A. PROJECT INFORMATION

1. Report Type: Final
2. Full Project Title: New Fertigation Book
3. Project Period: July 1, 2015 – December 31, 2019
4. Assigned FREP Grant Agreement: 15-0393-SA
5. Project Leader/Director:
 Dr. Charles Burt
 Chairman (ITRC) and Professor Emeritus (BRAE)
 Irrigation Training & Research Center (ITRC)
 BioResource and Agricultural Engineering Dept.
 Cal Poly State University
 San Luis Obispo, CA 93407-0730
 805-756-2379
 cburt@calpoly.edu

B. OBJECTIVES

1. Improve the understanding of good fertigation practices by practitioners (i.e., farmers, foremen, farm managers). The improved understanding will hopefully result in farmers implementing better irrigation and fertilization practices. Those good practices will improve crop yields while protecting the environment.
2. To meet the primary objective, the old Cal Poly ITRC Fertigation book was updated. It previously served as a valuable reference tool for practitioners but was over 20 years old.

C. ABSTRACT

The old ITRC FERTIGATION book was widely used by agronomists in California and was the single most comprehensive book of its nature in the US. With this contract it received a complete overhaul and updating. This new book (completed 2018) was intended to serve as a valuable resource for practitioners (farmers, consultants, vendors) who are involved in applying fertilizers and other chemicals through irrigation systems. Short courses were also held to further spread the knowledge.

The book covers typical subjects such as commercial fertilizer properties, injection equipment, solubility, crop nutrient uptake patterns (lb. vs. stage of growth), achieving good distribution uniformity with different irrigation methods, chemical maintenance of drip systems, and water amendments to improve infiltration rates. The book also includes many special current topics.
D. **INTRODUCTION**

In California it is very common to apply a large percentage of fertilizers through the irrigation water. There has been a gradual shift from gravity irrigation to drip/micro and sprinkler. Those pressurized irrigation methods now represent about 60% of the acreage in California and are found on most of the intensively grown crops that need excellent fertilizer management.

There are many fertilizer books, and thousands of research articles on fertilizers and plant uptake. However, few of these resources focus on pragmatic chemical applications via irrigation water – especially considering special California conditions. An older ITRC publication of FERTIGATION was an extremely important reference for practitioners in California. But it was over 20 years old and was written at a time when fertigation was in its relative infancy, when organic farming was scarce, and when environmental regulations related to fertilizers were few. Equipment and chemicals have both changed, as well as management practices.

The new FERTIGATION book provides a valuable update that will hopefully serve California well for another 20 years. Short courses have also been held to further disseminate the knowledge.

E. **WORK DESCRIPTION**

The tasks are seen in the table below, and are mostly self-explanatory
The information gathering including conversations and physical visits with most of the fertigation equipment manufacturers, and interviews with a range of San Joaquin Valley and Coastal fertilizer companies. New injection and safety equipment, as well as a proportional injector, were obtained to enhance the Fertigation short courses.

Testing was conducted at Cal Poly with a variety of commercially available organic fertilizer compounds to determine solubility, the ability of material to pass through a filter, and oil content. Label fertilizer concentrations were compared against commercial laboratory analysis of samples taken by ITRC. The results are found in the new Fertigation book.

USDA’s RZWQM2 nitrogen leaching model was used to estimate the difference in nitrogen leaching that occurs if fertilizer is spoon-fed or only fertigated occasionally.

Numerous other items were researched or tested before being included in the new book. These ranged from topics such as minimizing fertigated materials from being lost in filter backflush water, to injection of air and oxygen, to the impact of various plant growth stimulations that are injected.
into irrigation water. Special attention was given to the topic of proportional injection, and the commercial options were explained with the help of process sketches.

F. DATA/RESULTS

Materials. The Fertigation book has been completed and published and is available via the ITRC web site of www.itrc.org. Copies of the new Fertigation book were previously supplied to FREP personnel. The Table of Contents of the Fertigation book is seen below.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION... Error! Bookmark not defined.

4R Nutrient Stewardship and Fertigation .. Error! Bookmark not defined.
Extent of Chemigation Use ... Error! Bookmark not defined.
Energy Conservation ... Error! Bookmark not defined.
Energy Requirements of Fertilizers ... Error! Bookmark not defined.

CHAPTER 2. SAFETY ... Error! Bookmark not defined.

Backflow Prevention –Protecting the Water Supply Error! Bookmark not defined.

Air Gap ... Error! Bookmark not defined.

Typical Agricultural Backflow Prevention Valves Error! Bookmark not defined.

Gooseneck ... Error! Bookmark not defined.

Potable Water Supply Backflow Prevention Devices Error! Bookmark not defined.

Backflow Prevention – Review .. Error! Bookmark not defined.

Chemigation Label Requirements – Pesticides Error! Bookmark not defined.

Safety as a System, Rather than as a Device Error! Bookmark not defined.

Two Types of Check Valves .. Error! Bookmark not defined.

Pesticide Notification or Posting .. Error! Bookmark not defined.

Proper Materials for Hardware ... Error! Bookmark not defined.

Hoses ... Error! Bookmark not defined.

Corrosion and Safety ... Error! Bookmark not defined.

Fittings ... Error! Bookmark not defined.

Tanks .. Error! Bookmark not defined.

Containment Structures .. Error! Bookmark not defined.

Sulfuric Acid Safety .. Error! Bookmark not defined.

Add Acid to Water ... Error! Bookmark not defined.

Do Not Add Other Chemicals to a Sulfuric Acid Tank Error! Bookmark not defined.

Checking the Water pH ... Error! Bookmark not defined.

316 Stainless Steel Fittings and Viton Gaskets Error! Bookmark not defined.

Tank Lids with Ventilation .. Error! Bookmark not defined.

Neatness .. Error! Bookmark not defined.

Clearance ... Error! Bookmark not defined.

Safety Data Sheets .. Error! Bookmark not defined.

Use Appropriate Safety Measures .. Error! Bookmark not defined.

Neutralize Acid Spills with Dolomite or Limestone Error! Bookmark not defined.

Mixing Safety ... Error! Bookmark not defined.

CHAPTER 3. CHEMICAL INJECTORS... Error! Bookmark not defined.

Injector Flow Rates .. Error! Bookmark not defined.

Limiting the Amount of Injected Chemical Error! Bookmark not defined.

Single vs. Multiple Units .. Error! Bookmark not defined.

Injector Flushing ... Error! Bookmark not defined.

Injector Ports ... Error! Bookmark not defined.

Drip Systems – Injection Upstream or Downstream of the Filter? Error! Bookmark not defined.

Obtaining a Pressure Differential .. Error! Bookmark not defined.
CHAPTER 4. PROPORTIONAL FERTIGATION.. Error! Bookmark not defined.

What Does “Proportional” Mean?.. Error! Bookmark not defined.
Advantages to Proportional Fertigation...................................... Error! Bookmark not defined.
Essential Components of an Electronic Proportional System Error! Bookmark not defined.
Irrigation Water Flow Meter .. Error! Bookmark not defined.
Chemical Flow Rate Measurement .. Error! Bookmark not defined.
Chemical Flow Rate Adjustment .. Error! Bookmark not defined.
Process Controller ... Error! Bookmark not defined.
User Interface .. Error! Bookmark not defined.

Types of Proportional Systems... Error! Bookmark not defined.

Mechanical Unit .. Error! Bookmark not defined.

Electronic Systems – Adjusting the Chemical Injection Rate Error! Bookmark not defined.

Control Type #1.. Error! Bookmark not defined.
Control Type #2.. Error! Bookmark not defined.
Control Type #3.. Error! Bookmark not defined.
Control Type #4.. Error! Bookmark not defined.

CHAPTER 5. SO₂, GYPSUM, AND SOLIDS ... Error! Bookmark not defined.

SO₂ Generators .. Error! Bookmark not defined.

SO₂ Injection Equipment ... Error! Bookmark not defined.
Chemistry of SO₂ .. Error! Bookmark not defined.
Gypsum Injection Equipment... Error! Bookmark not defined.
Solid Fertilizers .. Error! Bookmark not defined.

Batch Mixing Plants ... Error! Bookmark not defined.

CHAPTER 6. IRRIGATION PRINCIPLES, LEACHING, AND FERTILIZER UNIFORMITY Error! Bookmark not defined.

Highlights .. Error! Bookmark not defined.
Irrigation Distribution Uniformity and Scheduling Error! Bookmark not defined.
Chemical Leaching ... Error! Bookmark not defined.

Nitrogen .. Error! Bookmark not defined.
Continuous and Small, Versus Occasional Large Nitrogen Injections... Error! Bookmark not defined.

Other Nutrients ... Error! Bookmark not defined.
Pesticides .. Error! Bookmark not defined.
Preferential Flow ... Error! Bookmark not defined.
Broadcasting vs. Injecting Nitrogen Error! Bookmark not defined.
CHAPTER 7. INJECTION TECHNIQUES FOR VARIOUS IRRIGATION METHODS

Moving vs. Stationary Irrigation Systems
Continuous Move Irrigation Systems
Moving Systems – Center Pivots and Linear Moves
Moving Systems – Surface Irrigation
Stationary Irrigation Systems
Variations in Chemical Injection Concentrations with Time
Centralized vs. Mobile Injection Units
Continuous vs. Non-Continuous Injection
Chemical Travel Time in Pipelines

CHAPTER 8. NITROGEN TRANSFORMATIONS AND PROCESSES

Nitrogen Cycle
Nitrogen Transformations
Nitrogen Fixation
Mineralization
Nitrification
Immobilization
Denitrification
Volatilization
Ammonium
Soil Acidification with NH₃ and NH₄ Fertilizers
Correcting Acidity
Nitrification Inhibitors
Nitrate
Leaching
Ammonia
Volatilization
Avoiding Volatilization Losses
Organic Nitrogen Fertilizers
Urea
Urea Hydrolysis

CHAPTER 9. NITROGEN UPTAKE

Cation-Anion Balance
Nitrogen Source and Effect on Soil pH
Nitrogen Movement in the Plant
Ammonium vs. Nitrate Nutrition
Nitrogen Balance for Groundwater Protection
A/R Ratio

CHAPTER 10. OTHER NUTRIENT PROCESSES

Mechanisms for Nutrient Uptake
Nutrient Interactions
Phosphorus
Phosphate Movement
Phosphorus Application
Phosphorus Uptake
Potassium
Potassium Movement
Potassium Uptake
CHAPTER 11. SPECIFIC FERTILIZERS

Fertilizer Usage in the USA
Solution versus Suspension Formulations
Understanding Fertilizer Labels
Fertilizer Formulations Used in California

Physical Characteristics of Fertilizers
Viscosity
Density
Salting Out Temperature
Dry Fertilizer Solubility
Cooling Effect with Mixing
Dry Fertilizer Conditioners

Fertilizer Compatibility
The Jar Test
Compatibility Charts
Basic Mixing Rules
Nitrogen Fertilizer Solubility and Compatibility
Liming Effect with Ammonia Fertigation
Phosphorus Solubility and Compatibility
Potassium Solubility and Compatibility
Calcium Solubility and Compatibility
Micronutrient Solubility and Compatibility

Specific Fertilizers
Monoammonium Phosphate (MAP) 11-52-0
Anhydrous Ammonia (82-0-0)
Aqua Ammonia (20-0-0)
Ammonium Nitrate Solution or AN-20 (20-0-0)
Urea-Ammonium Nitrate Solution or UN-32 (UAN-32) (32-0-0)
Calcium Ammonium Nitrate or CAN-17 (17-0-0-8.8Ca)
MonoAmmonium Phosphate (MAP) (11-52-0 and 12-61-0)
Ammonium Polyphosphate (9-30-0, 10-34-0 and 11-37-0)
Ammonium Polysulfide (20-0-0-45)
Ammonium Thiosulfate (12-0-0-26)
Calcium Polysulfide or Lime Sulfur
Phosphoric Acid (0-54-0 “White” & 0-52-0 “Green” Acids)
Phos-pHurics
Potassium Chloride
Potassium Nitrate
Monopotassium Phosphate (MKP) (0-52-34)
Potassium Sulfate
Potassium Thiosulfate (0-0-25-17 and 0-0-22-23)
Specific Plugging Problems and Their Solutions

Small Slimy Bacteria
Iron and Manganese Bacteria
Iron and Manganese Sulfides
Calcium and Magnesium Carbonate Precipitation
Root Intrusion

CHAPTER 19. INFILTRATION PROBLEMS

High Adjusted Sodium Adsorption Ratio
Pure Irrigation Water
Gypsum Injection
High Magnesium/Calcium Ratios
Fertigation with Monovalent Cations
Polymers
Wetting Agents
Polyelectrolytes
Others

LIST OF REFERENCES

APPENDIX A. UNITS OF SALINITY MEASUREMENT

INDEX
b. One day short courses were held at Cal Poly ITRC. The attendances and dates are provided in the table below.

<table>
<thead>
<tr>
<th>Date</th>
<th>Duration (Days)</th>
<th>Consultant</th>
<th>Govt</th>
<th>University</th>
<th>Farmer</th>
<th>Equip or Chem Sales</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Aug-19</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>23</td>
<td>1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>13-Aug-18</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>5-Mar-18</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>7-Aug-17</td>
<td>1</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>24</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>23-Mar-17</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total: 163</td>
</tr>
</tbody>
</table>

The short courses were advertised on the ITRC web site, via an extensive e-mail list that ITRC has, through the FREP web site, and with ads placed in the following publications:

- CSA News
- Irrigation Today
- News Harvest
- IA Times
- CAPCA Applicator Alerts
- Western Farm Press
- Ag Alert

The three formats for advertising are seen below.
An example syllabus is provided below:

Fertigation

Irrigation Training and Research Center (ITRC)
BioResource and Agricultural Engineering Department
Cal Poly State University
San Luis Obispo, CA 93407

Co-sponsored by the FREP program of CDFA
August 13, 2018
Instructors: Drs. Charles Burt and Franklin Gaudi

<table>
<thead>
<tr>
<th>TIME</th>
<th>ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:45</td>
<td>Registration</td>
</tr>
<tr>
<td>08:00</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>- Individual introductions by participants, chemicals injected</td>
</tr>
<tr>
<td>08:10</td>
<td>General overview (Chap 1, 2)</td>
</tr>
<tr>
<td></td>
<td>- Explanation of Chemigation vs. Fertigation</td>
</tr>
<tr>
<td></td>
<td>- Energy requirements</td>
</tr>
<tr>
<td></td>
<td>- Safety</td>
</tr>
<tr>
<td>08:40</td>
<td>Break</td>
</tr>
<tr>
<td>08:50</td>
<td>Chemical Injection (Chap 3 & 5)</td>
</tr>
<tr>
<td>09:40</td>
<td>Break</td>
</tr>
<tr>
<td>09:50</td>
<td>Proportional Fertigation (Chap 4)</td>
</tr>
<tr>
<td>10:20</td>
<td>Irrigation Principles (Chap 6)</td>
</tr>
<tr>
<td>11:00</td>
<td>Break</td>
</tr>
<tr>
<td>11:10</td>
<td>Irrigation Systems (Chap 7)</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
</tr>
<tr>
<td>12:45</td>
<td>Equipment - outside (Dr. Gaudi)</td>
</tr>
<tr>
<td></td>
<td>- Injector designs</td>
</tr>
<tr>
<td></td>
<td>- Filter backflush recycling</td>
</tr>
<tr>
<td></td>
<td>- SO2 generator</td>
</tr>
<tr>
<td></td>
<td>- Calibration</td>
</tr>
<tr>
<td></td>
<td>- Use of venturi devices</td>
</tr>
<tr>
<td>2:15</td>
<td>Break</td>
</tr>
<tr>
<td>2:30</td>
<td>Nitrogen transformations, processes, and regulations (Chap 8, 9)</td>
</tr>
<tr>
<td>3:30</td>
<td>Break</td>
</tr>
<tr>
<td>3:40</td>
<td>Other Nutrient Processes and Specific Fertilizers (Chap 10, 11)</td>
</tr>
<tr>
<td>4:20</td>
<td>Break</td>
</tr>
<tr>
<td>4:30</td>
<td>Bio Stimulants, Oxygen and Air, and Organic Fertilizers (Chap 12, 13, 14)</td>
</tr>
<tr>
<td>5:00</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>

b. (Continued).

Beta testing and improvement of both the short course and book were conducted via two 1-unit Fertigation classes offered to Cal Poly students as an elective. The Spring 2017 class had 28 students; the Spring 2019 class had 16 students.

The project was advertised at the Fall FREP/WPHA conferences in November of 2016 and 2017, and Oct. 2019. Dr. Gaudi provided a 30-minute presentation in 2019.
The book and short course were also announced and described at two annual California Agricultural Irrigation Dealership meetings. Dr. Gaudi, in his position as a member of the Certification Board of The Irrigation Association, has encouraged The Irrigation Association to begin a certification program in Fertigation.

c. Impact Measurement
For each of the short courses, participants were asked to fill out a one-page class evaluation. These were reviewed by the instructors to determine what topics were most interesting, points that were clear or confusing, and to improve the next short course. The most common recommendation was to have a 2-day course. However, this is always a gamble because many people cannot take 2 days from work.

Not everyone completes the class evaluation form, and they were only collected for 4 of the 5 short courses. The following table provides a summary of some key answers.

<table>
<thead>
<tr>
<th>How did you hear about this course?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-mail</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How would you rate this course?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
</tr>
<tr>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How well did you understand the content of this course?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Would you recommend this short course to others?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>89</td>
</tr>
</tbody>
</table>

G. DISCUSSION AND CONCLUSIONS
The objective of providing a much improved and updated Fertigation book was met. The short courses were also developed and provided as promised in the proposal.

The primary challenges were:

1. Obtaining information on, and samples of, commercial organic fertilizers. The vendors seemed to have little interest in providing solid information, or in having their compounds examined.
2. Advertising. This is always a challenge. Eventually ITRC paid for advertisements in a variety of professional/farming publications.

H. PROJECT IMPACTS

The impacts are of course difficult to quantify beyond listing the number of attendees in short courses (163) and Cal Poly Fertigation class students (44) that used the new materials. But an examination of the types of attendees indicates that there is a large multiplier effect. This is because of the large number of equipment manufacturer/vendor attendees, as well as consultants. Some of California’s largest farms sent attendees. Only 13 of the 163 short course attendees were government employees.

FREP is interested in contributing toward advancing the environmentally safe and agronomically sound use of fertilizing materials. The new book is perhaps the most pragmatic source of information for this topic. It explicitly addresses concepts of leaching, how leaching occurs with various irrigation systems, the concepts of irrigation system distribution uniformity, the linkage between irrigation water management and nitrogen leaching, and the challenges with determining and obtaining the correct A/R (Applied/Removed) nitrogen ratio.

It is anticipated that this new book will serve as a primary source of information for farmers and consultants who want to achieve high efficiencies with their fertilizer applications.

I. OUTREACH ACTIVITIES

This was not a research project, so this section was covered in the earlier section F.

J. FACTSHEET/DATABASE TEMPLATE

Please see the final page.

K. COPY OF THE PRODUCT/RESULT

Copies of the new Fertigation book were provided to FREP personnel earlier.
Section J

1. Project Title: New Fertigation Book
2. FREP Grant Agreement: 15-0393-SA
3. Project Leader/Director:
 Dr. Charles Burt
 Irrigation Training & Research Center (ITRC)
 Cal Poly State University
 San Luis Obispo, CA 93407-0730
4. Project Period: July 1, 2015 – December 31, 2019
5. Location: Statewide
6. County: Statewide
7. Highlights:
 • A completely updated, 265 page book on Fertigation specifically designed for California is available via http://www.itrc.org/publications.htm
 • Short courses on Fertigation are available. Find the schedule at http://www.itrc.org/classes.htm
 • Important topics include the A/R nitrogen ratio, fertilizer compounds, plant requirements, injection equipment and safety, organic fertilizers, and much more.
 • Proportional fertigation and required equipment are discussed in detail.

8-10. Introduction, Methods/Management, and Findings