Cover Cropping in the SGMA Era

Introducing key findings and next steps identified through collaborative report development

EFA SAP Meeting September 13, 2024

Ryan Flaherty Sustainable Conservation <u>www.suscon.org</u>

Thank You!

United States Department of Agriculture

Natural Resources Conservation Service

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Report Authors

Jeff Borum, East Stanislaus RCD	Karen Lowell, USDA - NRCS*
Ellen Bruno, UC Berkeley, UC ANR	Hudson Minshew, USDA - NRCS*
Sarah Castle, Sustainable Conservation	Mallika Nocco, University of Wisconsin, Madison
Jessica Chiartas, UC Davis	Caitlin Peterson, PPIC
Rory Crowley, ROCS	Matthew Roby, USDA - ARS*
Charlotte Decock, Cal Poly SLO	Jesse Roseman, Almond Board of CA
Charles Delgado, Sustainable Conserva- tion	Allegra Roth, UC Berkeley
Alyssa DeVincentis, Formation Environmental	Samuel Sandoval, UC Davis, UC ANR
Rex Dufour, NCAT/ATTRA	Stacie Ann Silva, Altum Aqua LLC
Annie Edwards, USDA - NRCS*	Emily Smet, CARCD
Ryan Flaherty, Sustainable Conservation	Margaret Smither-Kopperl, USDA - NRCS*
Margot Flynn, UC Davis	Kosana Suvocarev, UC Davis, UC ANR
Robyn Grimm, Environmental Defense Fund	Hannah Waterhouse, UC Santa Cruz
Lauren Hale, USDA-ARS*	Vivian Wauters, UC SAREP
Sarah Light, UC ANR	Sam Williams, Sustainable Conservation
Cayle Little, DWR*	Daniele Zaccaria, UC Davis, UC ANR

Report Authors participated in the development and drafting of the report's sections based upon their expertise. Authors provided review and editing support of the entire document.

USDA - NRCS and ARS employees contributed authorship solely to technical aspects of this report and did not contribute to non-technical recommendations under "Section 4. Recommendations".

100+ multi-disciplinary experts

Outline

- 1. Background
- 2. Key Report Findings
- 3. Opportunities for Action

1. Background

Concerns we heard

My GSA is penalizing me for growing cover crops.

The growers I work with have stopped using cover crops because they're worried they won't have enough allocation for their cash crops.

How much additional water do cover crops use?

DROUGHT will continue to impact California.

FLOODS will become more severe

AIR QUALITY suffers in our farming regions.

DRINKING WATER QUALITY declines due to nitrate from farms.

Ensuring the viability of non-cash crop vegetation – including cover crops – within SGMA is vital for watershed, ecosystem, and human health.

Convening Group

100+ convening participants

Experts across a huge range of sectors + topics

Academics, Cooperative extension, agency staff, growers, consultants, private interests Inc. Planning Group

Report Group

Subset of Convening group – researchers, agency staff, etc.

Inc. Planning Group

COVER CROPPING IN THE SGMA ERA

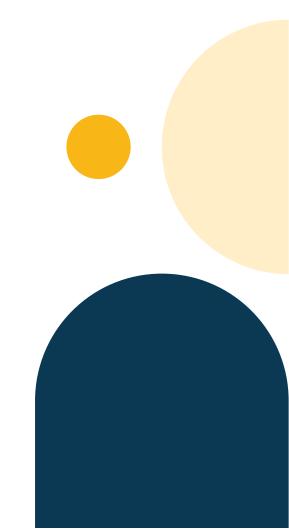
A comprehensive overview of water impacts, policy implications, and recommendations for California's water managers

2024

A report prepared by a multi-disciplinary author committee as an outcome of the Soil-Water Interface Expert Convening Series

AUTHORSHIP

The following is the full list of the Report Author Committee members and their affiliation, in alphabetical order by last name.


Jeff Borum, East Stanislaus RCD	Karen Lowell, USDA - NRCS*
Ellen Bruno, UC Berkeley, UC ANR	Hudson Minshew, USDA - NRCS*
Sarah Castle, Sustainable Conservation	Mallika Nocco, University of Wisconsin, Madison
Jessica Chiartas, UC Davis	Caitlin Peterson, PPIC
Rory Crowley, ROCS	Matthew Roby, USDA - ARS*
Charlotte Decock, Cal Poly SLO	Jesse Roseman, Almond Board of CA
Charles Delgado, Sustainable Conserva- tion	Allegra Roth, UC Berkeley
Alyssa DeVincentis, Formation Environmental	Samuel Sandoval, UC Davis, UC ANR
Rex Dufour, NCAT/ATTRA	Stacie Ann Silva, Altum Aqua LLC
Annie Edwards, USDA - NRCS*	Emily Smet, CARCD
Ryan Flaherty, Sustainable Conservation	Margaret Smither-Kopperl, USDA - NRCS*
Margot Flynn, UC Davis	Kosana Suvocarev, UC Davis, UC ANR
Robyn Grimm, Environmental Defense Fund	Hannah Waterhouse, UC Santa Cruz
Lauren Hale, USDA-ARS*	Vivian Wauters, UC SAREP
Sarah Light, UC ANR	Sam Williams, Sustainable Conservation
Cayle Little, DWR*	Daniele Zaccaria, UC Davis, UC ANR

Report Authors participated in the development and drafting of the report's sections based upon their expertise. Authors provided review and editing support of the entire document.

USDA - NRCS and ARS employees contributed authorship solely to technical aspects of this report and did not contribute to non-technical recommendations under "Section 4. Recommendations".

Report Contents

2. Key Report Findings

Report Contents

Introduction

California water context, SGMA, cover crops, convening process

02

State of Knowledge

Cover crops' impact on water budget, management factors, on-going research

Recommendations

Research, cover crop-specific needs, GSA guidance, data, funding

State of Knowledge – Water <u>Use</u>


The water use of cover crops is variable and can depend on many factors

Cover crop evapotranspiration (ET) *can be negligible* compared to bare ground in perennial and annual systems

State of Knowledge – Water <u>Benefits</u>

Table 1.

Key Factors for Cover Crops

Water use

Precipitation

Infiltration

Report Contents

Introduction

California water context, SGMA, cover crops, convening process

State of Knowledge

Cover crops' impact on water budget, management factors, on-going research

Recommendations

Research, cover crop-specific needs, GSA guidance, data, funding

SGMA Overview

Balance by 2040, 2042

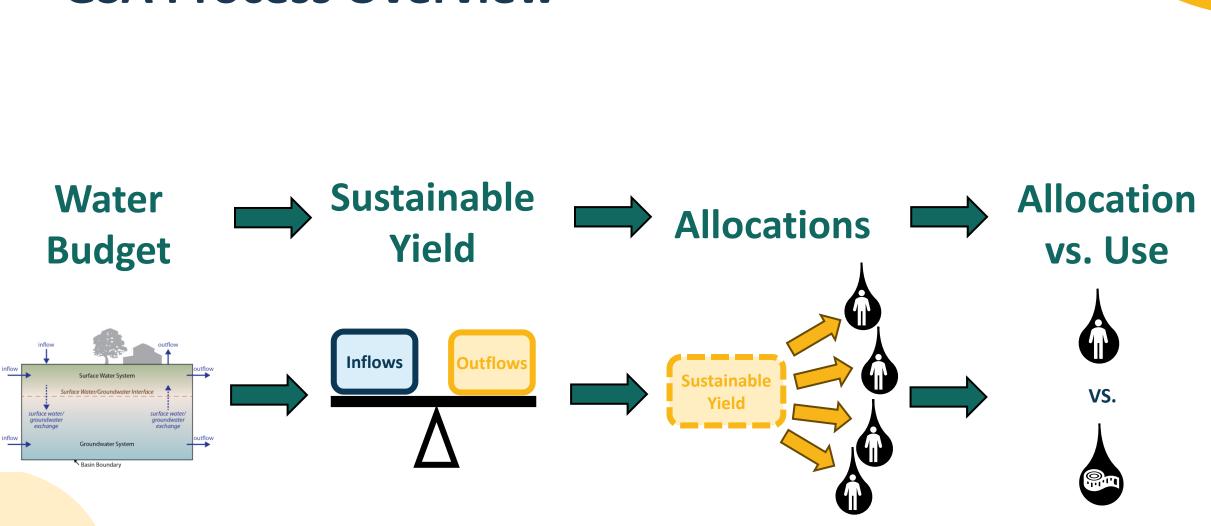
Sustainability

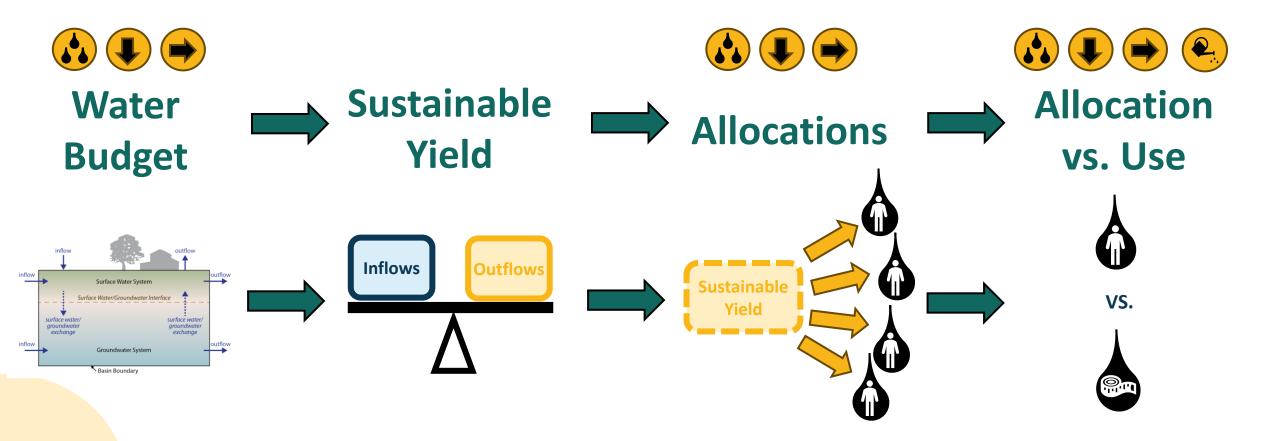
Avoid Six Undesirable Results

Lowering GW Levels

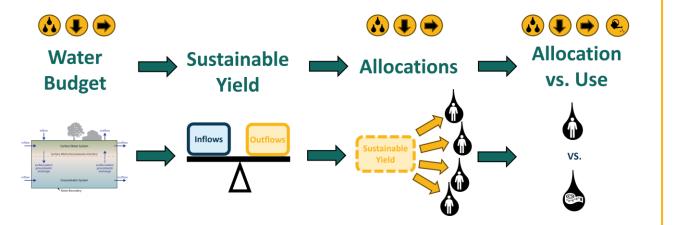
Reduction of Storage

Seawater Intrusion




Degraded Quality

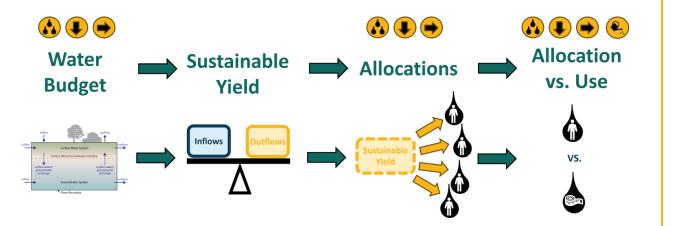
Land Surface Water Subsidence Depletion



GSA Process Overview

Linking Key Factors for Cover Crops to GSA Process

Findings

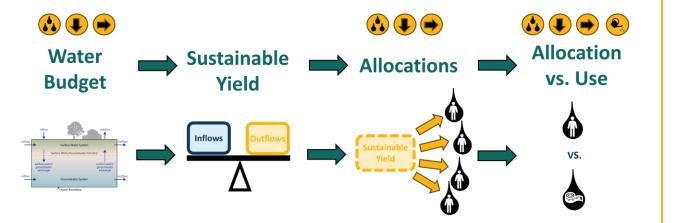


1

GSAs are responsible for managing a large workload and considerable complexity.

Minimal guidance in a policy based on local control is resulting in varying approaches and degrees of rigor in consequential water management processes.

Findings



3

Some common assumptions in GSA approaches are not reflective of the best available science and preclude the ability to account for the benefits of certain land management decisions.

- Evaporation from bare ground is minimal
- Runoff is negligible
- Percent of precipitation percolating to groundwater is fixed

Findings

4

Requirements for bare ground exist in some GSA incentive programs.

These requirements are unlikely to meet estimated water savings and are likely to create negative local impacts to air quality, water quality, and human health.

Findings: Deep Dive on Water Use

6

Relative to what is known about the margins of error of satellite ET estimates for common crops, little is known for winter cover crops. In particular, it is not well documented how factors such as increased cloud cover and bare ground could impact the accuracy of ET estimates for cover cropped parcels compared to non-cover cropped parcels.

Findings: Deep Dive on Water Use

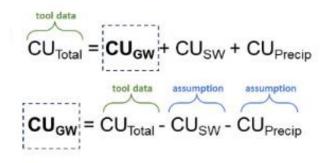
6

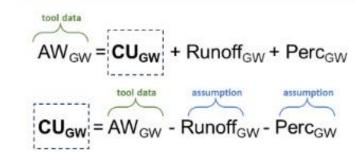
Relative to what is known about the margins of error of satellite ET estimates for common crops, little is known for winter cover crops. In particular, it is not well documented how factors such as increased cloud cover and bare ground could impact the accuracy of ET estimates for cover cropped parcels compared to non-cover cropped parcels.

GSA methodologies for converting satellite ET data (total consumptive use) or flow meter data (applied water) into consumptive use of groundwater are variable and not always rigorous.

Calculating Consumptive Use of Groundwater

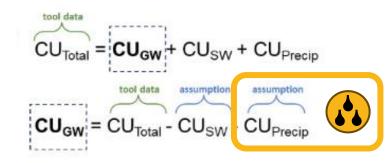
Total Consumptive Use



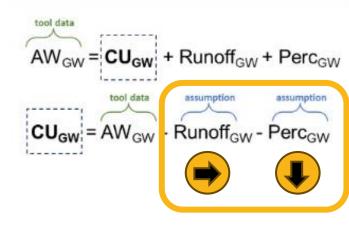

Calculating Consumptive Use of Groundwater

Total Consumptive Use

Applied (Ground) Water



Linking Key Factors for Cover Crops to CUgw



Total Consumptive Use

Applied (Ground) Water

Findings: Deep Dive on Water Use

6

Relative to what is known about the margins of error of satellite ET estimates for common crops, little is known for winter cover crops. In particular, it is not well documented how factors such as increased cloud cover and bare ground could impact the accuracy of ET estimates for cover cropped parcels compared to non-cover cropped parcels.

GSA methodologies for converting satellite ET data (total consumptive use) or flow meter data (applied water) into consumptive use of groundwater are variable and not always rigorous.

Findings: Deep Dive on Precipitation

Precipitation is a vital flow.

Precipitation is also incredibly variable:

Annual precipitation

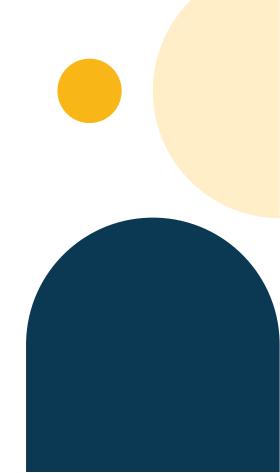
Spatial distribution

Intensity

Destination of precipitation

Findings: Deep Dive on Precipitation

5


Some GSA methodologies for incorporating precipitation are likely to result in unintended consequences for cover crop implementation, basin water management, and water use decisions.

Deep Dive – Precipitation in Allocations

Table 2. Example Approaches for Incorporating Precipitation into Allocations

Decision Point	Example 1 (a, b)	Example 2 (a, b)	Example 3
1. What "base" precipitation will be used for their allocation?	Average annual precipitation.	Average annual precipitation.	Actual precipitation.
2. What fraction of "base" precipitation goes into the allocation?	Fixed percentage is applied across all parcels.	Fixed percentage is applied across all parcels.	None
3. How is the fraction incorporated into the allocation?	Precipitation is embedded within total allocation.	Precipitation has its own allocation "bucket," separate from groundwater allocation "bucket."	Precipitation is not included in allocation. Allocation is for groundwater only.
4. How is the allocation drawn down in a given year?	CUtotal is applied against total allocation.	CUtotal is applied against the "buckets" in a specific order, precipitation "bucket" first.	CUprecip is removed from CUtotal and only CUgw is applied against the groundwater allocation.
5. What adjustments are made to account for the difference between average and actual precipitation?	(a) None (b) Use a "credit" to increase or decrease allocation, based on actual precipitation.	 (a) None. Begin drawing down groundwater "bucket" once precipitation "bucket" is empty. (b) Once the precipitation "bucket" is empty, do not draw down groundwater "bucket" for any additional CUprecip. 	Not applicable (average not used for the allocation).

Linking Key Factors for Cover Crops to Precipitation in Allocations

Decision Point	Example 1 (a, b)	Example 2 (a, b)	Example 3	
1. What "base" precipitation will be used for their allocation?	Average annual precipitation.	Average annual precipitation.	Actual precipitation.	
2. What fraction of "base" precipitation goes into the allocation?	Fixed percentage is applied across all parcels.	Fixed percentage is applied across all parcels.	None	
3. How is the fraction incorporated into the allocation?	Precipitation is embedded within total allocation.	Precipitation has its own allocation "bucket," separate from groundwater allocation "bucket."	Precipitation is not included in allocation. Allocation is for groundwater only.	
4. How is the allocation drawn down in a given year?	CUtotal is applied against total allocation.	CUtotal is applied against the "buckets" in a specific order, precipitation "bucket" first.	CUprecip is removed from CUtotal and only CUgw is applied against the groundwater allocation.	•
5. What adjustments are made to account for the difference between average and actual precipitation?	(a) None (b) Use a "credit" to increase or decrease allocation, based on actual precipitation.	 (a) None. Begin drawing down groundwater "bucket" once precipitation "bucket" is empty. (b) Once the precipitation "bucket" is empty, do not draw down groundwater "bucket" for any additional CUprecip. 	Not applicable (average not used for the allocation).	

Findings: Deep Dive on Precipitation

5

Some GSA methodologies for incorporating precipitation are likely to result in unintended consequences for cover crop implementation, basin water management, and water use decisions.

Findings: Overarching

2	

Cover crops may be unintentionally disincentivized because GSA approaches tend to account for their water use but not their waterrelated benefits.

9

Current GSA approaches could negatively impact the success of other policies, programs, and efforts in California.

3. Opportunities for Action

Support Adaptive Management

Co-develop actionable information on:

- Cover crop water use vs. bare ground
- Infiltration and runoff benefits
- How to improve CUgw estimates using satellite ET and flow meter data
- How to maximize water benefits and minimize use

Key Next Steps

- Develop and support a coordinated research agenda
 - Targeting specific needs, and ensuring sciencebased management
 - Including capturing and sharing grower experiences
- Develop grower guidance for cover cropping in water-scarce environments
 - How to maximize water benefits and minimize use
 - High level + specific scenarios

Key Next Steps

• Pilot programs with specific GSAs

- E.g. understanding and improving the conversion of tool data; incorporating benefits
- Shaping research to meet needs, presenting findings in useful forms
- Continue learning and sharing among community of practice
 - Collating research, sharing preliminary findings
 - Sending updates, learnings, questions
 - Continuing to build connections

Ensuring the viability of non-cash crop vegetation – including cover crops – within SGMA is vital for watershed, ecosystem, and human health.

DROUGHT will continue to impact California.

FLOODS will become more severe

AIR QUALITY suffers in our farming regions.

DRINKING WATER QUALITY declines due to nitrate from farms.

Thank you!

Further questions: <u>Soils@SusCon.org</u>

Report PDF at the following QR code:

