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About the CLIM3ATE Research Program 

The California Livestock Methane Measurement, Mitigation, and Thriving Environments Research 
Program (CLIM3ATE-RP) is a research funding initiative administered by the California Department of 
Food and Agriculture's Office of Agricultural Resilience and Sustainability (OARS). 

CLIM3ATE-RP was launched with funds from the Budget Act of 2021 (SB 170, Chapter 240) to support 
applied research that advances California's climate goals and strengthens the long-term environmental 
and economic sustainability of the state's livestock sector. 

Research Program Focus Areas 

CLIM3ATE-RP funded research in three critical areas related to methane emissions and manure 
management in livestock operations. The three impact areas of the CLIM3ATE-RP are: 

1. Verification of Methane Reduction Strategies, 

2. Alternative Methane Reduction Strategies and 

3. Manure Recycling and Innovative Product Development. 

In the 2022 funding cycle, CDFA awarded six research projects totaling $4.7 million in funding. 
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How UCD’s Project “Standard for Estimating Methane Emissions from 
Enteric Fermentation” Accomplishes CLIM3ATE-RP Goals 

This project received $74,318 in funding to support Goal 1 of the CLIM3ATE-RP to verify methane 
reduction strategies by establishing a standard for estimating methane emissions from enteric 
fermentation. 

Project Summary 

Recent research findings have shown that Animal Feed Additives may reduce enteric methane emissions 
by as much as 50 percent. However, evaluation strategies for feed additives are inconsistent across 
studies, making it difficult to understand the additives' full potential in reducing enteric methane 
emissions from the livestock sector. These inconsistencies include but are not limited to enteric 
methane measurement techniques and equipment, treatment and control group sample size, study 
length, animal type, and animal production stage. This project aims to extend the work supported by CA 
Air Resources Board by developing a standard for estimating methane emissions from enteric 
fermentation. This can also be used as a standard for CDFA supported projects related to feed additives. 

The following report will provide an overview of the findings of this project. Additionally, the research 
data published from this work can be found here: Systematic review for optimizing sample size in dairy 
cow methane emission studies: a comprehensive methodological approach. 

4 

https://zenodo.org/records/10356506
https://zenodo.org/records/10356506


 

 

 
 

 
 

   
 

  
        

 
    

      
 

    
      

           
       

 

 
         

       
     

   
 

   
           
         

       
        

        
             

           
         

   
        

       
           

w 40 
N 
iJi 
~ 
0. 
E 
ro 30 
Vl 

20 

• .. 

0.3 0.4 

----•• ----------------- •·-------

0.5 0.6 
Within -Subject Correlation (Rho) 

-.. __ 

Method 

SF6 

RC 
GF 

...... ____ . 
0.7 

50 

Project Details 
PROJECT ACTIVITIES PERFORMED 

Task 1: Literature Review 
All the literature review was accomplished in previous reporting periods so none to add. 

Task 2: Data Collection 
All data collection was accomplished in previous reporting periods so none to add. 

Task 3: Data Analysis 
Based on feedback we got from reviewers, further data analysis was conducted. There was some assumption made 
on the data analysis and reviewers asked justification for choosing a parameter. In response, we presented the 
impact of within-subject correlation on the required average sample size for studies using a Latin square design: 

Impact of within-subject correlation on the required average sample size for studies using a Latin square design to 
measure enteric CH4 in dairy cows. This calculation assumes an expected CH4 yield reduction of 10%, employing 
one of three measurement methods: RC (Open-circuit respirometry chambers), GF (the GreenFeed system), or SF6 
(the sulfur hexafluoride tracer technique). 

Task 4: Interpretation/Discussion 
We were asked to clarify interpretation of results and further explanation of the tool. Therefore, we included the 
following phrases ‘The interface actively guides users by providing alerts if their chosen parameters, such as those 
falling outside the permitted range, need adjustment. Specifically, these alerts are implemented to ensure that the 
experimental design conforms to the basic principles and requirements essential for the selected design type. For 
example, for Latin square design, users are prompted through alerts if the number of treatments does not match 
the number of periods, or if either is less than three, as both conditions are fundamental for the validity of this 
design type. The underlying database of our tool serves two primary purposes: it acts as a repository of reference 
values for median methane yields and associated variability, providing a robust benchmark, and also functions as a 
guideline for users either unfamiliar with these parameters or seeking to validate their sample size assumptions. 
Contrary to any notion of rigidly imposed "permitted ranges" our design philosophy emphasizes flexibility and user 
empowerment, allowing researchers to input their own values for methane yield and standard deviation. For 
instance, should a user wish to explore the effects of a diet with a very low methane yield, such as 5 g/kg of DMI, 
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this input is entirely permissible within the tool's framework. Similarly, if a user's methodology or prior experience 
suggests an exceptionally low variability in methane yield measurements such values can also be directly entered 
into the tool. These user-defined inputs are not overridden or constrained by the database averages; instead, they 
are welcomed as part of the tool's flexible input mechanism.” 

Task 5: Reporting 
The work has now been accepted in the Journal of Dairy Science. It can be accessed here 
https://www.journalofdairyscience.org/article/S0022-0302(24)00915-9/fulltext 
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Results 
Database Construction 
The selected studies encompass various breeds, including Holstein, Jersey, Finnish Ayrshire, Italian Friesian, Danish 
Holstein, German Holstein, Brown Swiss, and Nordic Red. Some of these breeds are distinct, while others represent 
regional variations of the same breed (e.g., different Holstein variations). The predominance of Holstein and its 
regional variants in the database (85%) reflects the breed’s widespread use in dairy production. Nevertheless, the 
inclusion of other breeds ensures our analysis captures a broader range of genetic diversity. 

From the 150 studies selected, six focused on experiments with non-lactating cows. Four studies reported the 
variability of CH4 yield as SD. It is important to note that for 25 of the studies, the tables included the largest SEM 
values. This suggests that the researchers were either pointing out the scenarios with the greatest variability or 
indicating the least precision in estimating the average of the measured variables. For simplicity, we adopted a 
conservative approach where these largest SEM are representative of the variability for all groups involved in 
these studies. Taking into account that some studies present data from two experiments or provide variability 
information for each group, our database ultimately comprises a total of 177 reports specifically detailing CH4 yield 
and its associated variability. 

Figure 2 illustrates the distribution of CH4 yield and its calculated SD in the selected studies. The transformation of 
SEM to SD is sensitive to the number of measurements (Equation 1), potentially leading to distortions in certain 
studies. To address this concern, we set a threshold at twice the median value of the SD distribution (i.e., the 
threshold was 4.8) to identify potentially inflated SD values. Thirteen reports, from 10 studies, with calculated SD 
values that exceeded this threshold (7.3%) were identified as outliers and excluded from subsequent analyses. This 
exclusion criterion was chosen to minimize the influence of abnormally high SD values on the sample size 
calculations. Due to one study contributing two reports, of which one report was identified as an outlier, the 
remaining database accepted for analysis consisted of a total of 141 studies. 

Given the ambiguous use of the “±” sign in the four reports from one of the accepted studies, which leaves unclear 
whether the value that follows represents the SD or the SEM, we assumed that the authors were referring to SEM. 
Seven accepted studies, each with one report, reported the variability as standard error (SE) of CH4 yield without 
specifying whether it was the SEM. Given the common practice of reporting SEM in animal studies and considering 
the context in which SE was used in these papers, we have inferred that the authors were referring to SEM. These 
seven studies had an average calculated SD of 2.1, aligning closely with the median SD of the CH4 yield observed in 
the database (Figure 2). 

The database, as made available on Zenodo (https://zenodo.org/records/10356506), represents the entirety of our 
assembled dataset, featuring 177 individual reports of CH4 yield and its variability from 150 studies. This complete 
database includes both the studies included in our analysis and any that were initially considered but subsequently 
excluded, ensuring full transparency and accessibility for future research. It is crucial to distinguish between the 
total number of reports within our database and the subset of reports that were subject to detailed analyses. 
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Specifically, 13 reports were identified as outliers based on their SD values (i.e., SD greater than 4.8). Therefore, 
although the database comprises 177 reports, the analyses presented herein are based on a subset of 164 reports. 

Database Analysis 
A statistical summary of key variables related to CH4 yield in dairy cows is given in Table 1. These variables include 
the number of observations (n), per experimental group, used in the statistical analysis, OM, CP, Ether Extract (EE), 
NDF, CH4 yield, and calculated SD of CH4 yield. 

Table 1. Descriptive statistics of variables related to CH4 yield in dairy cows 
Statistic n1 OM2 CP2 EE2,3 NDF2 CH4 SD5 

4 
count6 164 132 148 121 146 164 164 
Mean 13.6 92.5 16.3 3.8 36.0 19.9 2.3 
SD7 23.1 1.5 1.9 1.2 6.6 3.1 0.9 
min 3.0 85.1 9.1 1.4 22.9 12.3 0.5 

25% 4.0 91.9 15.2 2.8 31.8 18.1 1.6 
50% 8.0 92.9 16.2 3.6 34.9 19.9 2.3 
75% 12.0 93.3 17.4 4.7 38.0 21.6 2.9 
max 203.0 95.5 23.4 6.4 58.8 29.6 4.6 

1n = number of observations, per experimental group, used in the statistical analysis. 
2Chemical composition of the diets (% of DM). 
3EE = Ether Extract. 
4CH4 = CH4 yield (g/kg of DMI). 
5SD = calculated standard deviation of CH4 yield. 
6Number of individual reports of CH4 yield and its variability after elimination of outliers. Not all reports present data on all feed variables. 
7Standard deviation of the variables in the table. 

Figure 3 presents eight correlation heatmaps, each depicting two relationships: one between CH4 yield, number of 
observations used in the statistical analysis (n), and diet chemical composition, and the other between the SD of 
CH4 yield, number of observations, and diet composition. These correlations are shown for the entire database, 
broken down by measurement method and experimental design. Notably, the negative correlation between CH4 
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yield and EE, and the positive correlation between CH4 yield and NDF were stronger for the GF method and CD 
design. An inverse correlation between number of observations and CH4 yield was observed in most cases except 
for RMD. There was a medium positive relationship between number of observations and SD in RCBD. A medium 
inverse correlation between NDF and SD was observed in the GF method and RCBD design. 

Figure 4. Boxplots of calculated standard deviation (SD) of CH4 yield by experimental design types (A) and 
measurement methods (B) in dairy cows. LSD = Latin Square Design, RCBD = Randomized Complete Block Design, 
CD = Crossover Design, RMD = Repeated Measures Design, RC = Open-circuit respirometry chambers, GF = the 
GreenFeed system, SF6 = the sulphur hexafluoride tracer technique. 

The distribution of the CH4 yield SD across the different experimental designs and measurement methods are given 
in Figure 4. All designs showed a similar range of SD variability (Figure 4A). The SF6 method exhibited a narrower 
range of SD, indicating more consistent reports, while RC and GF show a broader range, suggesting to higher 
variability (Figure 4B). The two-way ANOVA results (i.e., Type III Sums of Squares) revealed that the measurement 
method (P= 0.04), but not the experimental design type (P = 0.59), had a significant effect on calculated SD. The 
interaction between design type and measurement method was not statistically significant (P = 0.96). In the 
multiple comparisons within designs and within methods, only significant difference on calculated SD was detected 
between RC and GF (P= 0.01) and between RC and SF6 (P = 0.02). 

Total Sample Size Calculations 
The term "total sample size" is used consistently throughout this document to denote the total number of animals 
required for an experiment. However, its application differs between within-subject designs (i.e., LSD) and 
between- subject designs (i.e., RCBD). In LSD, the total number of animals undergo all treatments in a crossover 
manner, while in RCBD, the total is divided among the treatments, with each animal receiving only one treatment. 
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Figure 5. Comparative distribution of required total sample sizes for within-subject (n = 77) and between-subject (n 
= 25) designs, with three or four treatments, to detect varied CH4 yield reduction levels (5, 10, 15, 20, 30, and 50%) 
in dairy cows. 

The distributions of the total sample sizes required in balanced LSD (3x3 and 4x4), and RCBD designs with three or 
four treatments (i.e., 102 reports) to detect six different levels of CH4 yield reduction, ranging from 5 to 50%, are 
given in Figure 5. This figure indicates that the mean total sample size is generally lower in within-subject studies 
compared to between-subject studies. Figure 5 serves as a general guideline for researchers planning three or 
four-treatment studies, without specifying the measurement method, based on the database developed in the 
current study. 

Table 2. Averages of the total sample size (i.e., total number of animals) required in within- and between-subject 
designs to detect six levels of CH4 yield reduction in dairy cows1 
CH4 yield (g/kg of DMI) reduction (%) 
Design type2 n3 5 10 15 20 30 50 
Open-circuit respirometry chambers 

LSD 37 45 14 9 8 7 7 
RCBD 14 324 85 41 26 15 10 
The GreenFeed system 
LSD 14 133 36 19 12 8 7 
RCBD 7 287 76 37 23 14 9 
The sulphur hexafluoride (SF6) tracer technique 
LSD 12 82 23 13 10 8 8 
RCBD 2 572 147 68 41 21 11 

1Calculations were performed using experiments with three or four treatments. In LSD, the number of animals per 
treatment is equal to the total number of animals required in the experiment (i.e., total sample size). 
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2LSD = Latin Square Design; RCBD = Randomized Complete Block Design. 
3n = number of experiments for each combination of method and design after outliers detection. 

The analysis takes a step further by breaking down these sample size requirements, categorized by measurement 
method and experimental design (Table 2). For each combination, Table 2 presents the mean total sample sizes 
required to detect specific levels of CH4 yield reduction. Sample size calculations from 16 reports (15.7%) were 
considered outliers and were not included in the table. For outlier detection, we calculated the first (Q1) and third 
quartiles (Q3) for each combination of method, design, and number of treatments. We then determined the 
Interquartile Range (IQR) by subtracting Q1 from Q3. The boundaries for outliers were set at 1.5 times the IQR 
below Q1 and above Q3, respectively. This threshold is widely accepted for outlier detection (Barbato et al., 2011). 
Data points falling above the upper bound were specifically considered outliers and subsequently removed. The 
decision to focus exclusively on upper bound outliers is driven by our objective to identify and exclude data points 
that might lead to an overestimation of the necessary sample size, ensuring a conservative approach to the 
efficient use of resources in future experiments. 

Delving into an example, the database indicates that for a 4x4 LSD using RC, the average CH4 yield is 20.8 with a SD 
of 2.2. From these values, we calculate an effect size of 0.4094 for an expected reduction of 10% in CH4 yield in 
three of the four treatments. This leads to a required total sample size of 16 animals to ensure the study is 
adequately powered (0.95) assuming an ρ correlation of 0.5. Similarly, for RCBD experiments featuring four 
treatments and RC, the average CH4 yield is 21.1, with a corresponding SD of 1.9. The resultant effect size of 
0.4809 necessitates a more substantial total sample size of 80 animals, equating to 20 animals per treatment. 

It is crucial to recognize that, when applying the information from Table 2, the number of reports varies 
considerably across different combinations of methods and designs. The results offer researchers a reference for 
the required sample size in both within- and between-subject experiments featuring three or four treatments, to 
achieve a statistical power of 0.95, assuming the expected CH4 yield reduction is the same in the experimental 
groups. For more specific calculations, researchers may use the web-based tool developed in this work. 

Sensitivity Analyses 
Figure 6 presents plots illustrating the relationship between sample sizes calculations using the average CH4 yield 
from all groups versus those derived using the highest group in each study. In all cases, the CCC values were high 
(all above 0.9), suggesting a strong agreement between the two methods across all expected CH4 yield reduction 
percentages. These results are critical for ensuring the robustness of the methodology used in the study. By 
demonstrating that the sample sizes calculated using all groups are in strong agreement with those using only the 
highest group. 123 reports, from studies that reported a single CH4 yield variability and with calculated SD lower 
than 4.8, were used in this analysis. 
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Figure 6. Comparative analysis of sample size calculation using the highest CH4 yield versus the mean of all groups 
in dairy cows CH4 experiments: Concordance Correlation Coefficient (CCC) evaluation across different expected CH4 

yield reduction percentages 

Figure 7. Impact of within-subject correlation of CH4 yield measures on the required total sample size for studies 
using 3x3 or 4x4 Latin Square design to measure enteric CH4 in dairy cows. This calculation assumes an expected 
CH4 yield reduction of 10%, employing one of three measurement methods: RC (Open-circuit respirometry 
chambers), GF (the GreenFeed system), or SF6 (the sulfur hexafluoride tracer technique). 

Figure 7 presents the influence of within-subject correlation of CH4 yield measures on the requisite sample size for 
detecting a 10% reduction in CH₄ yield using 3x3 or 4x4 LSD. This relationship is represented for the three distinct 
measurement methodologies: RC, GF, and SF6. The graph portrays a descending trend line for each method, 
indicating that as the within-subject correlation increases from 0.3 to 0.7, the necessary sample size decreases. 
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Higher within-subject correlations often mean less variability due to individual differences, enhancing the power to 
detect treatment effects (Guo, 2013). 77 reports, from 3x3 or 4x4 LSD studies and calculated SD lower than 4.8, 
were used in this analysis. 

Figure 8. Correlation of total sample size calculations in a 4x4 Latin Square design to measure enteric CH4 yield in 
dairy cows. The calculations were performed by comparing the average and the maximum SD of CH4 yield from 
seven studies, anticipating a 10% reduction in emissions. Concordance Correlation Coefficient (CCC). 

Figure 8 presents a scatter plot that compares sample size estimates derived from two distinct approaches: using 
the average SD versus using the maximum SD of CH4 yield. The plot is annotated with a CCC of 0.78, indicative of a 
substantial positive agreement between the two sample size estimation methods. This value suggests that while 
there is a good level of concordance, some differences exist which merit consideration. The analysis is, however, 
limited by the fact that only seven of the studies provide the CH4 yield variability for individual groups, thereby 
restricting the breadth and depth of this comparative evaluation. 

Web-Based Sample Size Calculation Tool 

Several statistical software packages are available for conducting power analysis, including G*Power (Faul et al., 
2007), PASS (NCSS, Kaysville, Utah, USA), the Java applets for power and sample size (Lenth, 2001), and specialized 
functions within R (R Core Team, 2012) and SAS (SAS Institute Inc., Cary, NC). However, for the development of a 
standalone web-based sample size calculation tool, Python proved to be the more appropriate tool because of its 
simplicity, vast libraries for statistical and mathematical operations, and excellent frameworks for building web 
applications. 

The web service (samplesizecalculator.ucdavis.edu) offers an interface (Figure 9) designed for researchers and 
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practitioners interested in conducting experiments that necessitate sample size calculations, even if CH4 yield is 
not the main variable of interest. At its core, the tool focuses on systematically determining the optimal sample 
size required for various experimental designs and CH4 emission measurement methods. This ensures that 
experiments have sufficient statistical power to detect meaningful effects. The algorithms embedded within the 
tool can adjust to accommodate different experimental designs, including LSD, CD, RCBD, and RMD. 

One of the standout features of the tool is its dynamic adaptation of input fields based on the user’s selection of 
experimental designs and methods. By selecting a specific combination, the tool retrieves corresponding CH4 yield 
and SD values from our database. Moreover, the interface assists users by issuing alerts when their selected 
parameters, like those exceeding or falling below allowed limits, require adjustments. These alerts aim to 
guarantee that the experimental setup adheres to the fundamental principles and criteria necessary for the chosen 
design type. For instance, in the case of LSD, users are prompted through alerts if the number of treatments does 
not match the number of periods, or if either is less than three, as both conditions are fundamental for the validity 
of this design type. 

For sample size determination, the web tool initiates asynchronous requests to a server endpoint, processing user-
provided parameters, including CH4 yield, expected CH4 yield reduction, SD of CH4 yield, alpha level, power, 
correlation, number of treatments, and periods. Following the computation, the web tool presents a Cohen’s value 
and offers comprehensive recommendations regarding the required sample size to ensure a balanced 
experimental design. To maintain a streamlined interface, any modifications to input or selection parameters 
clears previously calculated outputs. There are several ways in which the interface allows triggering of various 
computations and resets. 

The underlying database of our tool serves two primary purposes: it acts as a repository of reference values for 
median CH4 yields and associated variability, providing a robust benchmark, and also functions as a guideline for 
users either unfamiliar with these parameters or seeking to validate their sample size assumptions. Contrary to any 
notion of rigidly imposed "permitted ranges" our design philosophy emphasizes flexibility and user empowerment, 
allowing researchers to input their own values for CH4 yield and SD. For instance, should a user wish to explore the 
effects of a diet with a very low CH4 yield, such as 5 g/kg of DMI, this input is entirely permissible within the tool's 
framework. Similarly, if a user's methodology or prior experience suggests an exceptionally low variability in CH4 

yield measurements such values can also be directly entered into the tool. These user-defined inputs are not 
overridden or constrained by the database averages; instead, they are welcomed as part of the tool's flexible input 
mechanism. 
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Discussion 
The main objective of this study was to support the planning of future experiments aimed at assessing the 
reducing of CH4 emissions in dairy cows by providing a systematic framework for sample size calculation. Through a 
comprehensive literature review, extraction of key data, and subsequent database analysis, we have not only 
created a resourceful database but also demonstrated the utility of this resource in calculating sample sizes for 
various experimental designs and measurement methods of CH4 emissions. 

To develop the framework, we assume that sample size for future experiments on CH4 emissions can be calculated 
by using the mean and variability on CH4 yield, and the experimental design configuration (i.e., number of 
treatments and periods) from previous studies and by using Cohen's d or Cohen's f as the effect size metric in 
power analysis. To apply this approach in our framework, the first challenge was the lack of SD reports, as only 
four studies present the variability of CH4 yield as SD in our database. This was a significant obstacle for calculating 
sample size since the SD is crucial for determining the effect size using the Cohen's approach. However, we 
overcome this challenge by using the mathematical relationship between SEM and SD (Barde and Barde, 2012). 
In statistical analysis, the SD measures the spread of data points around the mean, while the SEM indicates the 
precision of the sample mean as an estimate of the population mean. SEM decreases with increasing sample size. 

The SEM is often smaller than the SD, which may lead some readers or researchers to erroneously believe that the 
variability in the data is lower than it actually is. This distinction is critical in power analysis, where SD is the 
appropriate measure of variability (Altman and Bland, 2005; Nagele, 2003). 
In alignment with best practices in statistical analysis, particularly for comparative group studies, it is 
recommended to calculate and report the variability for each group separately (Rowe, 2023). We found that only 
seven studies in our database reported the variability on this manner. Furthermore, in 16% of all studies, authors 
indicate that the SEM values they report are the maximum SEM, which indicates that SEM was computed for each 
group separately, and the highest SEM was selected for reporting. In contrast, the majority of studies reported a 
singular SEM value without clarification on its calculation. This leads us to posit that either (a) the SEM was 
calculated using combined data from all groups, or (b) the SEM was determined for each group independently and 
the values were sufficiently similar to report a single, averaged SEM for simplicity. 

When translating SEM to SD, accurately identifying the method of SEM calculation is pivotal, since the resulting SD 
can differ substantially, becoming notably larger in studies with more animals. In our framework, we assumed that 
the reported SEM was calculated by adopting the approach of averaging group-specific SEM. This is based on the 
presumption that researchers aim to offer a balanced representation of the inherent variability within each group 
while maintaining simplicity in the results presentation. This approach aligns with established guidelines for 
scientific paper publication. For example, JDS (2023) specifies that SE should accompany any statistical value, such 
as a mean or the difference between two means, to facilitate future meta-analyses and provide readers with a 
measure of the experimental technique's efficiency. These guidelines further recommend that SE for individual 
means need only be presented separately if the means are based on differing numbers of observations or to 
highlight error variance heterogeneity. 

Using the resulting SD and average CH4 yield from each study, it was possible to calculate the samples sizes of six 
expected CH4 yield reductions for different combinations of CH4 measurement methods and experimental designs 
in dairy cows. In these calculations, we employed Cohen's f; however, it is noteworthy that for ANOVA, metrices 
such as Partial Eta-Squared (η²p) are frequently preferred. η²p provides a nuanced view of the variance explained 
by specific factors within an ANOVA framework, thus elucidating the proportion of variability accounted for by 
distinct factors, like treatments, in the presence of covariates (Cohen, 1973). However, similar to Omega squared 
(ω²; Kirk, 2005), the calculation of η²p necessitates comprehensive statistical details, including sums of squares 
from an ANOVA output, which extends beyond simple means and SDs. Despite the depth η²p and ω² offer, our 
selection of Cohen's f as the effect size measure was guided by the information available in our database. This 
choice, while practical, required adjustment (Equation 4) to account for the complexity inherent in within-subject 
designs to the extent that η²p or ω² might achieve. We opted for Cohen's f for its practical compatibility with the 
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available data in our database, despite acknowledging the depth of analysis η²p or ω² might provide a more 
detailed analysis. These alternatives require more comprehensive statistical information than we had at our 
disposal. 

In experiments examining effectiveness using within-subject designs, the power analysis of a repeated-measures 
ANOVA is influenced by several elements. These include the sample size, the number of repeated measurements 
(k), the average correlation within subjects across these observations (ρ), and the degree to which the sphericity 
assumption is satisfied (Hertzog, 2008). The terms k and ρ in Equation 4 are important because they account the 
interdependence of measurements taken from the same animal. The multiplication by k in the numerator serves 
to amplify the effect size in direct proportion to the number of repeated measures, underpinning the principle that 
more repeated measurements typically reduce within-subject variability and increase statistical power (Vickers, 
2003). However, this increase is tempered by the term (1−ρ) in the denominator, which compensates for the 
correlation between within-subject measurements. This is logical because with strongly correlated repeated 
measures, each additional measurement contributes less novel information. 

In between-subject designs, the choice of the sample size calculation method hinges only on the number of groups 
being compared. For two-group comparisons, "t tests: Means: Difference between two independent means" is 
appropriate. For more than two groups, "ANOVA: Fixed effects, omnibus, one-way" is the method of choice. In the 
context of an ANOVA, an omnibus test checks if there are any differences among the group means, without 
specifying where those differences are (DeJarnette and Mamidala, 2023). 

The correlation heatmaps (Figure 3) present several intriguing relationships between variables. The observed 
negative correlation between CH4 yield and the number of observations (n) used in the statistical analysis, except 
for RMD, may be that larger sample sizes offer a wider representation of the population, potentially incorporating 
individuals or conditions that exhibit lower CH4 emissions, thereby reducing the average CH4 yield observed in 
these studies. Additionally, this correlation may not signify a causal link but could instead indicate publication 
biases; larger studies demonstrating significant CH4 reduction are more likely to be published. Interestingly, a 
significant positive correlation between OM and CH4 yield is observed in RMD and SF6, aligning with the known 
dynamics of the rumen fermentation process. However, this relationship appears to be slightly inverse for the 
others designs, a phenomenon that is challenging to reconcile with existing theories, leaving the underpinning 
reasons for these observations unexplained within the context of the present study. While a positive correlation 
between OM and CH4 yield was observed in SF6 and RMD, aligning with the anticipated dynamics of the rumen 
fermentation process, an inverse relationship was noted in the other designs and methods. A plausible explanation 
for this negative association could be the specific characteristics of diets. Feeds associated with lower CH4 yields, 
such as many concentrate ingredients and corn silage, typically have lower ash contents compared to those 
associated with higher CH4 yields, like grass silage (Gastelen et al., 2019). 

Differences across measurement methods and designs may be due to various factors, including the sensitivity of 
the measurement methods (Hristov et al., 2018), the efficiency of the designs, and the inherent variability in the 
data. The results on sample size calculation indicate that the choice of CH4 measurement method and 
experimental design can significantly influence the required sample size (Table 2). Regardless of the type of 
method, LSD experiments require less animals than RCBD, because the number of animals per treatment is equal 
to the total number of animals required in the experiment (i.e., total sample size) in LSD. 

Table 2 presents an unexpected outcome within the RCBD design when utilizing RC and the GF system for studies 
with three and four treatments. The conventional expectation, based on the higher accuracy and reduced 
calculated SD of RC (Figure 4B), would be a smaller required number of animals to detect specific levels of CH4 

yield reduction. While this holds true in the context of LSD, it does not in RCBD. Our analysis supports the fact that 
RC has a smaller calculated SD than GF, with a P-value of 0.96 indicating no interaction between design type and 
measurement method on calculated SD. However, across all levels of CH4 yield reduction presented in Table 2, GF 
exhibited larger average effect sizes than RC, with an overall average effect size of 1.46 for GF compared to 1.14 
for RC. This indicates that for a given percentage reduction, the effect size was higher for GF, which account for the 
reduced number of animals required to detect the same level of reduction with GF, despite the larger calculated 
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SD. Similarly, Table 2 provides a contrast within the LSD design, where the SF6 technique requires fewer animals 
than GF as the latter has an overall smaller average effect size of 0.647 compared to 0.791 for SF6. These findings 
may appear contradictory at first glance but highlight the complexity of determining sample size, where effect size 
and SD both play pivotal roles. The larger effect sizes associated with GF, in RCBD, and SF6, in LSD, may provide 
sufficient power to detect changes with fewer animals, counterbalancing the effects of a larger calculated SD. 

All these results have important implications for experimental planning, as it suggests that the choice of 
measurement method and design can significantly impact the resources required for an experiment. Furthermore, 
the results highlight the importance of considering the variability within each group when estimating the sample 
size, underscoring the need for extensive preliminary research to estimate this variability as accurately as possible. 
By taking these factors into account, researchers can design more efficient and effective experiments, minimizing 
both Type II errors and unnecessary resource usage. 

CHALLENGES AND ACCOMPLISHMENTS 

1. Describe any challenges that occurred during the project term and the corrective actions and/or changes to the 
project as a result. 

No challenges except that we started later than anticipated as recruiting a post-doc took longer than expected. 

2. Describe any positive developments that have occurred outside of the project’s original intent that you experienced 
during the reporting period and any project changes as a result. 

We are now in discussion with Global Methane Hub to extend what we have done in this project to beef as well. 
We have been asked to give talks and trainings on the tool as it is badly needed in the field. 

FUTURE EXPECTATIONS 

Describe activities regarding practice implementation and data collection you plan to continue after the project 
term ends. 

The paper is now accepted and available here: Systematic review for optimizing sample size in dairy cow 
methane emission studies in temperate regions: A comprehensive methodological approach - Journal of 
Dairy Science 

PROJECT SITE PICTURES 

This is computer-based study so no pictures to attach. 
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