

LAND, AIR AND WATER RESOURCES University of California, Davis

Climate Change + Sustainable Agricultura Environmental Quality + Landscape Processes

Nitrogen removed with harvested crops

Daniel Geisseler

Nutrient Management Specialist, UC Davis

FREP - WPHA Conference

November 1, 2017

Overview

- Background
- Factors contributing to variability of N concentrations in harvested crops
- N removed from field with different crops
- Conclusions

- The Central Valley Irrigated Lands Regulatory Program aims to reduce nitrate leaching to the groundwater
- The ratio of N applied to N removed is a key metric for the State and Central Valley Regional Water Boards

How to best determine N applied/N removed?

- N application rate reported by growers
- N removal rate = yield × N concentration
- Yield is reported by growers
- N concentration can be based on
 - Representative samples taken from the fields at harvest
 - Average values

Nitrogen concentrations in harvested plant parts - A literature overview

Daniel Geisseler 2016

How is this related to the N Management Plan?

13 ** N removed

** Your coalition
 will provide
 the method to
 be used to
 estimate N
 removed

Ν	MP Manageme	ent Unit:	-
1. Crop Year (Harvested):		4. APN(s):	5. Field ID (s)
2. Member ID#			
CROP NITROGEN MANAGEMENT PLANNING		N APPLICATIONS/CREDITS	15. Recommended Planned N
6. Crop		17. NITROGEN FER	TILIZERS APPL
7. Production Unit		18. Dry/Liquid N (lbs/ac)	
8. Projected Yield		19. Foliar N (I bs/ac)	
9. N Recommended		20. ORGANIC	MATERIAL N
10. Acres POST PRODUCTION AC	TUALS	21. Available N in Manure/Compost (lbs/ac estimate)	
11. Actual Yield (Units/ac)		22. Total N Applied + Available (lbs per ac) (Box 18+19+21)	
12. Total N Applied (Ibs/ac)		23. NITROGEN	CREDITS (EST)
13. ** N Removed (lbs N/ac) 14. *** Notes:		24. * Available N carryover in soil; (annualized lbs/ac)	
		25. *N in Irrigation water (annualized, Ibs/ac)	

NITROGEN MANAGEMENT PLAN WORKSHEE

Content of the N removal report

- Summary of the available literature
- Includes information for 70 commodities grown in the Central Valley
- Information includes
 - Weighted average
 - Number of observations
 - Range of values
 - Coefficient of variability (in % of the mean)

Key findings – N concentrations are highly variable I

Factors affecting N concentration in most crops:

- Year-to-year variability
- Variety
- Site
- N availability
- Availability of other nutrients

Source of variability – California wheat

- Data from variety trials (irrigated wheat)
- 4 Central Valley locations
- 3 years (2013-15)
- 5 varieties
 - ⇒ 60 data points

Wheat variety trials: http://smallgrains.ucanr.edu/

Source of variability – California nectarines

- 2 varieties:
 - Flavortop, Fantasia
- 5 N rates:
 - 0-325 lbs/acre

Brown et al., 2012; Brown, 2013

Key findings – N concentrations are highly variable I

Factors affecting N concentration in most crops:

- Year-to-year variability
- Variety
- Site
- N availability
- Availability of other nutrients

Key findings – N concentrations are highly variable II

Factors affecting N concentration:

- Dry matter content
 - Silage, onions
- Fruit size
 - Stone fruits
- Growth stage and season when harvested
 - Forage crops
- Rootstock
 - Trees and vines
- Percent marketable yield
 - When total yield is removed and cull or trash is not returned

N concentrations in nuts and N removed

Commodity	lbs N/ton	tons/acre ¹⁾	lbs/acre
Almonds	136	1.11	151
Pistachios	56.1	1.20	67
Walnuts	31.9	1.98	63

¹⁾ Yield based on state average values from USDA survey; yield for shelled almonds and in-shell postachios and walnuts

In addition, 15-40 lbs/acre accumulate each year in permanent tissues

N concentrations in citrus and N removed

Commodity	lbs N/ton	tons/acre ¹⁾	lbs/acre
Grapefruit	2.96	17.33	51
Lemons	2.58	17.50	45
Oranges	2.96	12.58	37
Tangerines	2.54	13.71	35

¹⁾ Yield based on state average values from USDA survey

In addition, 15-40 lbs/acre accumulate each year in permanent tissues

N concentrations in wine grapes and N removed

 Nitrogen concentration in wine grapes averages 3.6 lbs/ton

County	tons/acre ¹⁾	lbs/acre
California	7.2	26
San Luis Obispo	2.5	9
Napa	3.4	12
Fresno	10.0	36
Tulare	15.3	55

¹⁾ State average yield from USDA survey, county yields

from county crop reports

Nitrogen accumulation in the vines not included

N concentrations in grains and N removed

Commodity	lbs N/ton	tons/acre ¹⁾	lbs/acre
Barley	33.6	1.67	56
Corn	24.0	4.89	117
Oats	37.7	1.22	46
Sorghum	33.0	2.63	87
Winter Wheat	43.0	2.31	99
Durum Wheat	42.1	2.96	124

¹⁾ Yield based on state average values from USDA survey

Distribution of N in grain and straw

For comparison: N, P, K in grains and straw

• For comparison NPK in grains and straw

Conclusions

- For many crops, little data available from California
 - ⇒ Samples need to be collected and analyzed
 - ⇒ FREP just awarded a grant to the Southern
 San Joaquin Valley Management Practices
 Evaluation Program to improve the dataset
- N concentration can be highly variable; many factors contribute to variability

Alternative to using average values

Taking samples from each field by growers

- Costly
- Time consuming
- Logistics may be challenging
- Samples need to be representative of the field

Challenges of taking a representative sample

Conclusions

- For many crops, little data available from California
- N concentration can be highly variable; many factors contribute to variability
- Despite variability, using average values may not be less accurate than asking growers to take and analyze their own samples
 - ⇒ Ratio N applied/N removed can be inaccurate for a specific field in a certain year
 - ⇒ Ratio should only be used across multiple years and fields

Can N removed be used for N agronomic N budgets?

- Yes, but additional information is needed:
 - Harvest index (N removed/total N in biomass)
 - N use efficiency
- More common for tree crops
- N requirement may be overestimated
- Comparison of N applied/N removed across many fields in the area allows evaluating a nutrient program

Acknowledgement

- Kings River Watershed Coalition
- John Dickey, PlanTierra
- Reviewers
- Irfan Ainuddin, Patricia Lazicki