Acknowledgments

Can Amending Soils with Biochar Improve Fertilizer Use Efficiency?

Dani L. Gelardi1, William R. Horwath1, Daniel Geisseler1, Anthony T. O’Geen1, Kate M. Scow1, Milt McGiffen2, Michelle Leinfelder-Miles3, Sanjai J. Parikh3,

1University of California-Davis, Department of Land, Air, and Water Resources, 2University of California-Riverside, Department of Botany and Plant Science 3Cooperative Extension San Joaquin County

Background

What is biochar?

Biochar is a carbonaceous material created from the thermochemical conversion of biomass in an oxygen-limited environment.

Due to the high surface area, low bulk density, and aromatic molecular structure of biochar, it has many potential applications as an agricultural soil amendment.

What can biochar do?

Studies show mixed results on the ability of biochar to:

• Increase soil fertility
• Decrease nutrient leaching
• Increase soil carbon stocks
• Increase water holding capacity
• Close waste loops
• Generate renewable energy

Gaps in knowledge?

Recent meta-analyses show that biochar literature is dominated by laboratory studies rather than those at field scale. Additionally, studies are short-term, have small experimental plots, and do not use biochar that is commercially available.

Project Phase I: Produce and Characterize Biochar

Objectives:

1) Produce/procure biochars from CA feedstocks, with an emphasis on agricultural or forestry waste products
2) Compare biochars produced at varying temperatures
3) Address limitations in current biochar literature by using biochars produced at commercial scale
4) Analyze physical and chemical properties of biochar, for use in project phases II and III

Results to Date:

<table>
<thead>
<tr>
<th>ID</th>
<th>Temp (°C)</th>
<th>Feedstock</th>
<th>Pyrolysis</th>
<th>pH</th>
<th>EC (ms/cm)</th>
<th>Moisture (%)</th>
<th>Ash (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raw</td>
<td>Almond shell</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>550-650</td>
<td>Coconut shell</td>
<td>Slow</td>
<td>7.8</td>
<td>278.0*</td>
<td>4.7</td>
<td>5.3</td>
</tr>
<tr>
<td>3</td>
<td>550-650</td>
<td>Pine</td>
<td>Slow</td>
<td>8.0</td>
<td>124.1*</td>
<td>4.1</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>75% Almond shell</td>
<td>400-500</td>
<td>Softwood Hydro</td>
<td>9.3</td>
<td>3.2</td>
<td>4.0</td>
<td>19.6</td>
</tr>
<tr>
<td>5</td>
<td>400-500</td>
<td>Softwood</td>
<td>Hydro</td>
<td>7.9</td>
<td>2.6</td>
<td>4.1</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>400-500</td>
<td>Softwood</td>
<td>Mixed</td>
<td>7.0</td>
<td>2.7</td>
<td>5.5</td>
<td>31.3</td>
</tr>
<tr>
<td>7</td>
<td>700-800</td>
<td>Almond shell</td>
<td>Gasification</td>
<td>10.1</td>
<td>27.2</td>
<td>11.5</td>
<td>55.4</td>
</tr>
</tbody>
</table>

Project Phase II: Laboratory and Greenhouse Trials

Objectives:

To evaluate if, and to what degree:

1) there is chemical sorption of NO3⁻ and NH4⁺ to the biochars
2) biochar provides a physical mechanism to slow the movement of NO3⁻ and NH4⁺ through the soil profile,
3) biochar increases porosity and pore connectivity in soils, and,
4) interactions between biochar and NO3⁻ and NH4⁺ can lead to increased plant N uptake and decreased N leaching.

Experimental Approach:

1) Quantify NO3⁻ and NH4⁺ sorption through biochar and substrate specific isotherms
2) Filter NO3⁻ and NH4⁺ solutions through soil columns with and without biochar. Analyze the leachate for quantity of NO3⁻ and NH4⁺ and measure the rate at which it’s released
3) Quantify porosity, mean pore size, and pore connectivity of soils with and without biochar using micro-X-ray computed tomography (micro-CT).
4) Conduct growth chamber trials in which lettuce is grown in soils with and without biochar, and leaching is induced every two weeks. Analyze leachate for NO3⁻ and NH4⁺. At the conclusion of each trial, analyze final plant biomass and soil to understand the fate and transport of NO3⁻ and NH4⁺ in soils with and without biochar.

Results to Date:

• Preliminary sorption trials suggest no chemical binding between NO3⁻ and biochars
• Preliminary column studies suggest there may be a physical delay in the movement of NO3⁻ through the soil profile in the presence of biochar

Project Phase III: 3-yr field trials in Davis and Fresno

Objectives:

1) Inform the use and regulation of biochar in CA by providing baseline data relevant to CA soils and grower conditions
2) To address gaps in literature by providing long-term, field-scale data on cropping systems amended with commercially available biochar

Experimental Approach:

• Three year tomato-grain rotation
• One acre plots in 2 locations with 2 soil types (representing over 500,000 acres of CA soil):
 • Kearney ARE Center (Hanford Sandy Loam)
 • UC Davis’ Campbell Tract (Yolo Silt Loam)
• Seven biochars and two controls (no biochar and unpyrolyzed almond shell) in triplicate, at three application rates
• Biochars banded above the drip tape, to maximize contact with irrigation and fertilizer and to reduce application costs for growers

Results to Date:

• Two NPK fertilizer rates (high and low end of recommended range for each crop)
• Treatments analyzed for:
 • Crop yield and plant nutrition
 • Soil properties (pH, EC, macro and micro nutrients, soil-water measurements)
 • Spatial distribution of nitrogen and other nutrients
 • Spatial migration of biochar over time

Project Phase IV: Life Cycle Analysis and Outreach

Objectives:

• Inform the use and regulation of biochar in CA by providing baseline data relevant to CA soils and grower conditions
• To address gaps in literature by providing long-term, field-scale data on cropping systems amended with commercially available biochar

Results from earlier phases will be assessed alongside yield and cost data to conduct a life cycle analysis that considers the economic and environmental feasibility of widespread biochar adoption in California. Results will be shared through the California Biochar Initiative (CBI), UCCE, at conferences, and in publications.

Acknowledgments

• The CDFA Fertilizer Research and Education Program (FREP) grant program
• The Almond Board of California
• Biochar producers Coal Planet, Karr Group, Premier Mushrooms Farm, Community Power Corporation, Biochar Unlimited, and Pacific Biochar
• The staff at UC Davis Campbell Tract and Kearney ARE Center
• The Parikh & Geisseler Lab groups at UC Davis, Dept. of LAWR

Contact: dlgelardi@ucdavis.edu