PLANT NUTRITION – past, present and future

Marja Koivunen AMVAC Chemical Corporation November 1, 2017

• organic fertilizers

PAST

• nutrients returned to soil with crop residues and manure

• challenge: yields limited by nutrient deficiency, nonoptimal timing of availability and nutrient imbalance

PAST

144 YEARS AGO

Justus von Liebig's "Law of the Minimum" published in 1873

"If one growth factor/nutrient is deficient, plant growth is limited, even if all other vital factors/nutrients are adequate...plant growth is improved by increasing the supply of the deficient factor/nutrient"

DOI 10.1007/s10705-004-2214-7

© Springer 2005

Methylene urea as a slow-release nitrogen source for processing tomatoes

Marja E. Koivunen* and William R. Horwath

2-year field trial on processing tomato fb wheat at UC Davis

Main question:

 Can N use efficiency of processing tomato be improved with a slow-release N fertilizer (methylene urea/urea formaldehyde)

Variables:	Parameters:
Urea vs. methylene urea Fallow vs. Cover crop Seeded vs. transplanted tomato	Yield quantity and quality N uptake by crop Fertilizer N use efficiency using ¹⁵ N technique Soil ¹⁵ N (nitrate and biomass N) fall/spring Residual N effect on wheat grown w/o fertilizer

RESULTS (Koivunen and Horwath 2005)

- No difference in tomato yield quantity and quality
- Deep soil core samples taken to 200-cm (6.5 feet) depth after the first transplanted tomato crop in fall 1999 showed high contents of fertilizerderived NO₃-N in the urea-fertilized soil. The following spring, soil ¹⁵NO₃-N content was significantly lower in these plots (note: all ¹⁵N plots were left fallow during the winter)

	Seeded block, ¹⁵ NO ₃ -N		Transplanted bl	lock, ¹⁵ NO ₃ -N			
	Fall 2000 (%)	Spring 2001 (%)	Fall 1999 (%)	Spring 2000 (%)	Fall 2000 (%)	Spring 2001 (%)	
Furea	4.1a	0.1	42.4	10.7Ъ	1.8	0.1	
FuMU	1.8b	0.3	8.7	23.2a	2.5	0.3	
CCurea	4.2a	0.1	37.1	4.5b	0.1	0.1	
CCuMU	5.7a	0.4	17.0	5.9b	0.3	0.2	
Source of variation							
Fertilizer (FE)	**	**	***	**	**	**	
Management (M)	NS	NS	NS	NS	NS	NS	
$FE \times M$	ગર ગય	NS	NS	**	NS	NS	

Table 5. ¹⁵N recovery (%) in a soil profile (0-200 cm) measured in microplots at times indicated in the table.

NS P > 0.05; *0.05 $\ge P > 0.01$; **0.01 $\ge P > 0.001$; ***0.001 $\ge P$.

F – fallow

CC – cover crop

uMU - 50:50 mixture of urea and methylene urea

RESULTS (Koivunen and Horwath 2005)

Fertilizer N use efficiency

Table 3. 13	⁵ N recovery	(%) in	the plant	biomass and	soil.
---------------	-------------------------	--------	-----------	-------------	-------

	¹⁵ N recovery								
	Seeded block				Transplanted block				
	Tomato 00 (%)	Wheat 00/01 (%)	Soil 01 (%)	Total (%)	Tomato 99 (%)	Tomato 00 (%)	Wheat 00/01 (%)	Soil 01 (%)	Total (%)
Furea	40.0ab	17.5	17.4	74.9b	40.0	13.2	6.2	14.0	73.4a
FuMU	42.7ab	22.4	31.8	96.9a	31.5	17.6	5.9	13.6	68.6ab
CCurea	44.6a	9.0	21.8	75.4b	33.7	5.6	1.6	9.7	50.6b
CCuMU	32.4b	16.8	28.0	77.2b	44.8	5.8	2.0	10.7	63.3ab
Source of variation									
Fertilizer (FE)	*	*	**	**	NS	NS	NS	NS	*
Management (M)	NS	NS	NS	NS	NS	***	***	*	*
FE × M	***	NS	NS	*	NS	NS	NS	NS	***

For plant recovery, the total ¹⁵N in aboveground plant biomass was included. For determination of the ¹⁵N in soil at the end of the 2year study, soil samples (0–30 cm) were analyzed for total ¹⁵N content. Letters in columns indicate differences between treatment means according to Tukey's protected LSD test at $P \le 0.05$. Letters are indicating differences only in cases where the interaction (F × M) is statistically significant.

NS P > 0.05; *0.05 $\ge P > 0.01$; **0.01 $\ge P > 0.001$; ***0.001 $\ge P$.

N use efficiency was not significantly improved with slow-release N

Lesson learned #1. Nitrogen uptake curve for tomato

Figure 1. N uptake (g plant⁻¹) measured during the growing season in 1999 for (a) a seeded and (b) a transplanted tomato variety (Heinz 8892).

F – fallow CC – cover crop uMU – 50:50 mixture of urea and methylene urea

Time 0 sampling: 7 weeks after seeding or 3 weeks after transplanting

N content in the above-ground biomass was generally higher in the transplanted than seeded tomato plants

The plant N content **did not significantly change** between the last sampling (16 weeks after seeding or 12 weeks after transplanting) and harvest

PRESENT **Application in field fertigation programs** Nutrient uptake per week – transplanted processing tomato **Uptake per week (lb/acre)** 22 12 10 10 flowering/fruit set harvest

Weeks after transplanting

Hypothetical nutrient uptake curve for processing tomato based on field data and fertigation programs designed for greenhouse tomatoes

Lesson learned #2. Effect of cover crop on soil properties and nitrogen management

- Increased organic matter content
- Increased soil microbial activity
- Increased storage of N in the microbial biomass
- Decreased bulk density
- Increased infiltration rate
 - Improved Soil Health

Improving Soil Health

Long-term Thinking and Strategy

Basic Methods (Toolbox)

- Tillage Management (Reducing tillage)
- Cover Cropping
- Crop Rotation
- Organic Matter Addition & Management

PRESENT

Soil Health Indicators

Biological

- Bulk density
- Penetration
 resistance
- Aggregate stability
- Water infiltration rate
- Water holding capacity
- Pore size
 distribution
 - Soil disease suppressive capacity
 - Beneficial and pathogenic nematodes, [other pathogens]

Physical

N mineralization rate (PMN)

Decomposition rate

Chemical

- Respiration rate
- Earthworm counts
- •% OM
- · "Active" C, N in OM

- Cation exchange capacity
- N, P, K
- Salinity
- Micronutrients
- [Toxins, pollutants]

BIOSTIMULANT

Plant Biostimulant means a material which contains substance(s) and/or microorganisms whose function when applied to plants or the rhizosphere is to stimulate natural processes to benefit nutrient uptake, <u>nutrient efficiency</u>, tolerance to <u>abiotic</u> stress, and/or crop quality, independently of its nutrient content

EXAMPLES:

- Seaweed extracts
- Microbial inoculants
- Protein hydrolysates
- Humic and Fulvic acids
- Amino acids

Beneficial Substance: Means any substance or compound other than primary, secondary, and micro plant nutrients that can be demonstrated by scientific research to be beneficial to one or more species of plants, when applied exogenously. (AAPFCO 2007)

European Biostimulant Industry Consortium (EBIC)

FUTURE

Global Biostimulant Market—App.

Unclear regulatory environment is slowing down the market growth in the US

FUTURE

Site-specific prescription application of fertilizers, pesticides and biostimulants

http://american-vanguard.com/NewsMedia/InvestorVideo/SIMPASVideoPresentation/tabid/355/Default.aspx

FUTURE

Multi-Product Application

- Micronutrients
- Biologicals
- Nematicides
- Fungicides
- Insecticides
- iPad[®]
- Wireless
- Works with all brands of equipment

•combination of inorganic and organic nutrient sources

•site-specific and variable-rate application techniques

FUTURE

•focus is shifted from the quantity and quality of plant nutrients to enhanced nutrient uptake by the plant

Thank You

Questions?