Risk based survey

08/29/2023

Current proposed program

Number and percentage of STRs in each county that fall within each distance to Commercial Citrus locations (considering all citrus acreage size)

County	<=250m	<=500m	<=750m	<=1000m	<=1250m	<=1500m	Total STR in County
San Bernardino	22 (1.77%)	42 (3.38%)	64 (5.14%)	91 (7.32%)	115 (9.24%)	138 (11.09%)	1,244 (100%)
Riverside	45 (3.58%)	74 (5.89%)	111 (8.84%)	151 (12.02%)	192 (15.29%)	246 (19.59%)	1,256 (100%)
San Diego	66 (5.48%)	143 (11.88%)	203 (16.86%)	253 (21.01%)	298 (24.75%)	331 (27.49%)	1,204 (100%)
Ventura	54 (13.47%)	94 (23.44%)	129 (32.17%)	149 (37.16%)	174 (43.39%)	199 (49.63%)	401 (100%)
Santa Barbara	11 (4.93%)	23 (10.31%)	30 (13.45%)	47 (21.08%)	60 (26.91%)	70 (31.39%)	223 (100%)
Los Angeles*	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1,760 (100%)
Orange	1 (0.16%)	2 (0.33%)	11 (1.81%)	26 (4.28%)	37 (6.09%)	46 (7.57%)	608 (100%)
Imperial	2 (1.41%)	2 (1.41%)	4 (2.82%)	4 (2.82%)	4 (2.82%)	4 (2.82%)	142 (100%)
Total	201	380	552	721	880	1,034	6,838

*No Commercial Citrus within the county

STRs with Commercial Citrus buffer within ~1 mile

CDFA survey capacity: ~9,000 properties or ~350 grids a year (assuming 50 / 50 split)

Number of STRs containing each range of total commercial citrus acreage that fall within each distance

		Distance to Commercial Citrus								
		<=250m	<=500m	<=750m	<=1000m	<=1250m	<=1500m			
sur	All Sizes	201	380	552	721	880	935			
I Cit	> 1 Acres	165	314	457	593	734	760			
ercia	> 5 Acres	102	217	326	451	560	565			
amm Acre	> 10 Acres	66	166	263	371	476	461			
al Co	> 25 Acres	21	95	177	241	331	326			
Tot	> 50 Acres	3	47	108	159	224	198			

STRs with Commercial Citrus buffer within ~1 mile

ACP Detections Along Citrus Highways 7/17/14 - 7/17/2023

Effective 4/1/2017, all citrus fruit must be safeguarded while in transit by either covering the load with a tarp, an insect proof barrier, or transporting the fruit in an enclosed container. Prior to 2017, citrus fruit could be moved without safeguarding the load in transit.

The tables below show the number of Pest Damage Records (PDR) with a confirmed Asian citrus psyllid (ACP) detection prior to and after the safeguarding requirement became effective. A single PDR may have multiple ACP detections. Detections in southern California were not considered as the area is generally infested with ACP

Highway 99							
	2014 - 2017	2018 - 2023					
1 Mile Buffer	210	33					
2 Mile Buffer	315	43					

Highway 58						
	2014 - 2017	2018 - 2023				
1 Mile Buffer	64	13				
2 Mile Buffer	164	17				

Highway 190						
	2014 - 2017	2018 - 2023				
1 Mile Buffer	21	4				
2 Mile Buffer	24	5				

Highway 198						
	2014 - 2017	2018 - 2023				
1 Mile Buffer	17	13				
2 Mile Buffer	43	21				

Bulk Citrus Fruit Moved Between Zones January 1, 2022 - December 31, 2022

0	rigin County	Spray	and Harves	st Bins Mo	ved To	Fiel	d Cleaned E	Bins Moved	d To	Grat	e Cleaned	Bins Move	ed To	Wet	Washed I	Bins Move	d To	QC 1543	Total
	igin county	Zone 2	Zone 4	Zone 5	Zone 6	Zone 2	Zone 4	Zone 5	Zone 6	Zone 2	Zone 4	Zone 5	Zone 6	Zone 2	Zone 4	Zone 5	Zone 6	Zone 6	TOtal
	Fresno	-	5,088			-				-				-					5 <i>,</i> 088
	Kern	-	26,186		3,000	-	490	100		-			34,950	-			100		64,826
Zone 2	Kings	-				-				-				-					0
	Tulare	-	69,307	0	0	-	11,942		20	-				-			48		81,317
	Zone 2 Totals	0	100,581	0	3,000	0	12,432	100	20	0	0	0	34,950	0	0	0	148	0	151,231
	Monterey	19,999	2,400			48				2,000	46,501								70,948
Zone 3	San Luis Obispo	30,749	6,643			21,843	94		96				1,008	53			96		60,582
	Zone 3 Totals	50,748	9,043	0	0	21,891	94	0	96	2,000	46,501	0	1,008	53	0	0	96	0	131,530
	Santa Barbara	4,018	-	3,744	4,512	8,795	-		92		-	192	113		-		24		21,490
Zone 4	Ventura	148,872	-		8,512	14,969	-	384	7,913		-	240	9,606	334,321	-	0	8,482		533,299
	Zone 4 Totals	152,890	0	3,744	13,024	23,764	0	384	8,005	0	0	432	9,719	334,321	0	0	8,506	0	554,789
	Imperial	608	23,276	-			312	48				-				-		96	24,340
	Riverside	38,333	61,961	-	960		96	-			2,220	-		117,601	546	-		624	222,341
Zone 5	San Bernardino	443	14,658	-				-				-		1,704		-			16,805
	San Diego	2,376	4,548	-		708	48	-				-		7,629		-		148	15,457
	Zone 5 Totals	41,760	104,443	0	960	708	456	48	0	0	2,220	0	0	126,934	546	0	0	868	278,943
	_																		
	Orange	6,406	9,091	96															15,593
	Riverside	4,091	48		6,384	216			24			96	1,496	3,840	2,402		72		18,669
Zone 6	San Bernardino				1,488								192						1,680
	San Diego							_			-								0
	Zone 6 Totals	10,497	9,139	96	7,872	216	0	0	24	0	0	96	1,688	3,840	2,402	0	72	0	35,942
	Grand Totals	255,895	223,206	3,840	24,856	46,579	12,982	532	8,145	2,000	48,721	528	47,365	465,148	2,948	0	8,822	868	1,152,435
		Spray an	nd Harvest	507,797	44.06%	Fie	ld Cleaned	68,238	5.92%	Grat	e Cleaned	98,614	8.56%	Wet	: Washed:	476,918	41.38%	0.08%	

ACP Insect-Resistant Structure Breach Risk Model Guide (DRAFT)

This risk model is to be used as a guide for evaluating the risk level of a breach of an insect-resistant structure. Qualifying factors listed below will be considered when determining the level of risk and appropriate regulatory path forward following a breach but are not comprehensive. The Risk Assessment Team will consider all available information before recommending action and any breach may warrant recommendations not listed in this guide.

A breach is defined as any hole or opening in an insect-resistant structure larger than approximately 0.3 square millimeters (0.5mm x 0.6mm) in size, large enough for an Asian citrus psyllid (ACP) to enter.

Risk Level	Qualifying Factors	Possible Result(s)*				
	Small sized breach					
	No ACP detections within 5 miles of the nursery within the prior					
Low	3 months	Hold for 1 or 2 inspection cycles				
	Breach was repaired or an effective safeguard was put in place					
	within an hour					
	Moderate sized hole or breach of structure					
	Multiple ACP have been detected within 5 miles of the nursery	Hold for 2 inspection cycles				
	within the prior 3 months					
Moderate	Nursery is located within the ACP generally infested area	Scion trees on hold and tested for				
	Breach was reparied within 1 day	viruses and viroids after at least 5 months				
	Mother/increase trees are housed within the breached					
	structure					
	Large breach, entire wall(s) removed, or roof was removed					
	Nursery is located within the ACP generally infested area	Hold until plants are sampled and				
	Nursery is located within a huanglongbing (HLB) quarantine or	tested				
	within 5 miles of a Clas+ ACP detection					
Severe	Breach was not repaired within 1 day	All plants considered outdoor				
	Mother/increase trees are housed within the breached	nursery stock				
	structure					
	Intentional breach of structure without prior approval by the	Structure is de-certified (1)				
	Risk Assessment Team					

*Any hold issued applies to shipments of plants from a certified insect-resistant structure. Plants may be moved or shipped as outdoor nursery stock while the hold is in effect. Inspections or sampling and testing following a breach must be complete with negative results before a structure can be recertified.

(1) Structure must be empty of all plant material for at least 1 ACP lifecycle to start the re-certification process

California Citrus Risk Assessment Team

Keith Okasaki - CDFA Citrus Pest and Disease Prevention Division	Keith.Okasaki@cdfa.ca.gov
Luis Oquendo-Diaz - USDA APHIS PPQ	Luis.OquendoDiaz@usda.gov
Francisco Quintana - USDA APHIS PPQ	Francisco.L.Quintana@usda.gov
Kristina Weber - CDFA Nursery Services	Kristina.Weber@cdfa.ca.gov

CPDPC Science Subcommittee 15min talk: Data science results for HLB management August 29, 2023 Rob Clark

Caveats before I begin

- We're <5 months in and bringing a new, outside perspective
- HLB monitoring & management is complex and its hard to simplify results (interpret carefully!)
- 3. Management recommendations are still tentative at this early stage

Major analyses

- 1. Historical analysis of HLB surveys
- 2. First analysis on effectiveness of tree removal
- 3. Protype machine-learning models for HLB surveys
- 4. Ongoing: Historical analysis of quarantines

Major analyses

Historical analysis of HLB surveys

I completed a time series analysis to reveal when trend changes were statistically significant

Citrus trees with HLB started to increase in 2017 and then accelerated in 2021. New data from April to July suggest this trend is continuing.

ACP with CLas increased in 2019, with a plateau between 2019 and 2022. A recent spike in CLas+ ACP started in Oct. 2022.

Implications of trends

- A. The plateau period is partially due to decreased sampling during the covid19 pandemic
- B. The increase in CLas+ trees since 2021 is steady
- C. Early 2023 had the highest rate of CLas+ Asian citrus psyllid – the correlation with more CLas+ trees suggests very recent growth in CLas+ reservoir

I confirmed that increasing sampling effort (# of PCR tests) does indeed correlate with more detections of HLB in trees

Don't reduce testing capacity below 5000 tests per month

There is not convincing evidence to go a lot higher above 7,500

Sampling effort analysis

- A. As it stands, it looks as if more PCR tests yields more positive detections
- B. Tentatively, this result means more extensive testing may yield more detections
- C. While statistically significant, this trend is not a perfect fit to the data

Major analyses

First analysis on effectiveness of tree removal

I focused on the 'reservoir hypothesis' where tree removals keep the regional, overall amount of CLas inoculum low

Classic epidemiology: Managing reservoir size decreases the chance of pathogens moving outside quarantine areas

I compared ct values in locations where tree removals happened quickly versus locations where tree removals were delayed

Analysis on tree removal delay

- A. I tabulated the time difference between sampling events and physical removal of trees ("delay")
- B. The analysis examined 1.4x1.4km cells as the unitof replication
- C. If the reservoir hypothesis is true, increased delays should lead to decreased ct values (more inoculum) each cell

In locations with delayed tree removal, ct values were lower (more inoculum), meaning tree removals probably impact local ct values

In cells where tree removals took >100 days, future tree detections had more CLas

Accounting for climate, county, and year effects, there is a pattern where tree removal is important for managing inoculum in a confined area

Faster removal times are more important in hotter, drier areas just within the area of historical removals

Tree removal analysis

A. In terms of *just* the Clas+ reservoir, tree removals do appear to affect surrounding ct values

- B. This evidence is a correlation only, without a different sampling design we can't pin down cause-effect
- C. To my knowledge, this is the only evidence showing tree removals affecting CLas+ reservoir in nearby trees, but ct values are still decreasing year to year

Major analyses

Protype machine-learning models for HLB surveying

I wanted to demonstrate that a model training and model validation approach would be compatible with HLB detection data in California

Working with my team at EcoData, we performed the first prototype analysis on HLB+ trees with machine-learning and climate data

Predicted HLB+ presence/absence

Compared to 2022 plant survey data

A core question: can we make predictions outside areas where a machine-learning model is trained?

Yes: we were able to make equally accurate predictions outside the area used to train the model

Machine learning conclusions

- A. The survey efforts have generated enough data to meet the assumptions of machine-learning techniques
- B. As simple prototype is already promising as a predictive tool. It can make reasonably accurate predictions outside areas the model was trained on.
- C. Dramatically more data needs to be fed into this model before it is completed, and it is still not yet optimized

Major analyses

Ongoing: Historical analysis of quarantines

I am currently reconstructing the history and intent of quarantines to hone the best analytical approach I am currently developing maps and models to examine historical trends in quarantines. These analyses should be complete by late September or early October.

Quick summary

- A. There is a recent uptick in CLas+ Asian citrus psyllid and host trees starting since early 2023
- B. One of the core arguments for doing tree removal (managing CLas+ reservoir) has limited statistical support
- C. Survey efforts have collected enough data to support more sophisticated predictive models