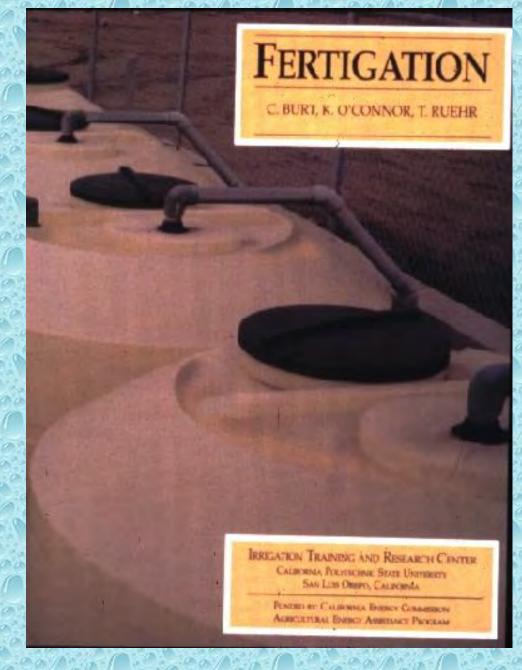
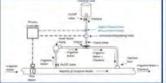
2nd Edition FERTIGATION book

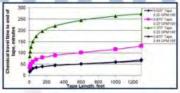
Charles M. Burt


Ph.D., P.E., D.WRE., CID, CAIS, etc, etc.

Irrigation Training and Research Center (ITRC)
California Polytechnic State University (Cal Poly)
San Luis Obispo, CA 93407-0730

The old Cal Poly ITRC Fertigation book (1998)




FREP has funded a second edition of the FERTIGATION book

Available early 2018

Fertigation

Second Edition

Dr. Charles M. Burt

with contributions by Monica Holman and first edition co-authors

Dr. Thomas Ruehr and Kris Beal

ITRC ===

IRRIGATION TRAINING & RESEARCH CENTER
California Polytechnic State University
San Luis Obispo, CA 93405-0730

Many of the chapters have the same title, but the content has been significantly updated.

Chapter 1.	Introduction					
Chapter 2.	<u>Safety</u>					
Chapter 3.	Chemical Injectors					
Chapter 4.	Proportional Fertigation					
Chapter 5.	SO ₂ , Gypsum, and Solids					
Chapter 6.Irrigation Prin	nciples, Leaching, and Fertilizer Uniformity					
Chapter 7.Injection Techniques for Various Irrigation Methods						
Chapter 8. Nitroge	n Transformations and Processes					
Chapter 9.	Nitrogen Uptake					
Chapter 10.	Other Nutrient Processes					
Chapter 11.	Specific Fertilizers					
Chapter 12.	<u>Biostimulants</u>					
Chapter 13.	Organic Fertilizers					
Chapter 14.	Air and Oxygen Injection					
Chapter 15.	Plant and Soil Testing					
Chapter 16.	Specific Crop Requirements					
Chapter 17.	Sample Fertigation Calculations					
Chapter 18.	Drip System Maintenance					
Chapter 19.	Infiltration Problems					
Appendix A.	Units of Salinity Measurement					

I'll briefly cover a few points from the following chapters

Chapter 4. Proportional Fertigation

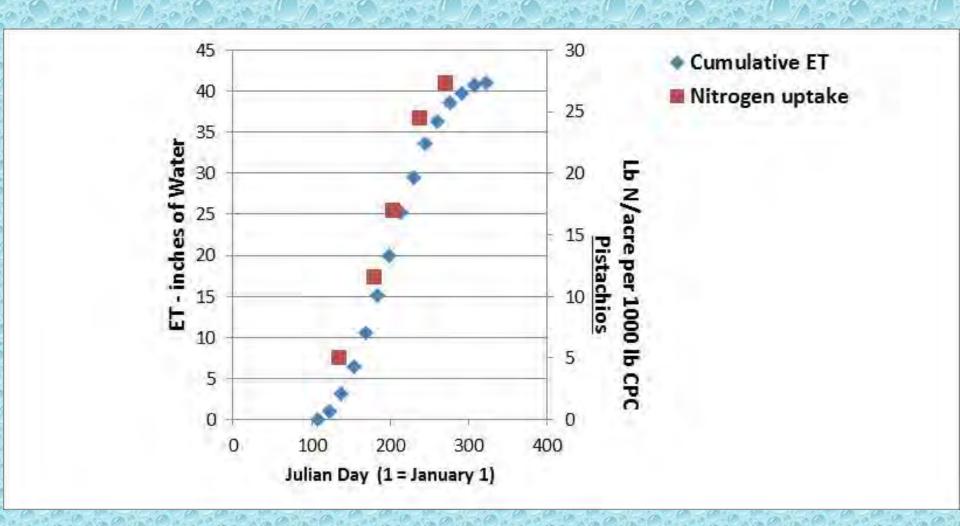
Chapter 6.Irrigation Principles, Leaching, and Fertilizer Uniformity

Chapter 9. Nitrogen Uptake

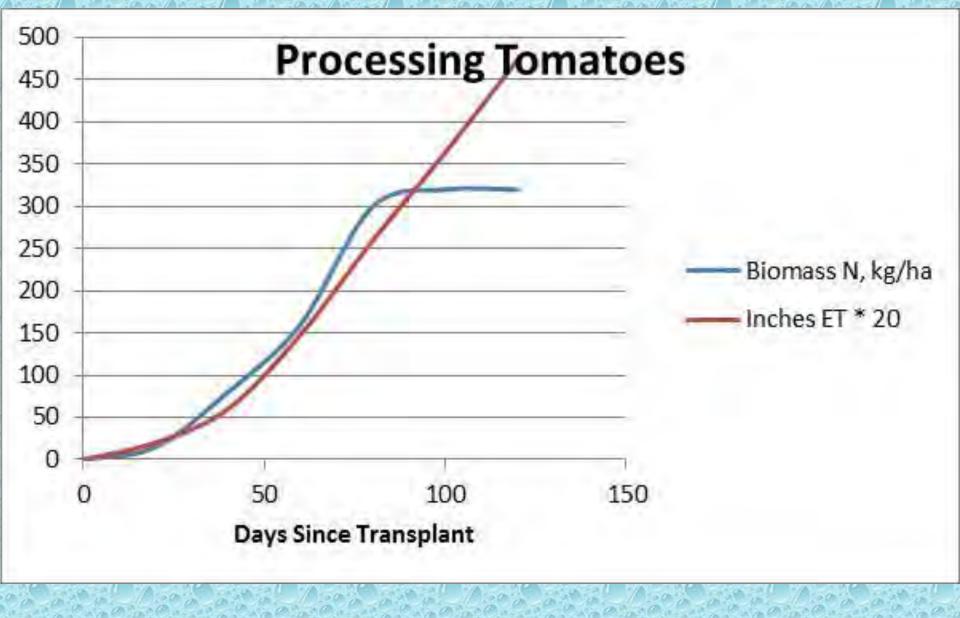
Chapter 12. Biostimulants

Chapter 13. Organic Fertilizers

Chapter 14. Air and Oxygen Injection

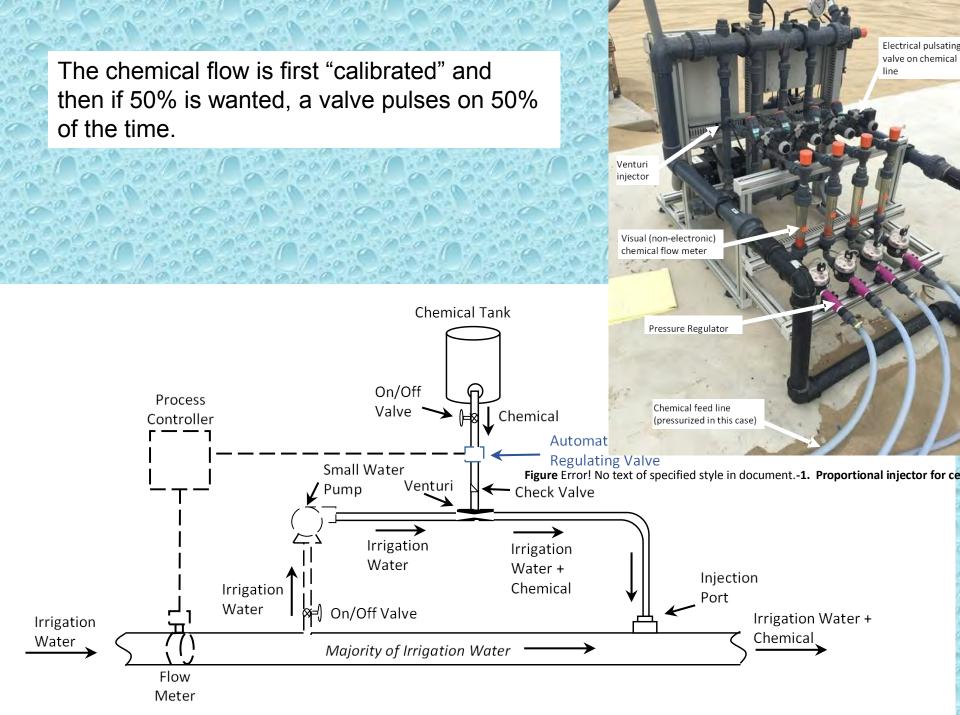

Proportional Fertigation

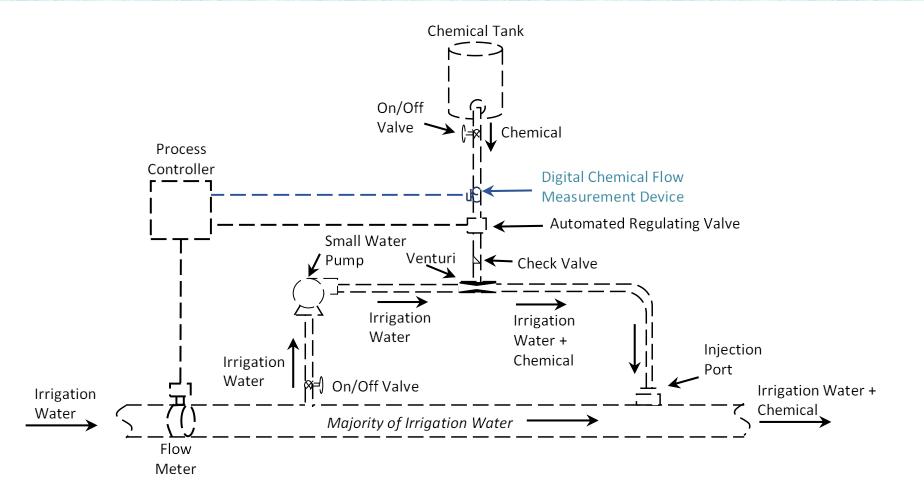
- Similar to maintaining a pH in the water.
- Injects a constant ppm.
- "PPM" is much more difficult for people to understand than "inject 100 gallons during the irrigation"
- Proportional fertigation automatically adjusts the injection rate as you switch irrigation sets with different sizes/flow rates.



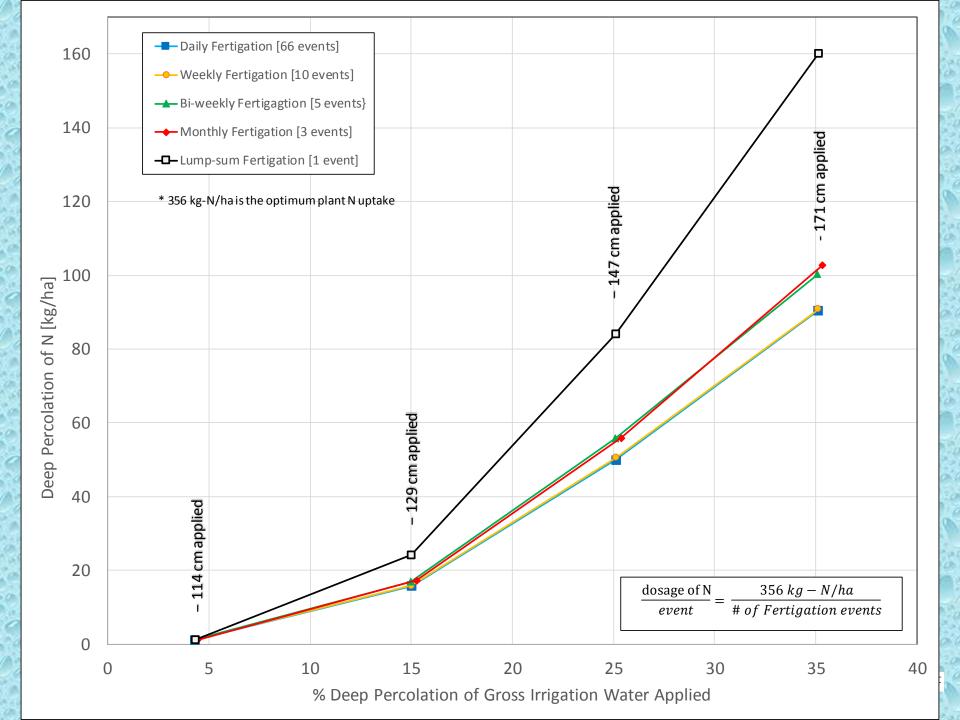
It would be nice if the proportion of (N/GPM) needed, stayed constant for awhile.

Fairly constant ratio of N needed, per gallon of water ET for Pistachios




A fundamental assumption with proportional fertigation is that a farmer will also "spoonfeed" – in other words, always inject during irrigation.

Two types of hardware are commonly used for proportional injection in agriculture.



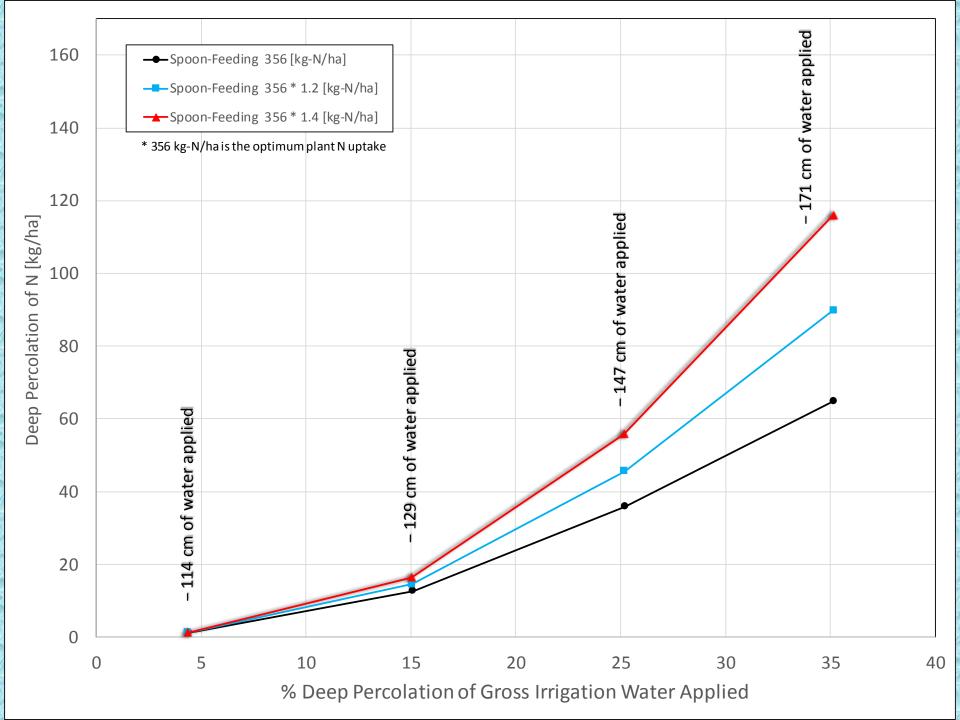
2nd type - Recommended

Switching topics -

LEACHING of Nitrates

Bottom line of modeling results on Nitrate LEACHING (not plant response):

- The big gorilla is deep percolation of water (irrigation or rain).
- 2. Fertilizing only one time isn't real smart.
- There isn't a lot of difference between daily and weekly fertigation.



The previous slide showed the same total N applied for all cases.

How about if more N is applied than is needed?

(this is also a no-brainer)

The basics of reducing N leaching are just that – real basic in concept:

- 1. Use good irrigation scheduling.
- 2. Match N applications with needs.
- You don't need to have daily spoon-feeding for LEACHING efficiency.

A simple design for applying the correct dosage per SET.

But what about when sets change?

This is OK if you only irrigate a few times/week. Is that best for plants, and for avoiding deep percolation?

So we all understand that fertilization with N should "meet the plant needs".

But what exactly does that mean?

I suppose you have seen the revised Ag Order

SECOND DRAFT 10/10/17

STATE OF CALIFORNIA
STATE WATER RESOURCES CONTROL BOARD

ORDER WQ 2018-

Key to the 2nd Ag Order is the ratio of (Applied/Removed)

$$A/R = \frac{\text{Nitrogen Applied}}{\text{(Nitrogen removed via harvest)} + \text{(Nitrogen sequestered in the permanent wood of perennial crops)}}$$

There is a lot to learn about improved N management.

For example:

University of California guidelines for cotton fertilization are found on the California Dept. of Food and Agriculture website https://apps1.cdfa.ca.gov/FertilizerResearch/docs/Cotton.html

Recommended fertilizer level: 115 lb N/acre

Removed N fertilizer: $(44 \text{ lb N/ton}) \times (2860 \text{ lb})/(2000 \text{ lb/acre}) = 62.9 \text{ lb N/acre}$

In other words, "standard" UC fertilizer recommendations for 2 bale cotton would result in an A/R ratio of:

A/R ratio = (115 lb)/(62.9 lb) = 1.8

Next subject - Organic fertilizers

For fertigation, there can be serious problems with emitter plugging with many organic formulations.

Oils Particulates

Table Error! No text of specified style in document.-1. Comparison of liquid organic fertilizers

						150 Mesh
		Post-Agitation Observations		Post-Dilution Observations		Sieve Test
	Label				% Volume of	
Sample	Grade				Floating Oil	% Retained
ID	N-P-K	Color	Consistency	Fluid Separation	Layer	by Filter
6 2.5-2.5-1.5	Dark Brown	Very thick, with dense	Uniform throughout	None		
		foam that stuck to the	with some foam left		76%	
		side of bucket	on side of cylinder			
7 2.5-2.5-4.5	Dark Brown	Thin, with white	Uniform throughout			
		bubbles. Bubbles did	with nothing left on	None	65%	
		not stick to sides.	side of cylinder.			
		Light	Thin, with no bubbles	15 mL of light tan		
X / / 5- / U-3 U /	Light	or foam. Small silty	solids formed at	None	0%	
		Brown	clouds.	bottom of cylinder.		
9 3.0-3.0-3.0	Tan	White foam. Some stuck to bucket sides.	3 distinct layers.			
			Dark solids formed in	25%	78%	
			the bottom 100 mL.			
15 4.0-2.0-1.0	Very	Thin with clumps at	Uniform throughout	None		
	Dark		with nothing left on		60%	
		Brown	bottom of jug.	side of cylinder.		
		Very	Thinner than #15	Uniform throughout		
16	2.5-2.0-1.0	Dark	without any clumps at	with nothing left on	None	60%
В	Brown	bottom of jug.	side of cylinder.			
17 1.5-3.0-0.2	Light Brown	White foam. Some stuck to bucket sides.	2 distinct layers.			
			Dark solids formed in	38%	10%	
			the bottom 100 mL.			
			Very thick, with dense	3 distinct layers.		
19	5.0-1.0-1.0	Brown	foam that stuck to the	Light solids formed in	13%	38%
			side of bucket.	the bottom 115 mL.		
20 2.0-0.5-0.3		84.1	3 distinct layers.			
	2.0-0.5-0.3	Light	Medium thickness	Light solids formed in	22%	50%
	Brown	with thin bubbles.	the bottom 115 mL.			

<u>C</u>===

2017

Plugging prevention with organic fertigation

Special emitters

- Special chemicals (approved) to kill bacteria

That's a glimpse of the types of content found in the 2nd edition of the Fertigation book