Journal of Food Protection, Vol. 83, No. 6, 2020, Pages 943–950 https://doi.org/10.4315/JFP-19-467 Published 2020 by the International Association for Food Protection Not subject to U.S. Copyright

Research Note

Pooling of Laying Hen Environmental Swabs and Efficacy of Salmonella Detection

DEANA R. JONES,¹* RICHARD K. GAST,¹ PRAFULLA REGMI,²† GARRETT E. WARD,³ KENNETH E. ANDERSON,⁴ AND DARRIN M. KARCHER²

¹U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Egg Safety and Quality Research Unit, Athens, Georgia 30605 (ORCID: https://orcid.org/0000-0003-3519-6974 [D.R.J.]); ²Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907; ³Department of Poultry Science, University of Georgia, Athens, Georgia 30602; and ⁴Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina 27607, USA

MS 19-467: Received 27 September 2019/Accepted 16 January 2020/Published Online 19 May 2020

1

Objective

Determine efficacy of detecting *Salmonella* Enteritidis, Heidelberg, Typhimurium, and Kentucky in single and pooled swabs

Materials and methods

- Drag swabs (cage-free high-rise) and manure scraper blade swabs (conventional cage) collected
 - Same flocks entire study
 - Pullet, post-peak, and post-molt
 - In accordance with FDA Egg Rule requirements
- Transported to laboratory on ice
- Refrigerated overnight

3

Inocula

- Salmonella Enteritidis (1000 ppm streptomycin resistant)
- Salmonella Heidelberg (200 ppm nalidixic acid resistant)
- Salmonella Typhimurium (200 ppm nalidixic acid resistant)
- Salmonella Enteritidis (1000 ppm streptomycin resistant) + Salmonella Kentucky (200 ppm nalidixic acid resistant)

Materials and methods

- Single swab inoculation
- Inoculation levels
 - Low = ~10 cfu
 - High = ~100 cfu
- Pools (one swab/pool contained inoculum)
 - 1 swab
 - 2 swabs
 - 4 swabs

5

Materials and methods

- Non-selective enrichment (BPW)
- Selective enrichment
 - Tetrathionate (TT)
 - Rappaport-Vassiliadis (RV)
- Selective plating on Brilliant Green Sulfur + 200 ppm nalidixic acid or 1000 ppm streptomycin
- For each selective enrichment method, n = 24 pools each dose and swab/pool combination per inoculum
- Chi-square analysis

Results

7

11

Outcomes

- Single swabs always had best rate of recovery
- Better recovery of lose dose inoculums in drag swabs vs manure scraper blade swabs
- Pooling swabs generally resulted in depressed rate of recovery
 - More pronounced in manure scraper blade swabs
- Dual selective enrichment resulted in greatest possible detection