Achieving efficient N fertilizer management in California spring wheat

Mark Lundy, Steve Orloff, Steve Wright & Bob Hutmacher
UC Cooperative Extension
Outline

• Overview of spring wheat production in California with emphasis on Sacramento Valley conditions

• How does management influence crop N requirements?

• Constructing a N budget for wheat

• How can in-field tools assist in determining site-specific, real-time crop N needs?
Background: Spring wheat production in California

- **Acreage:**
 - \(\approx 500,000 \text{ ac yr}^{-1} \) hard red/white;
 - \(\approx 60,000 \text{ ac yr}^{-1} \) durum

- 50% grown for grain

- **Yields:** \(\approx 5500-6000 \text{ lb ac}^{-1} \)

- Grain growers receive payment for quantity ± quantity

- **Protein (quality) varies by region:** \(\approx 11-14\% \)

Image courtesy: California Wheat Commission
Nitrogen-related management in CA spring wheat

- Irrigation varies by region:
 - More opportunistic in the Sacramento Valley
 - More standard in the southern part of the state and Intermountain area

- Many growers split N applications between sowing and tillering-stem elongation
 - Total rates: 100 – 225 lb acre$^{-1}$

Image courtesy: California Wheat Commission
Why should we care about site-specific N management in wheat?
Why should we care about site-specific N management in wheat?

Optimizing the rate, timing of N application:

• Improves fertilizer use efficiency
• Increases the value of the crop

*Based on 2008 UCCE Cost Study for irrigated wheat in Sac. Valley
Why should we care about site-specific N management in wheat?

- N management plan implementation

NITROGEN MANAGEMENT PLAN WORKSHEET

<table>
<thead>
<tr>
<th>NMP Management Unit: _____________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crop Year (Harvested): __________________</td>
</tr>
<tr>
<td>2. Member ID# ________________________________</td>
</tr>
<tr>
<td>3. Name: ____________________________</td>
</tr>
<tr>
<td>4. APN(s): ________________________________</td>
</tr>
<tr>
<td>5. Field(s) ID Acres __________________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CROP NITROGEN MANAGEMENT PLANNING</th>
<th>N APPLICATIONS/CREDITS</th>
<th>15. Recommended/Planned N</th>
<th>16. Actual N</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Crop</td>
<td>47, Nitrogen Fertilizers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Production Unit</td>
<td>57, Organic Material N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Projected Yield (Units/Acre)</td>
<td>58, Nitrogen Credit (est)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. N Recommended (lbs/ac)</td>
<td>59, Nitrogen Credit (est)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Acres</td>
<td>51, Total N Applied (lbs per acre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52, Total N Applied (lbs per acre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53, Total N Applied (lbs per acre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54, Total N Applied (lbs per acre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55, Total N Applied (lbs per acre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56, Total N Applied (lbs per acre)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post Production Actuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Actual Yield (Units/Acre)</td>
</tr>
<tr>
<td>12. Total N Applied (lbs/ac)</td>
</tr>
<tr>
<td>13. ** N Removed (lbs N/ac)</td>
</tr>
<tr>
<td>14. Notes:</td>
</tr>
<tr>
<td>20. Available N in Manure/Compost (lbs/ac estimate)</td>
</tr>
<tr>
<td>21. Available N in Manure/Compost (lbs/ac estimate)</td>
</tr>
<tr>
<td>22. Total Available N Applied (lbs per acre)</td>
</tr>
<tr>
<td>23. Nitrogen Credits (est)</td>
</tr>
<tr>
<td>24. Available N carryover in soil; (annualized lbs/acre)</td>
</tr>
<tr>
<td>25. N in Irrigation water (annualized, lbs/ac)</td>
</tr>
<tr>
<td>26. Total N Credits (lbs per acre)</td>
</tr>
<tr>
<td>27. Total N Applied & Available</td>
</tr>
</tbody>
</table>

Wheat response to N fertilizer addition at various growth stages is generally well-understood.
METHODS

<table>
<thead>
<tr>
<th>Fertilizer treatments</th>
<th>PREPLANT</th>
<th>TILLERING</th>
<th>BOOT</th>
<th>FLOWERING</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of N fertilizer applied</td>
<td>0 - 100%</td>
<td>0 - 100%</td>
<td>0 - 50%</td>
<td>0 - 20%</td>
<td>0 - 335 kg/ha</td>
</tr>
</tbody>
</table>

Field 1
- Fully irrigated
- Variety: hard white
- Soil: Entisol, preplant NO3-N = 1 ppm, 0 - 60 cm

Field 2
- Not irrigated
- Supplemental irrigation
- Variety: hard red
- Soil: Alfisol, preplant NO3-N = 10 ppm, 0 - 60 cm

Gradients (HIGH to LOW):
- Nitrogen availability
- Water availability
• Rate of fertilizer N demand varies across the growing season [TIMING MATTERS].

• Total fertilizer N demand varies according to the protein yield potential of the crop [WHAT IS A REASONABLE YIELD EXPECTATION?].

 Water is more limiting than N [IRRIGATION?].

• [SOIL] supplies a large portion of N to the crop.

Yield = 7500 lb acre⁻¹; Protein = 11.5%
TIMING MATTERS

A. Preplant N only

B. Tillering-Flowering N
 • 16% higher yield
 • > 1% higher protein
Timing of N application affects YIELD

- Applications of N at Tillering and Flowering significantly boost yields compared to Preplant and late-Boot/early-Heading applications
- Assuming sufficient water follows N application
Timing of N application affects PROTEIN

- Applications of N at Flowering boost grain protein content relative to other application timings
 - Assuming sufficient water follows N application
 - Assuming crop has sufficient yield potential
Timing of N application affects FERTILIZER USE EFFICIENCY

- Applications of N at Tillering and Flowering boost grain fertilizer use efficiency relative to other application timings
 - Interacts strongly with water availability & timing
 - Large range of possibilities (0.3 – 0.65)
Overall demand for fertilizer N by irrigated wheat in the Sacramento Valley

Timing: preplant - tillering
Overall demand for fertilizer N by irrigated wheat in the Sacramento Valley

- Fertilizer N demand:
 - $960 \text{ lb ac}^{-1} - 360 \text{ lb ac}^{-1} = 600 \text{ lb ac}^{-1}$
 - $600 \text{ lb ac}^{-1} / 5.7 = 105 \text{ lb ac}^{-1}$
 - $105 \text{ lb ac}^{-1} / 0.5 = 210 \text{ lb ac}^{-1}$

 2.6 lb N / 100 lb grain

- Fertilizer N demand:
 - $960 \text{ lb ac}^{-1} - 360 \text{ lb ac}^{-1} = 600 \text{ lb ac}^{-1}$
 - $600 \text{ lb ac}^{-1} / 5.7 = 105 \text{ lb ac}^{-1}$
 - $105 \text{ lb ac}^{-1} / 0.4 = 263 \text{ lb ac}^{-1}$

 3.7 lb N / 100 lb grain

8000 lb acre$^{-1}$; 12% protein
Overall demand for fertilizer N by supplemental irrigated wheat in the Sacramento Valley

- 5500 lb acre\(^{-1}\); 11% protein
 - protein yield = 605 lb ac\(^{-1}\)

- 2500 lb acre\(^{-1}\); 8% protein
 - protein yield = 200 lb ac\(^{-1}\)

Fertilizer N demand:

\[
\begin{align*}
605 \text{ lb ac}^{-1} - 200 \text{ lb ac}^{-1} & = 405 \text{ lb ac}^{-1} \\
405 \text{ lb ac}^{-1} / 5.7 & = 71 \text{ lb ac}^{-1} \\
71 \text{ lb ac}^{-1} / 0.5 & = 142 \text{ lb ac}^{-1}
\end{align*}
\]

2.6 lb N / 100 lb grain

Fertilizer N demand:

\[
\begin{align*}
605 \text{ lb ac}^{-1} - 200 \text{ lb ac}^{-1} & = 405 \text{ lb ac}^{-1} \\
405 \text{ lb ac}^{-1} / 5.7 & = 71 \text{ lb ac}^{-1} \\
71 \text{ lb ac}^{-1} / 0.4 & = 178 \text{ lb ac}^{-1}
\end{align*}
\]

3.2 lb N / 100 lb grain
Overall demand for fertilizer N by rainfed wheat in the Sacramento Valley

4200 lb acre\(^{-1}\); 12.5% protein
- protein yield = 525 lb ac\(^{-1}\)

2500 lb acre\(^{-1}\); 8% protein
- protein yield = 200 lb ac\(^{-1}\)

Range of N rates:

\[114 \, \text{lb ac}^{-1} \, \text{to} \, 263 \, \text{lb ac}^{-1}\]

- depending on:
 - water
 - fertilizer use efficiency

Fertilizer N demand:

\[
\begin{align*}
525 \, \text{lb ac}^{-1} - 200 \, \text{lb ac}^{-1} &= 325 \, \text{lb ac}^{-1} \\
325 \, \text{lb ac}^{-1} / 5.7 &= 57 \, \text{lb ac}^{-1} \\
57 \, \text{lb ac}^{-1} / 0.5 &= 114 \, \text{lb ac}^{-1}
\end{align*}
\]

2.6 lb N / 100 lb grain

Fertilizer N demand:

\[
\begin{align*}
525 \, \text{lb ac}^{-1} - 200 \, \text{lb ac}^{-1} &= 325 \, \text{lb ac}^{-1} \\
325 \, \text{lb ac}^{-1} / 5.7 &= 57 \, \text{lb ac}^{-1} \\
57 \, \text{lb ac}^{-1} / 0.4 &= 143 \, \text{lb ac}^{-1}
\end{align*}
\]

3.4 lb N / 100 lb grain
How much N will the SOIL supply?

Multiple ways to estimate, many things to estimate...

• One method (top 1 foot)
 – ppm NO3-N x 4 or 5
 • Example: 12 ppm NO3-N x 4 or 5 ≈ 48 – 60 lb ac⁻¹

• Second method (top 2 feet):
 – ppm NO3-N * 3.8 ≈ lb N ac⁻¹ ft⁻¹ of soil
 • Example: 12 ppm (1ˢᵗ ft)*3.8 ≈ 46 lbs; 7 ppm (2ⁿᵈ ft)*3.8 ≈ 27 lbs
 – Total ≈ 73 lb ac⁻¹
 – Or: 73 lb ac⁻¹ x 0.75 ≈ 54 lb ac⁻¹

• Prior Crop:
 – Tomato residue estimated at 50 lb ac⁻¹ returned, but probably reflected in soil nitrate test
 – Alfalfa contribution ≈ 100 lb ac⁻¹ +
How much N will the SOIL supply?

Multiple ways to estimate, many things to estimate...

- In-season soil organic matter N mineralization:
 - 0.8% OM % * 30 lb N / % OM ≈ 24 lb ac⁻¹

- Other sources:
 - irrigation
 - manure

Yield = 7500 lb acre⁻¹; Protein = 11.5%
Key management variables to consider when determining N fertility at various growth stages

Fertilizer N effects on yield and protein at various growth stages

YIELD:
- number of tillers and kernels per head

PROTEIN:
- biomass N for remobilization during grain fill
- remobilization rate, direct

Rainfall?

Growth Stage:
- Preplant
- Early Leaf
- Tillering
- Stem Elongation (jointing to boot)
- Heading to Maturation

yield potential
irrigation
site fertility
variety
end use
premium / discount

yield potential
water status
soil N status
plant N status
logistics

yield potential
water status
plant N status
logistics

yield potential
water status
plant N status
logistics

Image courtesy: S. Orloff
What tools are available to assist in real-time N management in wheat?
What tools are available to assist in real-time N management in wheat?
What tools are available to assist in real-time N management in wheat?
Objective: Develop decision support tools that inform whether and how much N to apply at any given point in the crop cycle.

Crop Stages: pre-plant; tillering; mid-season; flowering
Management variables that can be approximated by low-cost, in-field technologies

Fertilizer N effects on yield and protein at various growth stages

YIELD:
- number of tillers and kernels per head

PROTEIN:
- biomass N for remobilization during grain fill
- remobilization rate, direct

Growth Stage
- Preplant
- Early Leaf
- Tillering
- Stem Elongation (jointing to boot)
- Heading to Maturation

<table>
<thead>
<tr>
<th>Preplant</th>
<th>Early Leaf</th>
<th>Tillering</th>
<th>Stem Elongation</th>
<th>Heading to Maturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>yield potential</td>
<td>yield potential</td>
<td>yield potential</td>
<td>yield potential</td>
<td>yield potential</td>
</tr>
<tr>
<td>irrigation</td>
<td>water status</td>
<td>water status</td>
<td>water status</td>
<td>water status</td>
</tr>
<tr>
<td>site fertility</td>
<td>soil N status</td>
<td>soil N status</td>
<td>plant N status</td>
<td>plant N status</td>
</tr>
<tr>
<td>variety</td>
<td>plant N status</td>
<td>plant N status</td>
<td>logistics</td>
<td>logistics</td>
</tr>
<tr>
<td>end use</td>
<td>logistics</td>
<td>logistics</td>
<td>soil N status</td>
<td>soil N status</td>
</tr>
<tr>
<td>premium / discount</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Management variables that can be approximated by low-cost, in-field technologies

Fertilizer N effects on yield and protein at various growth stages

YIELD:
- number of tillers and kernels per head
- biomass N for remobilization during grain fill

PROTEIN:
- kernel weight
- remobilization rate, direct

Growth Stage
- Preplant
- Early Leaf
- Tillering
- Stem Elongation (jointing to boot)
- Heading to Maturation

protein?

yield potential
plant N status
In-field measurement devices

atLEAF chlorophyll meter
• SPAD proxy (660 and 940 nm)
• proxy for yield leaf N concentration
• Retail: $250

Trimble Greenseeker handheld
• NDVI (660 and 770 nm)
• Suitable proxy for yield potential?
• Retail: $500
Methods: Calibrate across N and water gradients at key points during crop growth
Results: Calibration

Flowering reading and protein outcome

![Calibration Diagram 1](image1)

Flowering reading and protein outcome

![Calibration Diagram 2](image2)
Results: Decision support

*For $7.50/bu wheat with $0.01/lb premium or discount / % above or below target (11%).
Summary

1. N demand varies across the season & from field-to-field, depends on water availability, timing.

2. The timing of N application can influence yield, protein and fertilizer use efficiency.

3. The use of in-field sensors provided actionable, real-time information as to the protein and protein-yield outcomes of the crop.

4. Combining information from more than one sensor resulted in additive information that improved the in-season ability to predict outcome.
DIY calibration?

- 300 lb ac\(^{-1}\)
- 200 lb ac\(^{-1}\)
- 100 lb ac\(^{-1}\)
- 50 lb ac\(^{-1}\)
 Field rate

Field rate + 50%

Image courtesy: Oklahoma State University
If a suite of 3-4 in-field tests/measures at flowering could predict your ability to add 1% protein to your wheat crop with 60-70% accuracy, how much extra time would you be willing to invest to accomplish this on a 100 acre wheat field?

A. None
B. 30 minutes
C. 1 hour
D. 2 hours
E. 4 hours
On an annual basis, how much would you be willing to invest in tools/tests that would enable this type of decision?

A. Nothing
B. $10
C. $100
D. $1000
E. $10000
Is calibrating in-field diagnostic tools for improved fertility management something you are interested in...

A. Participating in actively
B. Participating in casually
C. Learning more about
D. Not interested

A. 33%
B. 28%
C. 33%
D. 6%
Acknowledgments

Jason Tsichlis, Ryan Byrnes, Phil Mayo, Gerry Hernandez, Lalo Banuelos, Israel Herrera, Emma Torbert, Rika Fields, Katy Mulligan, Eric Lin, Dan Putnam, Chris de Ben, Israel Herrera, Fred Stewart, Jim Jackson, IREC, WSREC, and UCD Plant Sciences Field Crews.