

University of California

Nitrogen Management Training

for Certified Crop Advisers

MODULE 7 ~ PART 1

Nitrogen management in annual crops

Sarah Light
UC Cooperative Extension
UC ANR

Goals of this module

- Part 1:
 - Provide considerations for optimizing N management in annual rotations
 - Understand how to evaluate crop N needs
- Part 2:
 - Understand in-season tools that can be used to improve NUE in annual systems

The Goal: Improve Nitrogen Use Efficiency (NUE)

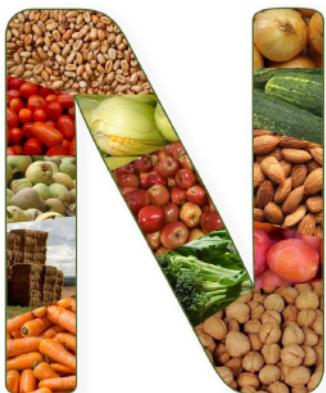
The Goal: Improve Nitrogen Use Efficiency (NUE)

- Be realistic in estimating crop N requirements
- Time your applications according to crop demand
 - Apply to meet crop N uptake
 - Use in season testing when applicable
- Account for all N sources
 - residual soil $\text{NO}_3\text{-N}$
 - Irrigation water $\text{NO}_3\text{-N}$
- Reduce loss by controlling irrigation efficiently

The Goal: Improve Nitrogen Use Efficiency (NUE) by reducing Applied-Removed

- Be realistic in estimating crop N requirements
- Time your applications according to crop demand
 - Apply to meet crop N uptake
 - Use in season testing when applicable
- Account for all N sources
 - residual soil $\text{NO}_3\text{-N}$
 - Irrigation water $\text{NO}_3\text{-N}$
- Reduce loss by controlling irrigation efficiently

Determining Annual Crop Nitrogen Needs:


- Start low:
 - Use lower side of recommended rates as a starting point
 - You can add more but not subtract
- Consider N uptake requirement based on yield potential
- Adjust for field-specific factors
- Monitor the field during the season
 - soil or leaf sampling

Estimating Crop N Requirements:

N removed

Table 2: Overview of N concentrations in harvested plant parts of vegetables.

Nitrogen concentrations in harvested plant parts - A literature overview	Commodity	N in harvested plant parts	# of observations		CV (%)	Page
			California	Total		
	Asparagus	5.85 lbs N/ton of fresh spears	2	19	14.0	68
	Beans, green (snap beans)	5.78 lbs/ton of fresh weight	1	122	25.7	70
	Broccoli	11.2 lbs N/ton of fresh weight	15	46	20.4	72
	Carrots	3.29 lbs/ton of fresh weight	1	167	22.4	74
	Corn, sweet	7.17 lbs/ton of fresh ears	0	50	13.1	76
	Cucumbers	2.16 lbs/ton of fresh weight	1	10	17.4	78
	Garlic	15.1 lbs/ton of fresh weight	1	12	19.5	80
	Lettuce, Iceberg	2.63 lbs/ton of fresh weight	45	68	16.7	82
	Lettuce, Romaine	3.62 lbs/ton of fresh weight	14	26	13.7	84
	Melons, Cantaloupe	4.87 lbs/ton of melons	1	31	15.5	86
	Melons, Honeydew	2.95 lbs/ton of melons	1	12	22.1	88
	Melons, Watermelons	1.39 lbs/ton of melons	1	6	23.9	90
	Onions	3.94 lbs/ton of fresh weight	13	45	19.7	92
	Pepper, Bell	3.31 lbs/ton of fresh weight	6	40	7.9	94
	Potatoes	6.24 lbs/ton of fresh weight	5	64	13.6	96
	Pumpkin	7.36 lbs/ton of fresh weight	1	13	10.1	98
	Squash	3.67 lbs/ton of fresh weight	11	74	22.4	100
	Sweet potatoes	4.74 lbs/ton of fresh weight	11	23	16.8	102
	Tomatoes, fresh market	2.61 lbs/ton of fresh weight	1	34	16.5	104
	Tomatoes, processing	2.73 lbs/ton of fresh weight	24	24	11.1	106

Daniel Geisseler
2016

Estimating Crop N Requirements: N partitioning

A collaboration between

[Guidelines Home](#)

Crops

Overview

Almonds

Avocado

Barley

Broccoli

Carrot

Cauliflower

Celery

Citrus

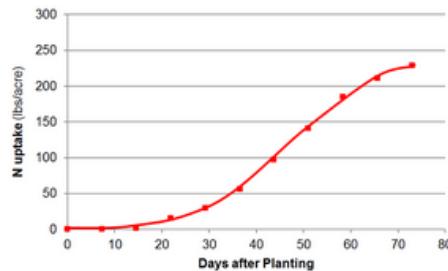
Corn for Grain

Corn for Silage

Cotton

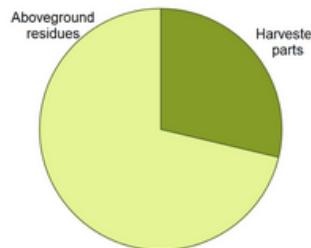
Grapevines

Lettuce


Melons

Olives

Onion


Cauliflower Uptake and Partitioning

Seasonal N Uptake

The N uptake curve is based on data from eight summer-planted commercial cauliflower fields in the Salinas Valley [3].

Nitrogen Partitioning

Less than one third of the total aboveground N is removed with the harvested parts [1,2].

Nitrogen Removed at Harvest

Cauliflower yield and N removed at harvest from different studies.

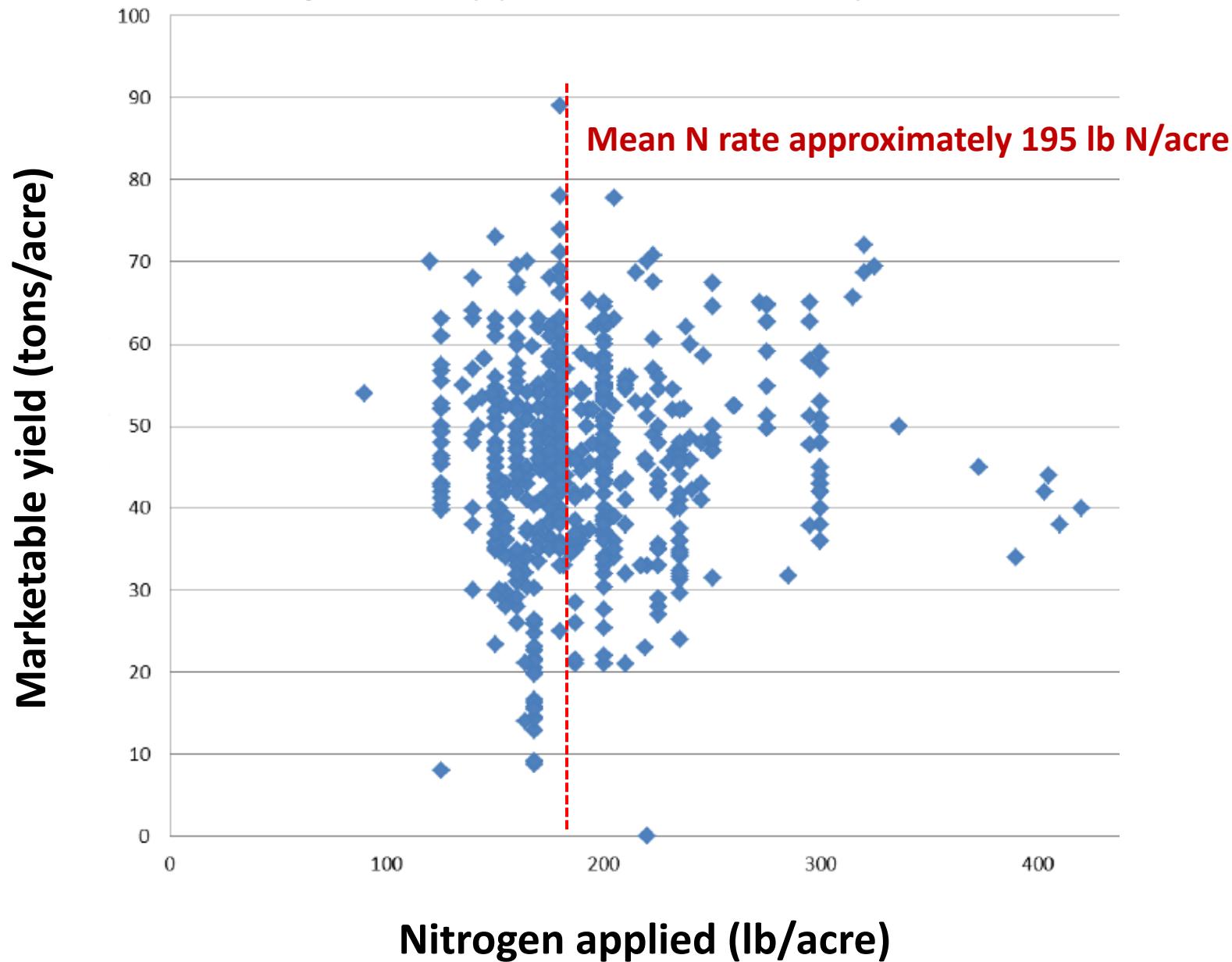
Study location	Years	Marketable yield (lbs/acre)(cwt/acre)	N application rate (lbs/acre)	Aboveground N (lbs/acre)	Harvested N (lbs/acre)
Central Coast	2012-13	17,577 (160 cwt/acre)	306	277	61
Germany	1996-97	---	270	264	9

Estimating Crop N Requirements: Yield Potential

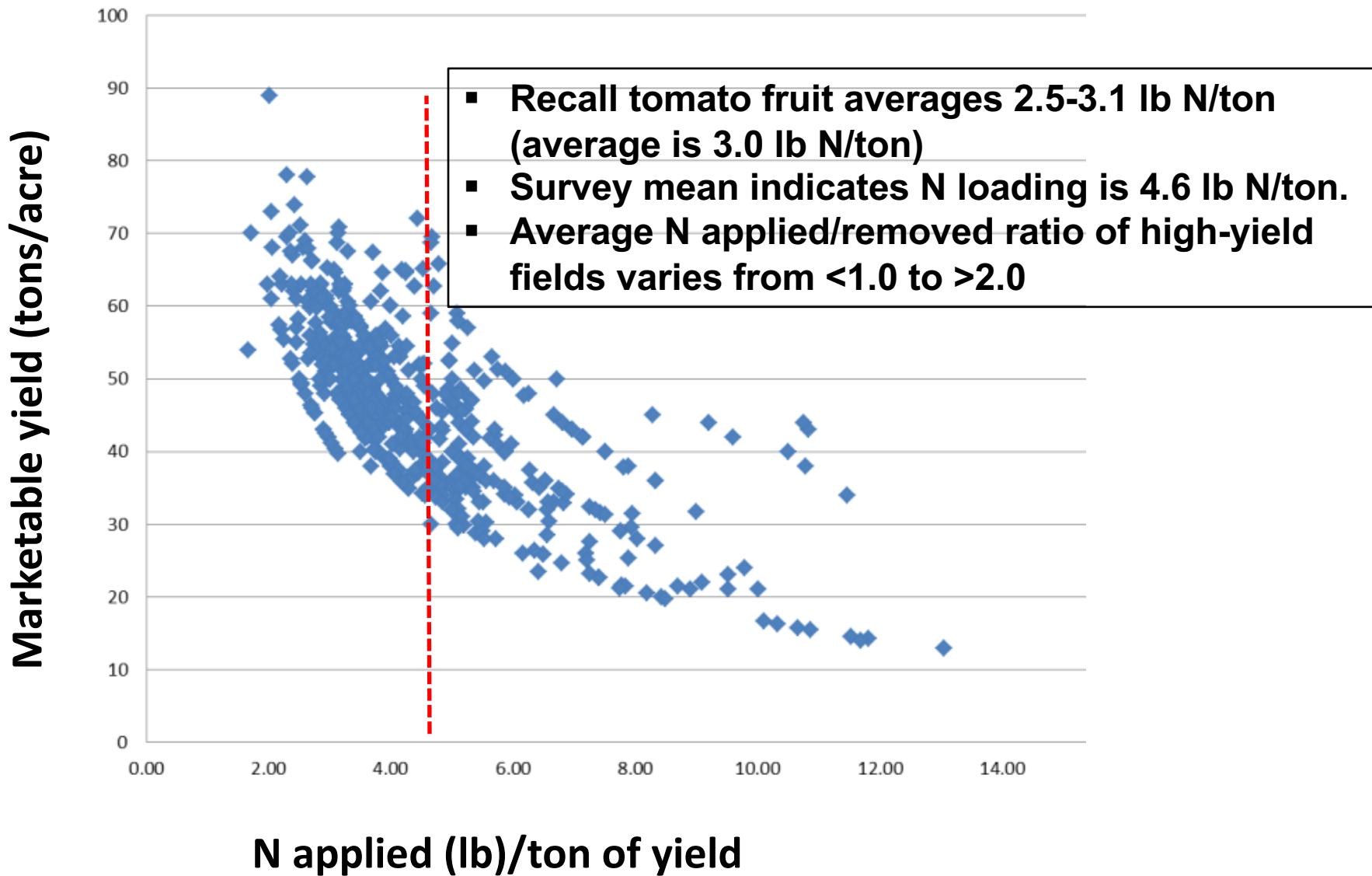
- Tomato Example:
 - fruit averages about 2.5-3.1 lb N/ton (average 3.0 lb N/ton)
- Fruit typically represents about 2/3 of total crop N uptake

	<i>Approximate lb /acre</i>		
Yield goal	N uptake <i>requirement*</i>	N in harvested fruit	N in residue
50 ton	225	150	75
60 ton	270	180	90
70 ton	315	210	105

N uptake requirement can vary by about 90 lb N/A for a difference of 20 tons of yield.


Estimating Crop N Requirements: Yield Potential

- Tomato Example:
 - fruit averages about 2.5-3.1 lb N/ton (average 3.0 lb N/ton)
- Fruit typically represents about 2/3 of total crop N uptake


	Approximate lb /acre		
Yield goal	N uptake requirement*	N in harvested fruit	N in residue
50 ton	225	150	75
60 ton	270	180	90
70 ton	315	210	105

** Based on commercial field monitoring, some luxury consumption included
N uptake requirement does not mean N fertilizer requirement!*

2013 Survey of processing tomato growers indicates that there is a wide range in N applied and tomato yields/A:

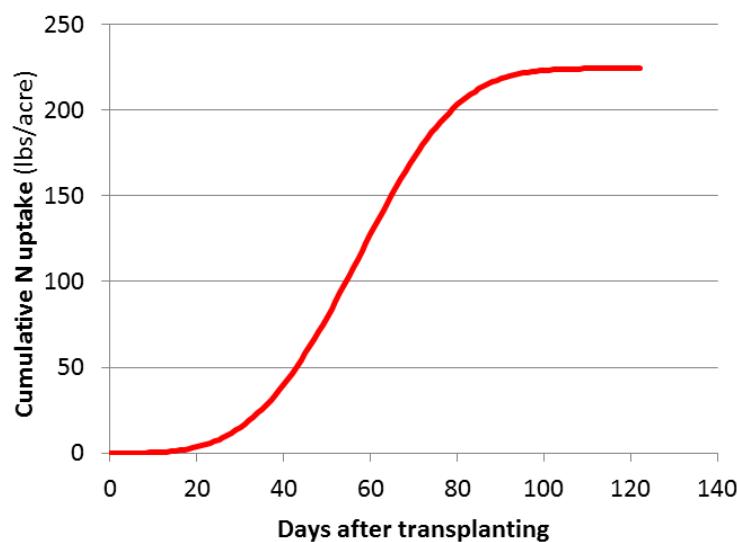
2013 Survey of processing tomato growers:

Individual fields can differ widely in nitrogen uptake even when tomato yields are similar indicating that plants are taking up more N than needed

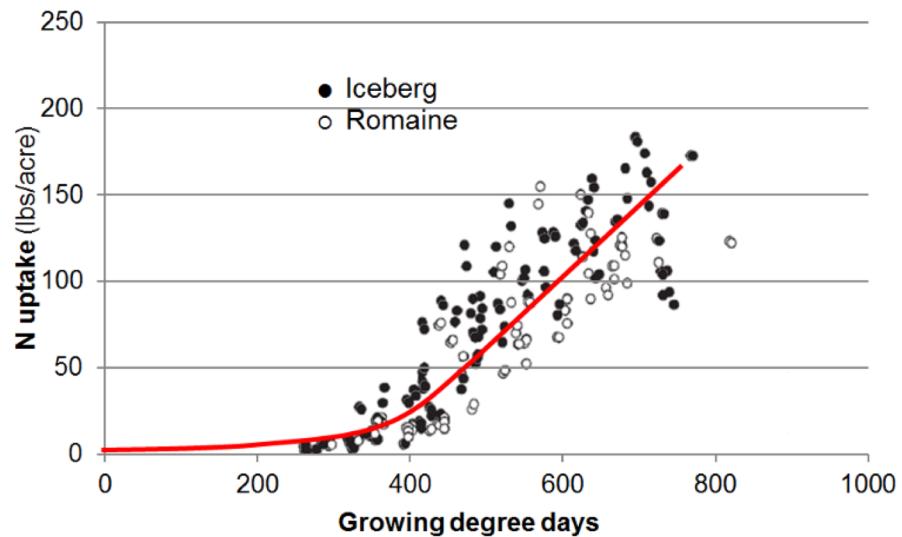
	Fruit yield (tons/acre)	Crop N uptake (lb/acre)
Field 1	53	244
Field 2	56	366
Field 3	58	289
Field 4	58	293

‘Luxury consumption’

- nutrient uptake that neither increases yield nor improves product quality
- often 10-20% of the total crop N uptake, occasionally more


Individual fields can differ widely in nitrogen uptake even when tomato yields are similar indicating that plants are taking up more N than needed

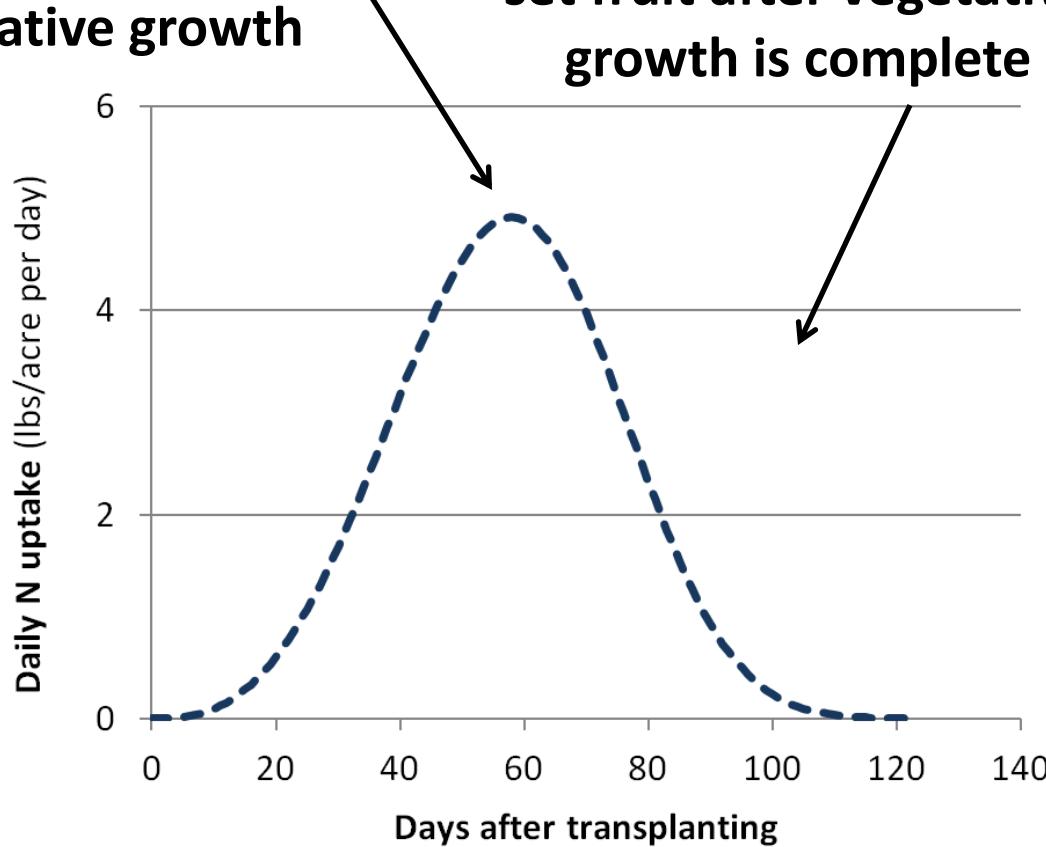
	Fruit yield (tons/acre)	Crop N uptake (lb/acre)
Field 1	53	244
Field 2	56	366
Field 3	58	289
Field 4	58	293


Tomato plant partitioning: ~2/3 is in harvestable plants

N uptake starts slowly in annual crops and leading to a steep increase during peak vegetative growth

Processing tomatoes

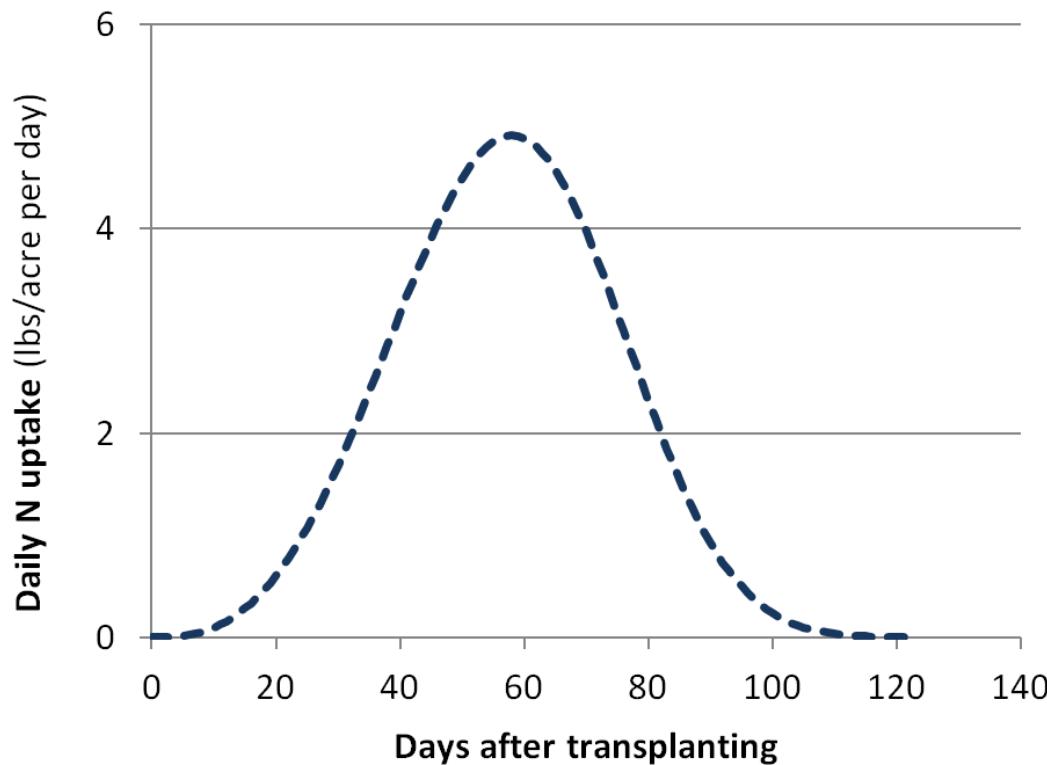
Lettuce


Geisseler et al., under review; Bottoms et al., 2012

Vegetative crops typically harvested

Fruiting crops typically harvested

near peak N uptake rate because harvested portion is maximized after peak vegetative growth


after peak N uptake rate because plants need time to set fruit after vegetative growth is complete

Crops are limited by their ability to take up N per day.

Typical peak N uptake rates for vegetable crops:

- 3-4 lb / acre / day in cool conditions
- 4-6 lb / acre / day in warm conditions

University of California

Nitrogen Management Training

for Certified Crop Advisers

Course materials available at:

ciwr.ucanr.edu/NitrogenManagement

Contributing partners:

University of California
Agriculture and Natural Resources
web: ucanr.edu
Twitter: @ucanr

California Institute for Water Resources
University of California
Agriculture and Natural Resources
web: ciwr.ucanr.edu
Twitter: @ucanrwater

California Department of Food & Agriculture (CDFA)
Fertilizer Research and Education Program
web: www.cdfa.ca.gov
Twitter: @CDFAnews

California Association of Pest Control Advisers
(CAPCA)
web: capca.com