PDF) |
| California State Transportation Agency (CalSTA) | Transit and Intercity Rail Capital Program (TIRCP)
 • Quantification Methodology for FY 2015-16 (PDF)
 • TIRCP GHG Emission Reduction Calculator for FY 2016-17 (xls)
 Archived Versions:
 • Quantification Methodology for FY 2014-15 (PDF)
 • Frequently Asked Questions (PDF) - April 2015 |
| Department of Transportation (Caltrans) | Low Carbon Transit Operations Program (LCTOP)
 • Quantification Methodology for FY 2015-16 (PDF)
 • Greenhouse Gas Emission Reduction Calculator for FY 2016-17 (xls) |

http://www.arb.ca.gov/cc/capandtrade/auctionproceeds/quantification.htm
Clean Energy and Energy Efficiency

<table>
<thead>
<tr>
<th>Agency / Department</th>
<th>Quantification Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Services and Development (CSD)</td>
<td>Low-Income Weatherization Program</td>
</tr>
<tr>
<td></td>
<td>• Quantification Methodology for FY 2014-15 (PDF)</td>
</tr>
<tr>
<td></td>
<td>Low-Income Weatherization Program - Large Multi-Family</td>
</tr>
<tr>
<td></td>
<td>• Quantification Methodology for FY 2014-15 (PDF)</td>
</tr>
<tr>
<td>Department of Food and Agriculture (CDFA)</td>
<td>Dairy Digester Research and Development Program</td>
</tr>
<tr>
<td></td>
<td>• Quantification Methodology for FY 2014-15 (PDF)</td>
</tr>
<tr>
<td></td>
<td>State Water Efficiency and Enhancement Program</td>
</tr>
<tr>
<td></td>
<td>• Quantification Methodology for FY 2015-16 (PDF)</td>
</tr>
<tr>
<td></td>
<td>• SWEEP GHG Emission Reduction Calculator for FY 2015-16 (PDF)</td>
</tr>
<tr>
<td></td>
<td>Archived Versions:</td>
</tr>
<tr>
<td></td>
<td>• Interim Quantification Methodology for FY 2015-16 (PDF)</td>
</tr>
<tr>
<td></td>
<td>• Interim Quantification Methodology for FY 2013-14/2014-15 (PDF)</td>
</tr>
<tr>
<td>Department of Water Resources (DWR)</td>
<td>Water-Energy Efficiency</td>
</tr>
<tr>
<td></td>
<td>• Interim Quantification Methodology for FY 2013-14/2014-15 (PDF)</td>
</tr>
</tbody>
</table>

Accepting public comments on the draft FY 15-16 quantification methodology and calculator through February 23, 2016.

http://www.arb.ca.gov/cc/capandtrade/auctionproceeds/quantification.htm
THANKS...... Important Contacts:
Carolyn Cook, MSc
carolyn.cook@cdfa.ca.gov

Amrith Gunasekara, PhD
Liaison to EFA SAP
amrith.gunasekara@cdfa.ca.gov
Subsurface Drip Irrigation Applications in Annual Cropping Systems

Daniel Munk
University of California Cooperative Extension
Outline

• Does SDI save water?
• Under what conditions?
• How does SDI impact farm GHG emissions?
 – Historical perspective
 – Costs and benefits
 – Current applications
 – Future and long term management issues
Early CA Research

• Mid-1980’s and through 1990’s
 – Product improvements in drip tape design for large scale agriculture
 – Intended to eliminate evaporation and improve WUE

• Research interest accelerates
 – USDA ARS, UCCE
 – Large and small scale trials in the SJV
 – Contrasts with furrow/flood (sprinkler)
Early CA Research

• Primary research findings
 – Reduced water application requirements
 – Reduced Deep percolation
 – Yield improvements depend on
 – Increased water use efficiency
 – Improved crop quality
 – Not highly sensitive to tape depth, emitter spacing
Early SDI grower experience

• Expensive systems
• Complex systems
 – Design and proper installation
 – Maintenance
 – Water application schedules
• Throughout the 90’s numerous growers convert a limited number of systems with SOME success
Design improvements

- Improved emitter uniformity and pressure compensation
- Reduced plugging caused by soil and root intrusion
Field Application Improvements

- GPS guidance systems aid in preserving alignment of bed relative to tape position.
 - Tape damage due to tillage
 - Problems with germination and early season access to plant water and nutrients
Field Application Improvements

• Low DU issues addressed by increasing tape diameter. 5/8 to 7/8”
• 12-14’ spacing w/ 0.22 gal/min/100 ft.
• Tape retrieval systems
• System maintenance
• Tape retrieval systems
• Cleaning and recycling used tape
Interest Grows
Percent Plantings - Tulare Basin

<table>
<thead>
<tr>
<th>Item</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Cotton</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Melons</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>Onions & Garlic</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Processing Tomatoes</td>
<td>4</td>
<td>96</td>
</tr>
</tbody>
</table>

Source: DWR Irrig. Survey
Common SDI Applications

- Central Coast
 - Lettuce - Buried 2 to 3” (20% +)
 - Strawberries – w/ plastic mulch
 - Peppers

- San Joaquin Valley
 - Processing Tomatoes
 - Processing Onions and Garlic
 - Peppers
 - Cucurbits

- Sacramento Valley
 - Processing Tomatoes
 - Sunflowers
Moving forward: Barriers to further widespread adoption

- Cost of technology in lower value crops
 - Payoff likely to occur during life of system but hard to justify expense in short term
- On-farm expertise needed to manage and maintain systems properly
 - Staff training programs in place, but more are needed
Expanding applications

• Motivated by drought, higher water costs and limited water access
• State acreage has grown to about 650,000 acres (Netafim)
Furrow system July 14th
(~1 mo. > transplant

SDI system July 14th
(~1 mo. > transplant
Weed Populations Under Different Irrigation

Row Location

<table>
<thead>
<tr>
<th>Row Location</th>
<th>Bed</th>
<th>Furrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drip Irrigation</td>
<td>0.50</td>
<td>44.67</td>
</tr>
<tr>
<td>Furrow Irrigation</td>
<td>17.92</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Long Term SDI versus Furrow Comparison Trials – Shafter REC (USDA-DeTar et al)

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Year 1-SDI</th>
<th>Year 1-Furrow</th>
<th>Year 2-SDI</th>
<th>Year 2-Furrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Soil</td>
<td>1704</td>
<td>1738</td>
<td>1613</td>
<td>1608</td>
</tr>
<tr>
<td>Poor Soil</td>
<td>1637</td>
<td>1445</td>
<td>1517</td>
<td>1325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Net Water Applied (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Soil</td>
<td>24.1 41.8 26.3 38.5</td>
</tr>
<tr>
<td>Poor Soil</td>
<td>22.9 45.9 25.7 41.1</td>
</tr>
</tbody>
</table>

*sandy loam soils / poor = nonuniform, declining infiltration rates, variable root development
Considering the economics of converting from surface to drip

Example: Sonora Chile Pepper Evaluations (New Mexico) – Las Cruces

- YIELDS - 25 PERCENT
- FERTILIZER COSTS – 26 PERCENT
- OTHER CHEMICALS – 18 PERCENT
- CAPITAL COSTS – 47 PERCENT
- FIXED COSTS – 19 PERCENT
- SEED COSTS – 20 PERCENT
- OVERALL NET OPERATING PROFIT – 12 PERCENT
Irrigation Water Use Index

Crop Water Use Efficiency (bales/ML irrig)

- Subsurface drip irrigation
- Traditional furrow
- Centre pivots and lateral moves
Irrigation system design: Furrow

Distribution at the end of the set

For efficient furrow irrigation:

70 - 80 % of applied water retained in root zone

More water retained in root zone

Potential for slight deficit and less yield in low quarter of field
Applied in-season irrigation and 100% and 80% ETc throughout the 2012 growing season
Processing Tomatoes: Annual N\textsubscript{2}O Emissions Fertilizer Rate & Irrigation Effects

Tomato (Furrow-irrigated)
Oct 2009 - Sept 2010

Crop N off-take: 150 to 230 kg N ha-1

Tomato (Furrow-irrigated)
Oct 2010 - Aug 2011

Crop N off-take: 150 to 230 kg N ha-1
Emission Factors: tomato and lettuce

<table>
<thead>
<tr>
<th></th>
<th>Lettuce</th>
<th>Tomato</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg N ha⁻¹</td>
<td>85 170 225 340</td>
<td>75 162 225 300</td>
</tr>
<tr>
<td>2009/10</td>
<td>.83 .41 .44 .40</td>
<td>1.75 .91 1.35 1.51</td>
</tr>
<tr>
<td>2010/11</td>
<td>.76 .46 .41 .31</td>
<td>2.45 1.34 2.58 1.79</td>
</tr>
</tbody>
</table>

Note: Both low and high fertilizer N can cause increased N₂O emissions
Summary

☐ SDI, though a considerable investment for growers, can and often does result in:
 • Increased yields that depend on crop type and farming system elements
 • Lower water application rates
 • Higher water use efficiency
 • Improved fertilizer application efficiency
 • Improved weed control
 • Lower N2O emissions

When compared to other irrigation systems*
Summary

- Current limitations to adoption are related to the high initial capital costs of the system as well as the knowledge of system operations and maintenance including development of appropriate irrigation schedules.

- Many of the benefits associated with SDI are offset when systems are not properly maintained and water schedules are not fully optimized emphasizing the need for appropriate operator training.

- Salinity management planning will need to be addressed in many SDI systems.
That's all Folks!
Subsurface Drip Irrigation (SDI) in Alfalfa

Daniel H. Putnam

(Collaborators: Ali Montazar, Khaled Bali, James Radawich, Roger Baldwin, Daniele Zaccaria)

University of California, Davis
dhputnam@ucdavis.edu
http://alfalfa.ucdavis.edu

Drip irrigated alfalfa field, California
Web Resources for SDI & Alfalfa

- Netafim: http://ucanr.edu/sites/adi/files/204432.pdf
The Key ‘Public’ Issues

- Can a given technology improve yield/productivity per unit water?
- Save water per unit area?
- Per unit energy?
- Per unit greenhouse gas?
- Provide other public benefits
 - Surface water quality
 - Groundwater quality
 - Weed & Pest Management
Water Use by California Crops (4-Year Ave. 2006-2009)

- Alfalfa: 16%
- Almonds & Pistachios
- Pasture
- Other deciduous
- Vineyard
- Rice
- Corn
- Other Field
- Citrus & Subtropical
- Truck Crops
- Grain
- Cotton
- Tomato Processing
- Onion & Garlic
- Cucurbits
- Dry Beans
- Sugarbeet
- Tomato Fresh
- Safflower
- Potatoes

Annual Applied Water (Acre Feet x 1,000)
Future trends for Alfalfa?

- Dethroned as #1 acreage crop (~2012)
- ‘Tug of war’ between
 - Restrictions on acreage/production due to competition from other crops, water limitations
 - Strong demand from Western Dairies, Exports, horses, other livestock

- Need for:
 - Higher yields on limited land availability (this is a GLOBAL issue)
 - Lower water use
 - Water transfers
 - ‘Sustainable intensification’

- Alfalfa will remain a major crop for many years to come
Why alfalfa is the best crop to have in drought (alfalfa blog)

- Deep Roots, use of residual moisture
- Perennial, don’t have to re-establish
- High Water Use Efficiency
- High flexibility with summer deficits
- Lower risk if things go wrong

ALFALFA & FORAGE NEWS
News and information from UC Cooperative Extension about alfalfa and forage production.

Why Alfalfa is the Best Crop to have in a Drought

Author: Daniel H Putnam
Published on: May 13, 2015

The 2013-2015 California drought has brought much public attention to the amount of water used in agriculture, and part of that which crops like the most water. Although almonds have taken the hit lately, alfalfa is often one of the favorite whipping boys of干旱
Why an interest in SDI in Alfalfa?

• Possibility of Higher Yields
• Higher Hay price
• The Water Squeeze
• Water Savings/water productivity
• Better Water Management
• Soil Fertility Management
• Labor Savings
• Crop Rotation possibilities
• Problems with current (surface) system
• Profitability
UC SDI Studies:

- “Case Studies” of grower’s experiences across a range of environments (18-20)
 - Documenting successes/failures
 - Costs/benefits

- Controlled Studies on UC Facilities:
 - SDI compared with Flood
 - Variety interactions (with AZ, NMSU)
 - Deficit Irrigation with drip
 - Spacing Studies, understanding optimum irrigation management
 - Gopher Management

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
Field Visits (AZ, CA)

El Centro Trials

Feb 23, 2016 Modesto – Science Advisory Panel - EFA
Developed by
The Economist Intelligence Unit

THE LEARNING CURVE

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
We hope not this:

A learning curve
To consider SDI in alfalfa:

- Must improve yields over surface irrigation to justify cost
- Must understand source of water, water quality, delivery
- Must be prepared for higher level of management
Sample Costs for SDI
(compared with surface irrigation)

<table>
<thead>
<tr>
<th>Item</th>
<th>Partial Budget ($/a)</th>
<th>Annualized Costs ($/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drip Tape (40”) – 6 yr.</td>
<td>$450 (400-500)</td>
<td>75</td>
</tr>
<tr>
<td>Drip Tape Installation– 6 yr.</td>
<td>$200 (100-300)</td>
<td>33.33</td>
</tr>
<tr>
<td>Irrig. Infrastructure (valves/pipes, pump) -15 yr.</td>
<td>$1400 (800-1800)</td>
<td>93.33</td>
</tr>
<tr>
<td>Water Cost (-8% SDI)</td>
<td>-$42 (+10% to -20%)</td>
<td>-$42</td>
</tr>
<tr>
<td>Energy Cost (vs. surface)</td>
<td>$118</td>
<td>$118</td>
</tr>
<tr>
<td>Labor Irrig. Management</td>
<td>-$66</td>
<td>-$66</td>
</tr>
<tr>
<td>Labor for Rodent mgt. & repair</td>
<td>$75</td>
<td>$75</td>
</tr>
<tr>
<td>Remove Driplines—6 yr.</td>
<td>100 (80-120)</td>
<td>16.67</td>
</tr>
<tr>
<td>Total Sample costs</td>
<td>$2,050 initial + $185/yr</td>
<td>302.50/year</td>
</tr>
</tbody>
</table>

Note: Actual costs may be higher or lower than these amounts

Feb 23, 2016 Modesto – Science Advisory Panel-EFA
Key Recommendations

What is needed to Justify SDI? (Fixed costs)

Assumptions: 15 yrs. infrastructure (pumps, filters, etc.)
6 years drip lines
Does not consider support by NRCS or state agencies

Price of Alfalfa Hay ($/ton)

Increased Cost of SDI System (annual)

Yield Increase Required (tc/ha)

Effect of Hay Price and Annual Costs on Necessary Increases in Yield

Example Costs
Are these yield improvements possible?

- Yield Increases appear real
- Confirmed by controlled studies (Lamm et al. 2012, UC studies)
- Growers report approximately 3.1 t/a improvement over flood.
- 20-35% range
- Why is that?
Why would we expect improved yields in SDI vs. surface?

1. Superior Distribution Uniformity (in Space)
 - Less difference between top and bottom of field
 - Well known problems with surface systems
Innate Problems with Flood Irrigation

(Distribution uniformity can be poor due to soil infiltration rate, flow, and set duration)

In a 12 hour irrigation set:

Too Much

Just Right

Too Little

Flooding

Water

Deep Percolation

Dry Soil

12 Hours

8 Hours

6 Hours

Accumulation

(1320 feet)

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
Standing Water
(the enemy of alfalfa)
Tail - End Damage

Weeds intrude in damaged areas
Why would we expect improved yields in SDI vs. surface?

2. Distribution Uniformity (in Time)
 - Ability to ‘charge’ a field within hours, not days
 - Most Flood-irrigated (and some sprinkle irrigated) fields require 4-12 days to irrigate, depending upon flow available.
 - Problem for 30-day growth cycle
 - Differences in yield between sections of field in surface systems
 - Loss of Stand in flooded fields vs. drip (observed in second year at El Centro)
6- to 20-day period during which fields cannot be irrigated

Steve Orloff, photo
Innate Problems with Flood Irrigation

Check number:

Day 1

(1320 feet)

(3300 feet)

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
Innate Problems with Flood Irrigation

Check number:

Day 2

Water

(1320 feet)

(3300 feet)

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
In a 28 day growth cycle, some parts of the field get water 7-8 days later.

Since 7 days before, and 7 days after harvest have to be dry, there is only a 14 day window for irrigation – so with flood irrigation, mostly can irrigate either 1x or 2x. Different parts of the field are irrigated differently.

(*Same issue with wheel lines!)
Why Increased Yields with SDI?

- 3. Ability to Maintain Turgor
- Avoid temporary droughts
 - The moment turgor is lost, growth ceases
 - Avoid wetting-drying patterns (flood/drying)
4. Manipulating Irrigation Schedules to match ET

- Essentially any schedule desired
- Can irrigate every day
- Many hours, few hours
- Maintaining turgor
- Irrigating close to harvests (during??)
Alfalfa SID Trail - 2015 Davis

- ETc
- Drip Irrigation
- Flood Irrigation

Cumulative ETc or Irrigation applied (inches)

Day of Year

Cut 2
Cut 3
Cut 4
Cut 5
Cut 6
Cut 7

Drip Irrigation
Flood Irrigation

Feb 23, 2016 Modesto - Science Advisory Panel - EFA
Innate Problems with Flood Irrigation

- Flood irrigation events can only irrigate between 4” to 8” of water at once, necessary just to push water down the field.

- Typically only 1 or 2 irrigations are feasible in a 14 day irrigation window.

- So: 1 irrigation may apply too little, and 2x may apply too much water for a 28 day ET demand – resulting either in excess or deficit irrigations.
Can a system follow ET?

- Is it restricted in terms of applying small amounts?
- Can it recharge the profile?
Distribution Uniformity was not perfect in SDI fields:

- In many fields, a ‘corrugation’ effect was seen, in spite of improved yields
- Perhaps 10-20% yield hit?
- Likely a spacing issue-soil type dependent
- More to learn on lateral spacing/flow rates
- Optimizing the system considering cost/rotation

Feb 23, 2016 Modesto
‘Corrugation Effect’
Between Drip Lines

Above Drip Line
Over Irrigating to compensate for lack of lateral movement

Standing Water, Loss of Stand, Grassy Weed Intrusion
Key Recommendations

What we’ve learned:

- Growers were sometimes unable to fully charge fields with moisture at the beginning of the season with SDI
- Try to overcome it with longer sets
- Also a problem over the summer
- Problems subbing between laterals
- 40” spacing (the most common) may not be ideal for many soil types
- Inability to recharge in mid-summer
Different Rooting Patterns

Khaled Bali, photo
Key Recommendations

- Do not take an ‘absolute’ view of application technology
- Sprinklers best for germination.
- Surface flood irrigations may be helpful in addition to SDI
Recommend to Maintain the ability to Flood irrigate:

- Fully re-charge fields periodically (particularly at beginning of season)
- Assists with gopher management
- Assists with salinity management
- Maintain Wildlife Habitat
- Note: Consider less than 40” spacing strategies (e.g. 30”)

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
what we’ve learned:

- Rodents are perhaps THE major challenge for SDI in alfalfa
Gopher Management

- No one solution
- An Integrated Approach
 - Primarily increased awareness/scouting
 - Allocate the time and labor to this function
 - Trapping
 - Baits
 - Occasional flood irrigations
 - Exclosures (barriers)?
 - Repellents (Pro-Tech T)?
 - Predators (owl boxes)?
- ‘Professionalize’ rodent management
Rodent Control is Key

- A number of growers have walked away from SDI as a consequence
- Cannot be tolerated

Future Research
- Professional monitoring & control
- Protected drip tape
- Barriers (exclusions)
- Further work on baits, repellents
Key Recommendations

Can you save water?:

- Yes, under some conditions

- Yield is directly related to ET (higher yield, higher ET!), so may not save water.

- But can save on evaporation
 - ET question is still pending

- 7% savings in Brawley (heavy soil)

- 20% under other situations

- Growers have reported water savings.
 - Soil type (savings on light soils)
 - Efficiency of flood system
 - Are they adequately irrigating for full yields?

- WUE – yield per unit water
Alfalfa field in Check Flood Irrigation
Imperial Valley - Seeley

Alfalfa field in SDI
Imperial Valley - El Centro
Data: Ryan Byrnes, Martin Berger, Will Horwath
2015 Seasonal Alfalfa N₂O Emissions

- Flood: ~1000-1100 g N₂O-N ha⁻¹
- Drip: ~200 g N₂O-N ha⁻¹

Data: Ryan Byrnes, Martin Berger, Will Horwath

Feb 23, 2016 Modesto – Science Advisory Panel-EFA
Crop Rotation Considerations

- Rotation with tomato, row crops with alfalfa with drip lines remaining
- Assist in covering costs
- Explore spacing issues (60? 40? 30?)
- Double 30s?
- Different rooting patterns for row crops vs. alfalfa

Feb 23, 2016 Modesto –Science
Labor is perhaps one of the primary limitations of surface irrigation.
• 82% Of growers (so far) are highly satisfied
• 18% are medium to less satisfied with SDI
Variety X Water Deficits under drip Irrigation
-El Centro & Davis
What should one do when there’s not enough water?

- Curl up in a ball?
- Partial Season irrigations?
Evapotranspiration (mm) vs Actual Coefficient (Ka=Kc x Ks)

- **13-Mar-15**
- **12-Apr-15**
- **12-May-15**
- **11-Jun-15**
- **11-Jul-15**
- **10-Aug-15**

K value
Average Kc = 0.85
Alfalfa SDI Deficit Trail
Davis (2015)

- 100% of ETc
- 75% of ETc (late-season dry down)
- 75% of ET (late-season deficit)
- 50% of ETc (mid-season dry down)
- ETo

Deficit Irrigation - SDI

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
Dry matter

Irrigation applied

Water Use Efficiency (t ac⁻¹ in⁻¹)
I1: 0.25
I2: 0.33
I3: 0.31
I4: 0.43

Irrigation treatment

Alfalfa dry matter (t ac⁻¹)

I1 100% of ET
I2 96% of ET
I3 95% of ET
I4 80% of ET

Irrigated applied (inch)

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
Deficit Irrigations:

- Feasible with all types of irrigation systems
- May be higher yielding with SDI
- Emphasize Early Irrigation to maximize yield and WUE
- Economics must work (economic water transfers)
- Alfalfa is the best crop to have in a drought
A Balance Sheet

<table>
<thead>
<tr>
<th>Consideration</th>
<th>SDI</th>
<th>Flood</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Use per Acre</td>
<td>(+)</td>
<td>(-)</td>
<td>Generally favors SDI, although will depend upon soil type and efficiency of flood system.</td>
</tr>
<tr>
<td>Water Use per unit prod. (ton)</td>
<td>(+)</td>
<td>(-)</td>
<td>Clearly favors SDI given innate advantages in water application.</td>
</tr>
<tr>
<td>Energy Use per acre</td>
<td>(-)</td>
<td>(+)</td>
<td>Gravity-fed systems are almost always superior in energy flux per unit area.</td>
</tr>
<tr>
<td>Energy Use per unit prod. (ton)</td>
<td>(+)</td>
<td>(-)</td>
<td>Improving yield is likely to lower energy use per unit production, depends upon extent.</td>
</tr>
<tr>
<td>GHG per unit production</td>
<td>(+)</td>
<td>(-)</td>
<td>Not fully known but likely to be lower in SDI, due to higher yields and lower direct emissions.</td>
</tr>
<tr>
<td>Irrigation Mgt.</td>
<td>(+)</td>
<td>(-)</td>
<td>Clear advantages to SDI, if managed correctly.</td>
</tr>
<tr>
<td>Refill profile</td>
<td>(-)</td>
<td>(+)</td>
<td>Flood irrigation is likely superior.</td>
</tr>
<tr>
<td>Germination</td>
<td>(-)</td>
<td>(+)</td>
<td>Sprinklers are preferred, flood works, SDI no</td>
</tr>
<tr>
<td>Salinity</td>
<td>(-)</td>
<td>(+)</td>
<td>Salinity may be an issue with SDI-mitigated</td>
</tr>
<tr>
<td>Wildlife</td>
<td>(-)</td>
<td>(+)</td>
<td>Favors flood but can be mitigated.</td>
</tr>
</tbody>
</table>
A Balance Sheet

<table>
<thead>
<tr>
<th>Consideration</th>
<th>SDI</th>
<th>Flood</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>(+)</td>
<td>(-)</td>
<td>Mechanisms for yield increases appear genuine</td>
</tr>
<tr>
<td>Stand Longevity</td>
<td>(+)</td>
<td>(-)</td>
<td>Evidence for superior stand longevity</td>
</tr>
<tr>
<td>Controlling Fertilizers</td>
<td>(+)</td>
<td>(-)</td>
<td>Delivery directly to root system, prevention of losses (N, P).</td>
</tr>
<tr>
<td>Weed Intrusion</td>
<td>(+)</td>
<td>(-)</td>
<td>Evidence for less weed pressure due to dry surfaces and less stand decline</td>
</tr>
<tr>
<td>Surface runoff (pesticides etc.)</td>
<td>(+)</td>
<td>(-)</td>
<td>SDI eliminates surface runoff which protects surface water quality</td>
</tr>
<tr>
<td>Oxygen to Root system</td>
<td>(+)</td>
<td>(-)</td>
<td>On many heavy soils likely better O2 to roots</td>
</tr>
<tr>
<td>Labor</td>
<td>(+)</td>
<td>(-)</td>
<td>Labor savings in SDI irrigations, but greater management for repairs, gophers are needed</td>
</tr>
<tr>
<td>Rodent Management</td>
<td>(-)</td>
<td>(+)</td>
<td>Rodents are a problem in all systems, but flood irrigation keeps populations in check.</td>
</tr>
<tr>
<td>Flexibility with Deficit Irrigation</td>
<td>(+)</td>
<td>(+)</td>
<td>Both systems can be deficit irrigated. May improve yields under SDI, but higher costs</td>
</tr>
</tbody>
</table>

Feb 23, 2016 Modesto –Science Advisory Panel-EFA
Summary

- SDI is worth supporting, in my view – a number of public benefits
- Not appropriate for all farms - must have yield potential and higher level of management
- Variation in price is an economic limitation
- Improved yields (9-15 t/a range) 2-3 tons/a improvement in CV and desert regions
- Possibility of improved stand longevity, less weeds, Labor savings
- Water benefits, ability to do deficit irrigation
- Sustained effort required to solve problems:
 - Rodent management
 - Scheduling/spacing
 - Water quality