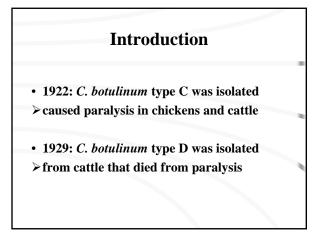
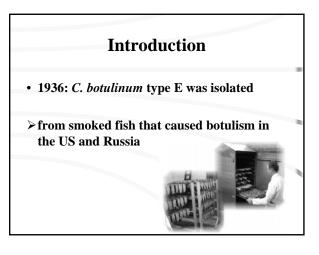
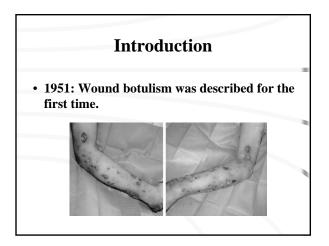
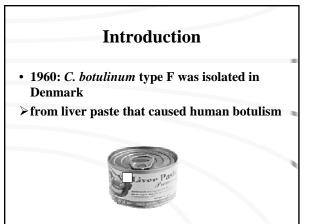

Introduction

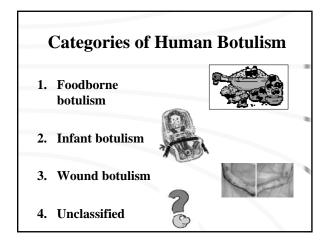

- The *C. botulinum* strain isolated by van Ermengem was later designated type B.
- The name of the disease was changed from Kerner's Disease to botulism.




Landman Findings Cont..


- →1904 The signs and symptoms were typical for botulism.
 - The antitoxin Landman produced did not cross-react with van Ermengem's strain.
 - Landman had discovered *C. botulinum* type A.

Introduction


- 1970: *C. botulinum* type G was isolated in Argentina
- ≻from soil
- > no reported cases of poisoning with this type in man or animals
- 1976: Infant botulism was recognized.

Introduction

- 1985: Hall et al. found that a strain of *C*. *barati* produced type F botulinal toxin.
- 1986: Aureli et al. and McCroskey et al. isolated strains of *C. butyricum* that produced type E botulinal toxin.
- 1973–1996: CDC documented 724 cases of verified foodborne botulism in American adults; mainly associated with home-canned vegetables.

Illness & Causative Agent

- Botulism is a serious paralytic illness.
- It is caused by a nerve toxin that is produced by the bacterium.
- It is a rare illness.
- It is much feared.

Categories of Human Botulism

Foodborne botulism

>This type of food poisoning is caused by the ingestion of foods containing the potent neurotoxin.

The neurotoxin is formed in the food during growth of *C*. *botulinum*.

Categories of Human Botulism

- Infant botulism
 - >It was first recognized in 1976.
 - > This type of poisoning affects infants under the age of 12 months.
 - > It is caused by the ingestion of *C*. *botulinum* spores.

Categories of Human Botulism

- Infant botulism
 - > The spores germinate & multiply, colonizing the intestinal tracts of infants, and produce neurotoxin.
 - >The neurotoxin travels through the bloodstream to the central nervous system and causes flaccid paralysis.

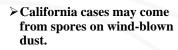
Categories of Human Botulism

Infant botulism

- Infant botulism has been reported in 41 states nationwide.
- The incidence is 1 case per 100,000 live births.
- Case fatality rate is below 4%.

Categories of Human Botulism

- Infant botulism
 - In California the incidence from 1985 to 1995 was 7.1 cases per 100,000 live births.
 - Estimated medical cost/case at \$85,000 (total cost = \$31 million).


Categories of Human Botulism

- Infant botulism
- Honey is one vehicle that has been associated with infant botulism by a number of laboratory and epidemiological studies.

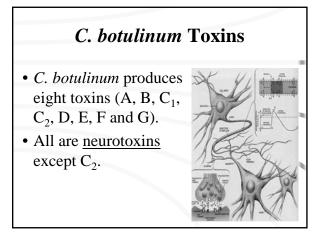
Categories of Human Botulism

- Infant botulism
- Honey is now thought to account for no more than 5% of cases.

Categories of Human Botulism

- Wound botulism
 - > This illness results from the pathogen itself infecting a wound.
 - Foods are not the vehicle of transmission.
 - ➤ The microorganism produces the neurotoxin which is transmitted to other parts of the body via the blood.
 - ➤Rare form of illness

Categories of Human Botulism

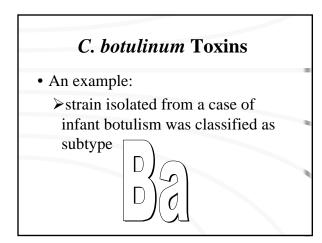

- Unclassified
 - Resembles infant botulism, but affects adults.
 - *C. botulinum* colonizes the intestinal tract of adults and produces the toxin in vivo.
 - > Thought to occur after antibiotic treatment depleted the indigenous intestinal flora.

Recorded Botulism Cases in the US: 1973–1996

Botulism type	Range/yr	Total (all years)
Food	8–86	724
Infant	0-99	1444
Wound	0-25	103
Unclassified	Not avail.	39

Classification of *C. botulinum*

- There are seven types of *C*. *botulinum*
 - ≻A, B, C, D, E, F, and G
 - based on the serological specificity of the neurotoxin produced



Classification of C. botulinum

- Types A, B, E, and, very rarely, F are associated with human botulism (foodborne, wound and infant types).
- Types C and D affect animals.
- Type G has not been linked to illness up to this date.

C. botulinum ToxinsSome strains produce pairs of

- These are designated subtypes
 - ≻The capital letter identifies the type of toxin in greater amount
 - ➤ The lower case letter identifies the type of toxin produced in lesser amount

Distribution of Serotypes in Human Botulism in the US		
Туре	Cases (%)	Deaths (%)
А	38	52
В	38	12
Е	9.7	10
F	0	0
Unknown	13	0

C. botulinum groups

- Another classification of *C. botulinum* strains is based on physiological differences.
- ➢ growth temperature

≻pH

- ➤water activity
- ▹sodium chloride concentration

C. botulinum Groups

- *C. botulinum* strains are divided into four groups.
 - ➢ group I*: proteolytic and produce neurotoxins type A, B, and F.
- ➢ group II*: nonproteolytic and produce neurotoxins type B, E, and F.
- *the most commonly involved in human illness.

C. botulinum Groups

- *C. botulinum* strains are divided into four groups.
 - ➢ group III: variably nonproteolytic or proteolytic and produce neurotoxins type C and D.
 - ➢ group IV: proteolytic and produce neurotoxin type G.

<section-header> Characteristics of *C. botulinum*Gram positive Sporeformer Anaerobic Rods Produce a potent neurotoxin *C. botulinum*

Characteristics of C. botulinum

- pH values for growth
 - ≻Types A and proteolytic B (Gp I), pH <u>4.6</u>-8.5
 - ≻Minimum pH for E (Gp II) is:
 - ✤ 6.2 at 5°C, and
 - ✤ 5.4 at 30°C

Characteristics of C. botulinum

- Limiting water activity ≻Type A 0.95
 - ≻Type B 0.94
 - ≻Type E 0.97

Characteristics of C. botulinum

- Limiting salt concentration for growth
 - ≻10.7–12% NaCl

►Non-proteolytic most sensitive

Characteristics of C. botulinum

- Growth temperature
- ≻Type A and proteolytic B (Gp I) 10–50°C
- ≻E and non-proteolytic B and F (Gp II) 3.3–45°C
- Spores are highly resistant to freezing

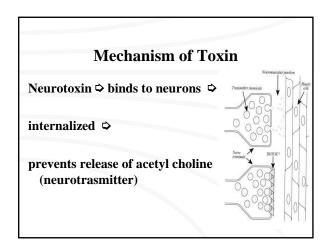
Characteristics of C. botulinum

- Redox potential
 - ≻Optimum growth occurs at Eh of -350 mV
 - ≻E is the least anaerobic, 0–100 mV

Characteristics of C. botulinum

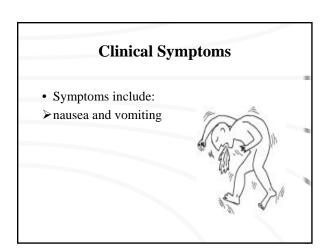
- Heat resistance defined
 - Decimal reduction time (D value; 90% kill)
 - Time required to reduce the microbial population by 1 log cycle.

Characteristics of C. botulinum


- Heat resistance
 - >121.1°C (250°F): DRT = 0.20− 0.21 min for the most resistant (A and proteolytic B)

Characteristics of C. botulinum

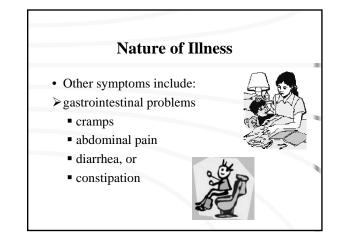
- Heat resistance
 - >121.1°C (250°F) / 3 min to achieve 10¹²-fold reduction (standard for low acid canned foods), "bot cook"
 - >0.3–0.6 min causes 10⁶-fold reduction and is standard for canned, cured meats


Characteristics of C. botulinum

- Radiation resistance
 - To cause 10¹² fold reduction
 - >47 54 kGy for type A spores
 - >10 11 kGy for type B spores
 - >7 9 kGy for type E spores
 - ►12 kGy for type F spores
 - ≻48 kGy is the accepted dose for sterilization of food spores

Nature of Food Botulism

- Intoxication
- Onset is about 18 36 hrs after ingestion of the food containing the neurotoxin.
- Symptoms vary from a mild to severe illness.



Clinical Symptoms

- Symptoms include:
- ▶ neurological signs
- blurred or double vision
- difficulty in speaking or swallowing
- fatigue
- lack of muscle coordination, and
- difficulties in breathing

bee

Pathogenic Dose

- Few nanograms of *C. botulinum* neurotoxin can cause illness.
- The neurotoxin produced is probably the most toxic compounds made by a biological system.
- About 1 oz. (28.4 g) of this toxin can kill 200 million people.
- Fortunately, the incidence of the illness is low.

Foods Implicated in Botulism

- Any food that can support the growth of this pathogen or allow the germination of its spores and eventually toxin production can be associated with this illness.
- Low acid foods (pH>4.6)

Foods Implicated in Botulism

- Home-canned or -preserved low-acid vegetables
 - ➤asparagus, tomatoes, beans, mushrooms
 - mushrooms
 - > peppers, corn, baked potato, chopped beets
 - ≻garlic in soybean oil

Foods Implicated in Botulism

- North American Indian specialties
 - ➢ fish and fish eggs
- ≻seal flippers
- Other implicated foods include luncheon meats, ham, sausage, smoked and salted fish, and lobster.

C. botulinum Outbreak

- In 1994, in Oklahoma, a 47-year old man was hospitalized for symptoms of progressive dizziness, blurred vision, slurred speech difficulty swallowing, and nausea.
- Twenty-four hours earlier the patient had eaten some home canned green beans and beef and potato stew.

C. botulinum Outbreak

- Upon testing:
 - The green beans tested negative for the toxin
 - The stew tested positive for the toxin

C. botulinum Outbreak

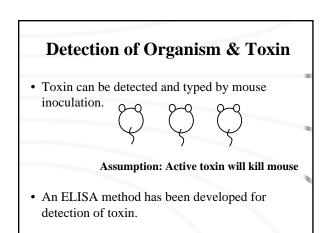
• Apparently,

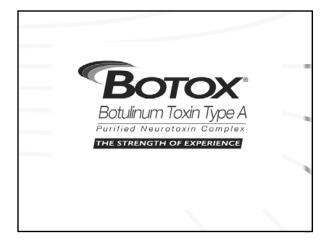
≻the stew was cooked,

➤covered tightly,

>left out for four days at room temperature, and

≻then eaten without reheating.


Prevention


- Assurance of destruction or inhibition of *C. botulinum*.
- Keep foods out of the temperature danger zone (4.4 60°C or 40 140°F).
- Botulinum toxin is destroyed by heating at 80°C for 30 min or boiling or a few minutes. Thus re-heating foods properly can be a controlling factor.

Detection of Organism & Toxin

- Compendium of Methods for the Microbiological Examination of Foods.
- Enrichment of culture in cooked liver or cooked meat medium.

• Plating on blood agar or egg yolk agar, and incubating anaerobically.

