

PROJECT INFORMATION				
USDA Project Number: 59				
RECIPIENT ORGANIZATION NAME:	RECIPIENT ORGANIZATION NAME: California Department of Food and Agriculture		ture	
PROJECT TITLE:	PROJECT TITLE: Biological Control of Brown Marmorated Strink Bug,		trink Bug,	
	Halyomorphpa Halys (Pentatomidae)			
CDFA GRANT NUMBER:	CDFA GRANT NUMBER: SCB16059			
RECIPIENT'S PROJECT CONTACT				
NAME:	Charles H. Pick	cett		
PHONE: (916) 262-2053				
EMAIL:	EMAIL: Charlie.Pickett@cdfa.ca.gov			
PROJECT REPORT				
ANNUAL REPORT TYPE:	ANNUAL REPORT TYPE: 2 nd Annual Report			
REPORTING PERIOD: START DATE: 10/1/17 END DATE: 9/30/18			9/30/18	

ACCOMPLISHMENTS

OCTOBER 2017 – MARCH 2018

#	Objective	Activity and Accomplishment
1	Objective 1: Complete host specificity testing for <i>T. japonicus</i> , a novel, two millimeters in length parasitoid from China that attacks the eggs of Brown Marmorated Stink Bug (BMSB).	Host testing was completed and was reported on in previous reports.
2	Objective 2: Survey California for egg parasitoids attacking BMSB	Northern California: Although the BMSB average trap catch dropped slightly in northern California over the last 3 years, from 0.77 per trap per date in 2016 to 0.24 in 2017, its population statewide continued to expand. BMSB has been found to be established in 15 counties, up from 10 reported in fall of 2016. In northern California, a total of 513 sentinel egg cards were placed in the field. In most locations the team attached cards to both the tree trunk and one of its leaves. Egg parasitism averaged 3.5 percent for cards on tree trunks and 13 percent when placed on a leaf. BMSB were far more likely to lay their eggs on leaves than the bark of the tree, and these parasitoids appeared to search leaves far more readily

#	Objective	Activity and Accomplishment
		than the trunks of trees. The target
		parasitoid Trissolcus japonicus was never
		found to attack these eggs. In addition to
		inland locations with known BMSB
		populations, cards were placed on the
		northern California border shared with
		Oregon. Trissolcus japonicus was actively
		released and established in the southern part
		of Oregon. The sentinel cards were also
		deployed in the San Jose area, an area with
		a high BMSB population and near areas of high commerce where BMSB eggs
		originating from China (and parasitoids)
		were more likely to be present. The native
		parasitoids emerging from sentinel egg
		cards were two species of chalcids,
		Anastatus sp. and Ooencyrtus, and three
		species of scelionids, T. euschisti, T.
		hullensis, and T. brochymenea. Most of the
		emerging parasitoids were T. euschisti.
		Southern California: BMSB was established in two southern California counties, Los Angeles and Orange. Traps captures were consistently relatively low, compared to the situation on the east coast, with less than 100 adults per field season for all sites beginning in 2014. However, BMSB had noticeably been spreading within established Southern California counties and this was clear from field collections and compiled reports from the public.
		Approximately 312 egg cards were
		deployed in the field across sites in Los
		Angeles, Fresno and Madera. There was
		evidence of limited predation and parasitism
		at these sites. Recovered parasitoids were
		identified, with a primary focus on <i>Trissolcus</i> sp. Presently, <i>T. euschisti</i> was
		recovered and some <i>Anastatus</i> sp. as well.
		The goal will be to combine pooled sentinel
		card California datasets to provide
		stakeholders with greater perspective of the

#	Objective	Activity and Accomplishment
		natural enemies that could be used to
		enhance biological control practices at the
		orchard/field level.

APRIL – SEPTEMBER 2018

#	Objective	Activity and Accomplishment
1	Objective 1: Complete host specificity testing for <i>T. japonicus</i> , a novel, two millimeters in length parasitoid from China that attacks the eggs of BMSB.	A total of 452 replicates were completed as part of the safety testing of the BMSB parasitoid, <i>Trissolcus japonicus</i> . These efforts accounted for more than 12,000 stink bug eggs. Dissections of stink bug eggs that did not yield successful emergences (either parasitoids or nymphs) were completed. These data were compiled for analyses with results and conclusions. Preliminary results indicated seven of ten non-BMSB stink bugs from California were parasitized by <i>T. japonicus</i> , in no-choice tests, but levels of egg parasitism were always higher on host
2	Objective 2: Survey California for egg parasitoids attacking BMSB	Northern California: A total of 564 sentinel cards with BMSB eggs were placed at 54 locations in the Northern California region over 5 months, May through September 2018. Cameras were placed at six of these locations to conduct time-lapse imaging of predation over a continuous 72-hours. These images helped to identify the predators and parasitoids attacking the sentinel eggs. Between the imaging and sentinel eggs the tam will be able to identify what was removing the eggs. This was the first attempt to identify what natural enemies could potentially feed on these eggs. Conservation of the more important predators will likely be considered for pest management programs. The team will also identify parasitoids emerging from the same eggs, of which one could be <i>Trissolcus japonicus</i> , the self-introduced parasitoid from China known to specialize on BMSB. If <i>Trissolcus japonicus</i> is found in southern

#	Objective	Activity and Accomplishment
#	Objective	Activity and Accomplishment or northern California, this would be the
		first record for the state and entire
		southwestern United States. Furthermore,
		the detection of <i>Trissolcus japonicus</i> in the
		field would expedite efforts to release this
		natural enemy for BMSB control in the
		northern San Joaquin Valley where feeding
		damage from BMSB populations have been
		recorded in commercial almond and peach
		orchards.
		Southern California: More than 500 sentinel
		egg cards consisting of BMSB and non-
		BMSB eggs were deployed in southern
		California during 2018 to monitor egg
		parasitoid activity. Several Trissolcus-like
		parasitoids were recovered from sites within
		Los Angeles County, the first county where
		BMSB established in southern California.
		Data from these sentinel cards were still in
		the process of being collected and pertained
		to levels of predation by generalist natural
		enemies (e.g. spider, lacewings larvae) and
		successful parasitism by specialized stink
		bug egg parasitoids. Parasitoids still needed
		to be identified, but once this portion has
		been completed the team can determine if
		the BMSB-parasitoid, Trissolcus japonicus,
		is already present in California.

CHALLENGES AND DEVELOPMENTS

OCTOBER 2017 – MARCH 2018

Challenge	Corrective Action and/or Project Change
Not applicable.	

Positive Development	Project Change
Not applicable.	

APRIL – SEPTEMBER 2018

Challenge	Corrective Action and/or Project Change
Dissections of stink bug egg masses took	Another workstation space was also created
longer than anticipated due to their small size	which will facilitated the dissection process.
and fragility of non-BMSB host eggs and	With this corrective action, no-choice and
limited microscope space.	choice dissections were recently completed.
	These data were in the process of being
	primed for statistical analyses.
One of the original BMSB monitoring field	Three new stink bug monitoring field sites in
sites in Sherman Oaks (Los Angeles County),	Long Beach near the Port of Los Angeles
which had a large infestation of BMSB, was	were added. The presence of BMSB and
sold off and was no longer accessible.	parasitoids that attack sentinel BMSB eggs in
Consequently, a new site needed to be	these areas was confirmed, thus adding new
identified.	detection information on the spread of BMSB
	in southern California.

Positive Development	Project Change
This year the team deployed both pyramid	Given the proven BMSB-detection efficacy of
and sticky panel traps during spring-summer	sticky panel traps (in comparison to the
months in southern California field sites. This	pyramid traps used in previous years) in
transition allowed the team to detect BMSB	southern California, the team deployed panel
in new areas where previous monitoring	traps in Fresno County. BMSB was detected
efforts with only pyramid traps yielded	in that region as early as June 2018. These
inconclusive results on the presence of	results confirmed that BMSB had established
BMSB.	in the interior of the San Joaquin Valley.
	Specialty crop stakeholder groups in the
	region have been alerted of this new
	development at conference meetings, through
	published articles, and by updating the BMSB
	distribution map on-line (webpage supported
	by the Center for Invasive Species Research
	Center at the University of California,
	Riverside).

OUTCOME AND INDICATOR RESULTS TO DATE

OCTOBER 2017 - MARCH 2018

Outcome and Indicator	Quantifiable Results
Outcome 4: Enhance the competitiveness of	The results showed that there was a serious
specialty crops through greater capacity of	lack of natural control of BMSB eggs by
sustainable practices of specialty crop	resident parasitoids in northern and southern
production resulting in increased yield,	California which only attacked from

Outcome and Indicator

reduced inputs, increased efficiency, increased economic return, and/or conservation of resources.

Indicator 2: Adoption of best practices and technologies resulting in increased yields, reduced inputs, increased efficiency, increased economic return, and conservation of resources.

Quantifiable Results

somewhere between 3.5 percent and 13 percent of eggs. Predation of egg masses was as high as 26 percent, but that was recorded from egg masses placed on trunks. In 2017 the team found only 8 percent of sentinel eggs placed on leaves had been attacked by predators. Much higher levels of biological control will be needed to provide significant control in urban and farm landscapes, highlighting the need for importing and releasing Trissolcus japonicus, known to prefer BMSB eggs over most other non-target host eggs. Unusually warm summers likely helped curb the buildup of BMSB in California, but that will not help during years with closer to normal temperatures, especially near coastal areas and foothills, and production areas of northern California.

Pest and egg parasitoid field surveys and the completion of safety testing results were a major accomplishment for securing future Trissolcus japonicus release permits and implementing a classical biological control program. The adoption of cost-saving biocontrol practices by stakeholder industries has been projected to secure economic returns for growers. Cost-effective field liberation of Trissolcus japonicus could occur by deploying Trissolcus japonicus -parasitized BMSB egg masses in the field using the sentinel card methods validated in California by the project team. Monitoring traps could also be used to confirm the presence of BMSB in the field. These pest and beneficial insect monitoring practices have been communicated through publications, webpages, and presentations, Information has been well-received by California agriculture stakeholders (pest control advisers, crop advisers, and industry leaders).

Outcome and Indicator	Quantifiable Results
-----------------------	-----------------------------

Outcome 5: Enhance the competitiveness of specialty crops through more sustainable, diverse, and resilient specialty crop systems.

Indicator 8: 46,000 growers/producers that gained knowledge about science-based tools through outreach and education programs.

Total views from the University of California, Riverside Web Page from January 2017 to March 2018 were 3,910 for BMSB English version and 98 for the Spanish version which was launched toward the end of the reporting period.

During this reporting period, four publications and one online outreach article were extended to stakeholders. The publications discussed the implications of BMSB feeding on specialty crops and efforts to provide sustainable pest control solutions and maintain competitive California production:

- Lara et al. 2017; <u>DOI:</u> 10.1093/jisesa/iex084
- Lara et al. 2018; <u>DOI:</u> 10.1080/00779962.2018.1438758
- Lara et al. 2018; CAPCA Adviser (volume 31, pg. 44-48) (publication distributed to 4668 subscribers)
- Lara et al. 2018; CISR (in Spanish)
- Western Farm Press Article (January 2018)

Presentations:

- Heteroptera Symposium, Monterey, California. April 2017 (200 attendees).
- Portland, OR, April 2017 (100 attendees).
- Western Regional Biological Control Working Group, Anza Borego Springs, California. October 2017 (60 attendees).
- California Food Processors annual meeting, Stockton, California. November 2017, (50 attendees).
- Lara, J.R., C. Pickett and M.S. Hoddle. Progress of BMSB biocontrol research in California. ESA 65th Annual Meeting. Denver, CO. November 7, 2017. (50 attendees).

Outcome and Indicator	Quantifiable Results	
	 Lara, J.R., C. Pickett and M.S. Hoddle. Developing a biological control program for BMSB. 101th Pacific Branch, ESA Annual Meeting. Portland, OR. April 2017 (35 attendees). 	

APRIL – SEPTEMBER 2018

AFRIL — SEFTEMBER 2010				
Outcome and Indicator	Quantifiable Results			
Outcome 4: Enhance the competitiveness of specialty crops through greater capacity of sustainable practices of specialty crop production resulting in increased yield, reduced inputs, increased efficiency, increased economic return, and/or conservation of resources.	Current data from field-deployed sentinel egg cards and wild egg masses showed that only a small percentage of BMSB eggs (roughly <1%) were attacked by egg parasitoids. The baseline levels of BMSB-mortality caused by these resident parasitoid species (yet to be identified), was not enough to manage BMSB populations in California, especially since the			
Indicator 2: Adoption of best practices and technologies resulting in increased yields, reduced inputs, increased efficiency, increased economic return, and conservation of resources.	distribution and severity of BMSB infestations (from urban to agricultural areas) had expanded each year. The findings from this project underscored the need to introduce effective BMSB natural enemies like <i>Trissolcus japonicus</i> . These results along with those from safety testing evaluations (Objective 1) were expected to facilitate efforts to secure <i>Trissolcus japonicus</i> field			
Outcome 5: Enhance the competitiveness of specialty crops through more sustainable, diverse, and resilient specialty crop systems. Indicator 8: 46,000 growers/producers that gained knowledge about science-based tools through outreach and education programs.	release permits. The project team updated the University of California, Riverside website to describe progress to date in both English and in Spanish. The English version was accessed 1,462 times over the last six months, and the was Spanish version, 45 times. A paper was recently published in an industry magazine, the California Association of Pest Control Advisors for Pest Control Advisors, that covered results and problems growers may encounter with respect to BMSB: Trouble Comes in Pairs: Invasive Stink Bugs in California.			

DISCUSSION OF ACTIVITIES PERFORMED (IF NEEDED)

OCTOBER 2017 - MARCH 2018

No additional information.

APRIL – SEPTEMBER 2018

No additional information.

UPCOMING ACTIVITIES

OCTOBER 2017 - MARCH 2018

No information provided at this time.

APRIL – SEPTEMBER 2018

Activity	Anticipated Completion
Publication of recommended BMSB management guidelines intended for an audience of specialty crop stakeholders in California.	Dec. 2018
Analysis of safety testing data and preparation of manuscript for publication in a peer-reviewed journal.	Jan. 2019
Analysis of survey studies, including imaging of sentinel egg predation.	Mar. 2019

FEDERAL EXPENDITURES

Cost Category	Amount Approved in Budget	Actual Federal Expenditures (Federal Funds ONLY)
Personnel	\$78,940.00	\$74,852.65
Fringe Benefits	\$38,633.00	\$37,390.90
Travel	\$7,724.00	\$7,687.05
Equipment	\$0.00	\$0.00
Supplies	\$5,329.00	\$5,013.42
Contractual	\$311,239.00	\$291,495.95
Other	\$300.00	\$300.00
Direct Costs Sub-Total	\$442,165.00	\$416,739.97
Indirect Costs	\$0.00	\$0.00
Total Federal Costs	\$442,165.00	\$416,739.97

Percentage of total federal funds expended to date94%

PROGRAM INCOME

Source/Nature (i.e., registration fees)	Amount Approved in Budget	Actual Amount Earned
Not applicable.	\$0.00	\$0.00
	\$0.00	\$0.00
	\$0.00	\$0.00
Total Program Income Earned	\$0.00	\$0.00