Can Amending Soils with Biochar Improve Fertilizer Use Efficiency?

Dani L. Gelardi¹, William R. Horwath¹, Daniel Geisseler¹, Anthony T. O'Geen¹, Kate M. Scow¹, Milt McGiffen², Michelle Leinfelder-Miles^{3,} Sanjai J. Parikh¹,

> ¹University of California-Davis, Department of Land, Air, and Water Resources, ²University of California-Riverside, Department of Botany and Plant Science ³Cooperative Extension San Joaquin County

RSITY OF CALIFORNIA

Background

What is biochar?

Biochar is a carbonaceous material

created from the thermochemical conversion of

biomass in an oxygen-limited environment.

Project Overview

Objective

The primary objective is to provide baseline data specific to California regarding the suitability of biochar to address some of the most pressing agricultural issues. These issues include nitrate leaching, low nutrient use efficiency, vulnerability of soils to drought conditions, depleted soil carbon

Due to the high surface area, low bulk density, and aromatic molecular structure of biochar, it has many potential applications as an agricultural soil amendment.

What can biochar do?

Studies show mixed results on the ability of biochar to: Recent meta-analyses show that **biochar**

- Increase soil fertility
- Decrease nutrient leaching
- Increase soil carbon stocks
- Increase water holding capacity
- Close waste loops
- Generate renewable energy

literature is dominated by laboratory studies rather than those at field scale. Additionally, studies are short-term, have small experimental plots, and do not use biochar that is commercially available.

Gaps in knowledge?

stocks, and the accumulation of agricultural waste products.

Timeline

Project Phase	Year							
	1		2		3			
Phase I Produce and characterize biochar	~	~						
Phase II Laboratory and greenhouse trials		1	~		~	 Image: A start of the start of		
Phase III Field trials in Davis and Fresno		1	~		~	 Image: A start of the start of		
Phase IV Life cycle analysis of biochar use in CA.								

Project Phase I: Produce and Characterize Biochar

Objectives:

1) Produce/procure biochars from CA

Project Phase II: Laboratory and Greenhouse Trials

Objectives:

To evaluate if, and to what degree:

1) there is chemical sorption of NO_3^- and NH_4^+ to the biochars 2) biochar provides a physical mechanism to slow the movement of NO_3^- and NH_4^+ through the soil profile, 3) biochar increases porosity and pore connectivity in soils, and, 4) interactions between biochar and NO_3^- and NH_4^+ can lead to increased plant N

Project Phase III: 3-yr field trials in Davis and Fresno

Objectives:

1) Inform the use and regulation of biochar in CA by providing baseline data relevant to CA soils and grower conditions

feedstocks, with an emphasis on agricultural or forestry waste products 2) Compare biochars produced at varying

temperatures

3) Address limitations in current biochar

literature by using biochars produced at commercial scale

4) Analyze physical and chemical properties of biochar, for use in project phases II and III

Results to Date:

ID	Temp (°C)	Feedstock	Pyrolysis	Pyrolysis pH		Moisture (%)	Ash (%)			
1	Raw	Almond shell	-	-	-	_	-			
2	550-650	Coconut shell	Slow	7.8	278.0*	4.7	5.3			
3	550-650	Pine	Slow	8.0	124.1*	4.1	4.5			
	-	75% Almond shell								
4	400-500	25% Softwood	Hydro	9.3	3.2	4.0	19.0			
5	400-500	Softwood	Hydro	7.9	2.6	4.1	4.5			
		Softwood								
6	400-500	(inoculated)	Hydro	10.4	2.1	4.1	9.2			
7	800	Softwood	Mixed	10.3	2.7	5.5	31.5			
8	700-800	Almond shell	Gasification	10.1	27.2	11.5	55.4			
							*µs/cm			
Project Phase IV: Life Cycle Analysis and Outreach										
a life o wides	cycle analysis pread bioch a	r phases will be as that considers the ar adoption in Cali nitiative (CBI), UCC	e economic a fornia. Result	nd en ts will	vironment be shared	al feasibilit	y of			

Experimental Approach:

1) Quantify NO_3^- and NH_4^+ sorption through biochar and substrate specific isotherms

uptake and decreased N leaching.

2) Filter NO_3^- and NH_4^+ solutions through soil columns with and without biochar. Analyze the leachate for quantity of NO₃⁻ and NH₄⁺ and measure the rate at which it's released

3) Quantify porosity, mean pore size, and pore connectivity of soils with and without biochar using micro-X-ray computed tomography (micro-CT).

4) Conduct growth chamber trials in which lettuce is grown in soils with and without biochar, and leaching is induced every two weeks. Analyze leachate for NO₃⁻ and NH_{a}^{+} . At the conclusion of each trial, analyze final plant biomass and soil to understand the fate and transport of NO_3^- and NH_4^+ in soils with and without biochar.

2) To address gaps in literature by providing long-term, field-scale data on cropping systems amended with commercially available biochar

Experimental Approach:

- Three year tomato-grain rotation
- One acre plots in 2 locations with 2 soil types (representing over 500,000 acres of CA soil): Kearney ARE Center (Hanford Sandy Loam) • UC Davis' Campbell Tract (Yolo Silt Loam)

• Seven biochars and two controls (no biochar

and unpyrolyzed almond shell) in triplicate, at three application rates

Biochars banded above the drip tape, to maximize contact with irrigation and fertilizer and to reduce application costs for growers

- Two NPK fertilizer rates (high and low end of recommended range for each crop)
- Treatments analyzed for:
 - Crop yield and plant nutrition

70

60

50

40

30

20

10

Results to Date:

 Preliminary sorption trials suggest no chemical binding between $NO_3^$ and biochars

 Preliminary column studies suggest there may be a physical delay in the movement of NO₃⁻ through the soil profile in the presence of biochar

Circled region shows where NO_3^{-1} is released sooner from soil columns not amended with biochar

• Soil properties (pH, EC, macro and micro nutrients, soil-water measurements)

• Spatial distribution of nitrogen

and other nutrients

• Spatial migration of biochar over time

Acknowledgments

- The CDFA Fertilizer Research and Education Program (FREP) grant program
- The Almond Board of California
- Biochar producers Cool Planet, Karr Group, Premier Mushrooms Farm, Community Power Corporation, Biochar Unlimited, and Pacific Biochar
- The staff at UC Davis Campbell Tract and Kearney ARE Center
- The Parikh & Geisseler Lab groups at UC Davis, Dept. of LAWR

Contact: dlgelardi@ucdavis.edu