CAMPYLOBACTER JEJUNI & RELATED ORGANISMS

Michele Jay-Russell
PHR 250
April 4, 2007

Taxonomy made simple (?)

“The Great Unknown”

\[\text{genus Vibrio} \rightarrow \text{restricted} \]

\[\text{genus Campylobacter} \]

\[\text{genus Arcobacter} \quad \text{genus Helicobacter} \]

Historical aspects: the Vibrio days

- McFadyean & Stockman, British veterinarians, epizootic abortion in ewes (1909)
- Theobald Smith, investigating infectious abortions of U.S. cattle (1919): Vibrio fetus

Historical aspects: the Vibrio days (2)

- Jones, Little, & Orcutt, winter dysentery in U.S. calves (1931): Vibrio jejuni
- Doyle, swine dysentery (1944)

Historical aspects: the Vibrio days (3)

- Humans:
 - acute milkborne diarrhea, Vibrio jejuni (Levy, 1946)
 - abortion in two women, Vibrio fetus (Vinzent, 1947)
- King (1957): Vibrio fetus differentiated from "related vibrios"

Historical aspects: the new genus

- Sebald and Veron (1963): differentiation from cholera and halophilic vibrios → genus Campylobacter ("curved rod")
- C. jejuni (+ C. coli) perhaps foremost bacterial causes of diarrhea in humans; a classical zoonosis—pathogen or commensal in animals
Campylobacter species

- C. coli
- C. concisus
- C. curvus
- C. fetus
- C. gracilis
- C. helviticus
- C. hominis
- C. hyointestinalis
- C. insulae
- C. jejuni
- C. lanienae
- C. lari
- C. mucosalis
- C. rectus
- C. shueae
- C. sporerum
- C. upsaliensis

Scanning electron microscope image of Campylobacter jejuni, illustrating its corkscrew appearance and bipolar flagella (Altekruse S, 1999).

Background

- 3 Campylobacter species account for 99% of human illnesses: C. jejuni, C. coli, and C. lari
- Campylobacter species isolated from the intestinal tract of a wide variety of wild and domestic animals especially chicken, cattle, and pig (asymptomatic infection)

Campylobacter: present situation

- Most commonly reported cause of bacterial gastroenteritis in the developed world, with ~2.5 million cases per year in the U.S.
- Foodborne outbreaks mostly associated with consumption of undercooked poultry, meats, and unpasteurized milk

U.S., 1998–2002: Campylobacter spp., 61 outbreaks comprising 1,440 cases (ranked #7); leader in CA FoodNet (Bay Area)
- Largest outbreak documented in the U.S. ~3,000 cases, water (city)
- Largest milkborne outbreak in U.S., ~1,600 cases, California 2006

CAST (1994) estimates: 170,000 to 2,100,000 cases/yr, 120–360 deaths—presumably all foodborne; average medical and productivity cost/case $920, annual total near $1 billion

Cases of Campylobacter and other foodborne infections by month

Source: Altekruse S, 1999
Incidence (/100,000) of Diagnosed Infections, 2002 (source: FoodNet, CDC)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>All Sites</th>
<th>CA FN</th>
<th>Alameda</th>
<th>Contra Costa</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>13.3</td>
<td>31.5</td>
<td>26.3</td>
<td>24.9</td>
<td>48.2</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>1.3</td>
<td>1.0</td>
<td>0.7</td>
<td>0.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Cyclospora</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>E. coli O157</td>
<td>1.7</td>
<td>1.4</td>
<td>1.8</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Listeria</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Salmonella</td>
<td>16.2</td>
<td>16.1</td>
<td>17.6</td>
<td>10.8</td>
<td>19.3</td>
</tr>
<tr>
<td>Shigella</td>
<td>10.3</td>
<td>11.4</td>
<td>8.2</td>
<td>6.0</td>
<td>23.6</td>
</tr>
<tr>
<td>Vibrio</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>Yersinia</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* Per 100,000 population

FoodNet data (US)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter (/10⁵)</td>
<td>21.7</td>
<td>12.7</td>
</tr>
<tr>
<td>E. coli O157 (/10⁵)</td>
<td>2.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Listeria (/10⁶)</td>
<td>4.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Salmonella (/10³)</td>
<td>13.5</td>
<td>14.6</td>
</tr>
<tr>
<td>Shigella (/10³)</td>
<td>7.7</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Characteristics of Campylobacter (classification)
- Small, nonsporeforming, gram-negative bacteria — curved, S-shaped, or spiral
- 0.5–8 µm long, 0.2–0.9 µm diameter
- Single polar flagellum at one or both ends — rapid, darting, corkscrew-like motility

Characteristics of Campylobacter
- Many species and subspecies
- Many serotypes of C. jejuni, based on somatic, capsular, and flagellar antigens
- Tremendous genetic diversity (“naturally competent”): multiple molecular typing methods: PFGE, MLST, AFLP

Survival and growth in the environment
- Labile to freezing, drying, and temperatures from 48°C up
- Stable at 4°C, dies more quickly at 25°C than at 4 or 30°C
- Some losses at atmospheric levels of O₂; optimum salt level 0.5%
- Growth above pH 4.9, good at 5.5–8, optimum at 6.5–7.5
Infections in humans

- Affects young adults as often as infants
- Human disease principally (~90%) from *C. jejuni*, also *C. coli*
- Infectious dose is apparently "small"
- Incubation 2–5 (1–10) days
- Duration 2–5 days, sometimes 10 days

Pathogenesis is poorly understood: both enteroxotic and enteroinvasive strains may exist

- Diarrhea (watery to bloody with pus & WBC), abdominal pain, malaise, fever, nausea, and vomiting
- Rarely febrile convulsions, arthritis, Guillain-Barré syndrome, or meningitis; may mimic acute appendicitis; many infections asymptomatic

Infections in humans

- Shedding 2–7 weeks if antibiotic treatment is not done; minor source of human infection, except for an occasional food worker contaminating food
- Lasting immunity follows infection

Campylobacter in animals:

Reservoirs

- Common in cattle, swine, sheep, and especially poultry (also companion animals and rodents)
- Carried in gall bladder and small and large intestines

Campylobacter in animals:

Transmission

- Shed in feces, which may contaminate edible portions of carcass
- Occurrence in milk may indicate shedding via the mammary gland, but mastitis is seldom involved.

Campylobacter insulaenigrae Isolates from Northern Elephant Seals (Mirounga angustirostris) in California

Robyn A. Stoddard,1,2* William G. Miller,3 Janet E. Foley,4 Judy Lawrence,2 Frances M. D. Guilland,2 Patricia A. Conrad,1 and Barbara A. Byrne1

Departments of Pathology, Microbiology, and Immunology,1 Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, 2 The Marine Mammal Center, Sausalito, California, 3 Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, 4 Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853

Applied and Environmental Microbiology, March 2007, p. 1729-1735, Vol. 73, No. 6
Prevalence of *Campylobacter* in foods

- Eggs — not in outbreaks
- Poultry — common at retail; fecal cross-contamination in processing
- Meat — most common on swine carcasses; sometimes on beef and lamb

Prevalence of *Campylobacter* in foods

- Milk and milk products — readily killed by pasteurization; raw milk is a leading vehicle in U.S.
- Other foods — mainly animal products; fertilization of vegetables with manure may cause contamination

Prevalence of *Campylobacter* in feed and water

- Animal feed — subject to contamination from bird and rodent droppings
- Water — at least two drinking water-associated outbreaks (≥130 cases), U.S., 2003–2004

Foods most often associated with human *Campylobacter* infections — U.S.

- Raw milk
- Poultry
- Other foods via cross-contamination

Detection of *Campylobacter*

- Samples ideally stored at 4°C in N₂ atmosphere, with 0.01% sodium bisulfite added
- Expect low contamination levels: pre-enrichment likely to be necessary
- Slow-growing organism — isolation medium must be selective, to inhibit competitors.
Detection of Campylobacter

- Optimum atmosphere is 5% O₂, 10% CO₂, 85% N₂; candle jars are marginally useful
- Incubation generally 42°C
- Antibiotics used in some selective media may inhibit some strains of C. jejuni, also C. coli; cefaperazone is presently recommended, not cephalothin

Identification of Campylobacter

- Gram-negative, appropriate appearance, growth temperature and atmosphere; oxidase and catalase positive; hydrolyzes hippurate and indoxyl acetate; reduces nitrate; produces H₂S; some tests require special precautions
- Nonculture detection methods and epidemiologic typing systems available

Multilocus Sequence Typing

- Approach takes advantage of information from sequenced genomes of pathogenic bacteria
- Exploits the genetic variation present in 7 housekeeping loci to determine the genetic relatedness between isolates: aspA, glyA, gltA, glnA, pgm, tkt, uncA

Multilocus sequence typing

Chromosomal DNA

Multilocus Sequence Typing (MLST)

- Amplify ≈ 450-bp internal fragments of seven housekeeping genes
- Sequence the seven gene fragments
- Each different sequence at a locus is given a different allele number
- The allele numbers at the seven MLST loci gives the allelic profile of the isolate
- Compare the allelic profile of isolate to those of all isolates within a central database on the web via the internet (www.mlst.net)

Arcobacter (1991,1992)

- "Aerotolerant Campylobacter"
- Grow at 15, 25, and 30°C, but variably at 37 and 42°C
- Similar appearance: Gram-negative, curved, S-shaped, or helical; single polar flagellum, 1–3 µm long, 0.2–0.9 µm diameter
- May grow aerobically at 30°C and anaerobically at 35–37°C
Arcobacter
- "Frequently isolated from cattle and pigs suffering from abortion and enteritis"
- Human illnesses from two of the species include bacteremia, endocarditis, peritonitis, and diarrhea

Arcobacter Species in Humans
- During an 8-year study period, *Arcobacter butzleri* was the fourth most common Campylobacter-like organism isolated from 67,599 stool specimens in Belgium
- Observations suggest that *A. butzleri* displays microbiologic and clinical features similar to those of *Campylobacter jejuni*
- *A. butzleri* was more frequently associated with a persistent, watery diarrhea
- Emerging infection?

Source: Vandenberg O, 2004

Helicobacter pylori
- Discovered in 1982, separated from genus *Campylobacter* in 1989
- Looks like *Campylobacter*, microaerophilic, optimum growth at 37°C
- Culture characteristics, etc., need not be discussed here

Helicobacter pylori
- Clinically important as a probable cause of chronic gastritis and peptic and duodenal ulcer in humans
- Human infection is widespread (nonhuman reservoirs of this species unknown); shed with feces and may contaminate food, but foodborne transmission is not clearly established

Summary: three genera
- *Campylobacter*: a leading bacterial cause of foodborne disease in U.S.
- *Arcobacter*: also can cause foodborne disease.
- *Helicobacter*: causes ulcers; may not be foodborne.