Microbial Ecology of Foods

Dean O. Cliver

A food is an ecosystem for microbes

- They don't "know" they are in food!
- Bacteria & molds may multiply, survive, or die.

A food is an ecosystem for microbes

- Viruses & parasites can only persist or be inactivated (die, lose infectivity).
- Most attention devoted to fates of bacterial pathogens.

Pathogenic bacteria in food: potential "outcomes"

- Persistence: viable, numbers unchanged (lag or stationary phase or sporulation)
- Growth (multiplication): rate parameter (variable) based on doubling time

Pathogenic bacteria in food: potential "outcomes"

- •Death: another rate parameter (cf. viable-nonculturable)
- Sporulation: another defense (species)
- Toxigenesis: growth is necessary, but possibly not sufficient

Growth curve biology

 Spores & lag phase cells quiescent; adaptation to environmental conditions = selecting needed enzymes (activating appropriate genes) from broad bacterial repertoire.

Growth curve biology

- Multiplying (doubling) cells are metabolically active, often adapting; not all metabolically active cells are multiplying.
- •Stress causes adaptation or injury.

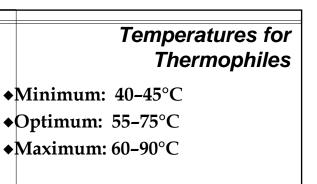
Growth curve biology

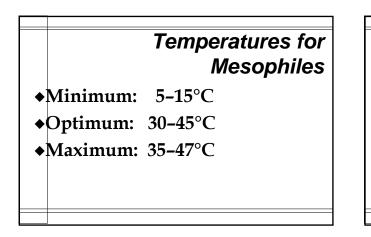
- Stationary phase may represent quiescence or (more often) growth rate = death rate.
- •Some injured cells appear dead ("viable nonculturable").
- •Some dead cells autolyze.

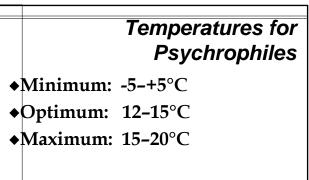
Bacteria in broth vs food Broth: "planktonic cells" Bacteria tend to aggregate, attach to surfaces, form colonies or biofilms Foods = solid matrix, microenvironments Pathogens outnumbered

Research vs real food

- Food contaminants (water, air, soil, raw material, feces) have mixed microflora.
- •Food ecosystem may select one organism

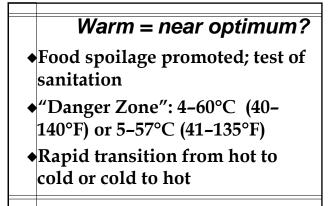

Research vs real food

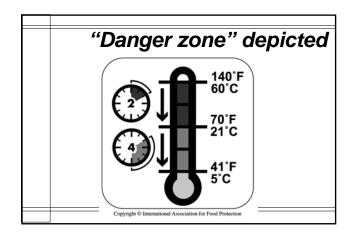

- At high levels, bacteria signal each other chemically ("consensus")
- Different species interact competitively, but sometimes beneficially

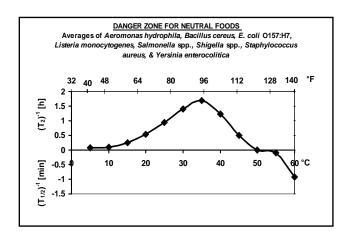

Research vs real food

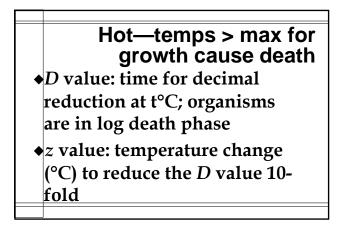
- Programmed" successions
- Genetic exchanges among strains or species
- Toxigenic agents (including molds) grow under conditions that do not permit toxigenesis.

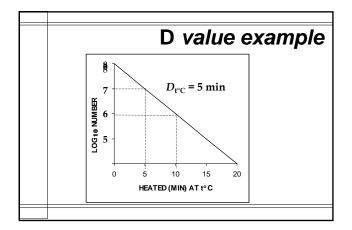
Major fa	Major factors (interact)		
 ◆Temperature ◆E_h ◆a_w ◆pH (specific cations & anions) 	 Nutrients available Physical structure Microflora Antimicrobial agents 		

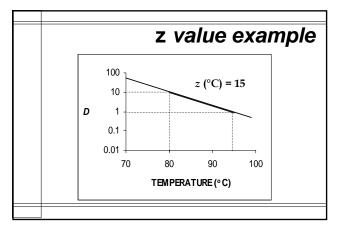


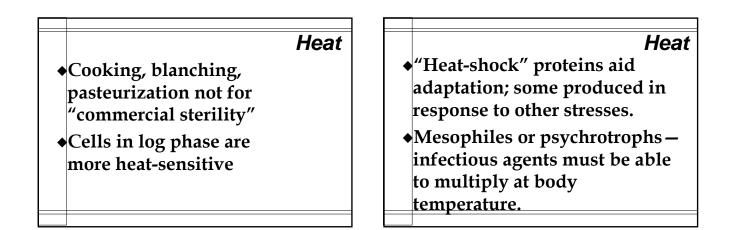

Temperatures for Psychrotrophs


- ◆Minimum: -5-+5°C
- ♦Optimum: 25–30°C
- ◆Maximum: 30–35?°C (cf. handout)


Cold: liquid or solid water?


- •Freezing kills some cells, frozen storage preserves
- Psychrotrophs grow slowly in refrigerated food





Tyndallization: boiling on 3 days

- Day 1: vegetative cells killed, spores heat-shocked
- •Day 2: veg cells from spores killed, last spores heat-shocked
- Day 3: vegetative cells from final spores killed; endpoint: sterility

Eh

- Aerobic (>0 mV), microaerophiles, facultative, anaerobic (<0 mV)
- ◆"Strict" aerobes E_h > 0 mV,
 "obligate" anaerobes E_h < -300 mV

Eh

- •Facultative organisms often use available energy more efficiently under aerobic conditions
- ◆*C. perfringens* may not start growing under aerobic conditions, but is not inhibited by oxygen once growth begins.

$\bullet E_{\rm h}$ hard to measure in foods

- •Live foods metabolize or bind oxygen
- Packaging, modified atmosphere
- ◆Molds generally strict aerobes

Eh

Water activity—"a_w"

Water available for microbial growth, based on water present and on binding by solutes such as salt or sugar; equilibrium relative humidity ÷ 100; range is 0 to 1.00

Appr	oximate a _w of s	some foods
♦Fresh fi	uit or vegetables	<u>></u> 0.97
♦Fresh p	oultry or fish	<u>></u> 0.98
♦Fresh n	neats	<u>></u> 0.95
◆Juices, f	fruit & vegetable	0.97
♦Cheese	, most types	<u>></u> 0.91
♦Honey		0.54-0.75
◆Cereals	,	0.10-0.20

Minimum a _w for some foodborne pathogens	
◆Salmonella	0.93
◆C. botulinum	0.93
◆Staphylococcus aureus	0.85
♦(Most yeasts)	0.88
♦Most molds	0.75

	pH: hydrogen-ion potential
•	Foods range from pH 7
	downward.
	Acidification inhibits
	spoilage & growth of many
	pathogens. "Low acid" (bot) $pH > 4.6$
	"Low acid" (bot) pH ≥ 4.6

pH values of some foods		
♦Egg white	7.6-9.5	
♦Milk	6.3-6.8	
♦Chicken	5.5-6.4	
◆Beef	5.3-6.2	
♦Cheeses, most	5.0-6.1	
♦Tomatoes	3.7-4.9	
♦Apples	2.9-3.5	

Important minimum pH values for growth of microbes in foods

- ◆*Clostridium botulinum* 4.8–5.0
- ◆*Salmonella* (most types) 4.5–5.0
- ◆*Staphylococcus aureus* 4.0–4.7
- ♦Yeasts & molds
- 1.5-3.5

♦"Organic" acids (e.g., lactic, pH acetic, etc.) more effective antimicrobials than mineral acids

 Most effective undissociated; at a given pH, molar quantity of organic acid >> than that of a mineral acid.

Nutrients available

- C & N sources required, sometimes "growth factors"
- ◆Foods generally good C & N sources
- Other factors, <u>then</u> nutrients decide which organism predominates

Physical structure

- Bacteria grow on surfaces when they can.
- •Some surfaces (melon rind, eggshell) limit access to nutrients.
- Food matrix: molds often penetrate better than bacteria.

Physical structure

- If water & solutes cannot diffuse freely, local variations in E_{h} , a_{w} , and pH are highly possible.
- High viscosity or strongly cellular structure can greatly limit heat transfer (both heating and cooling) in foods.

Microflora

- •Bacteria in foods: variety & competition
- Microbial growth may lower E_h & pH; molds use organic acids as carbon sources & raise pH.

Microflora

- Bacteria may produce acetic, lactic, and other acids as fermentation products.
- Some produce bacteriocins proteins that have a highlyspecific lethal effect on closely related organisms.

Competing organisms

Staphylococcus aureus
Clostridium botulinum

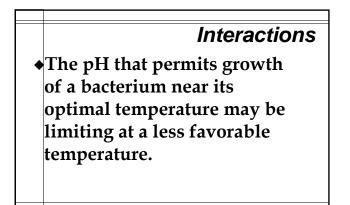
"Programmed succession"

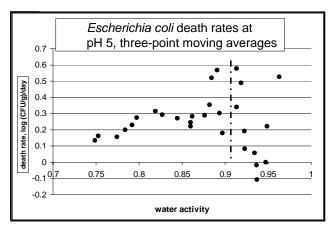
- Milk: rapid lactic acid producers (lactococci), then
- Slower acid producers (lactobacilli) that tolerate lower pH's, then
- Acid-stable putrefactive (proteolytic) bacteria and finally,
- Molds (metabolite tolerance).

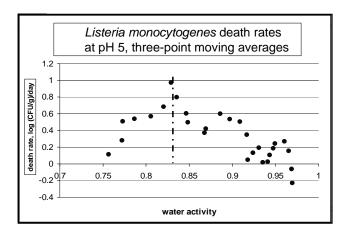
Antimicrobials: preservatives

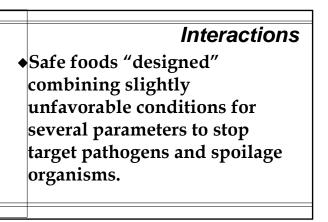
- Materials added specifically to inhibit microbial growth
- •Nitrite for "curing" meats, vs *C. botulinum*.
- Sorbates, benzoates, & other salts of organic acids bacteriostatic, not bactericidal

Antimicrobials: preservatives


- ◆CO₂ & SO₂ long used in foods; SO₂ is highly toxic to a small segment of the population.
- Spices especially those with strong flavors – often viewed as preservatives or disinfectants.
 Probably bacteriostatic, at best.


Antimicrobials: radiation


•UV widely applicable to decontamination of food surfaces, food contact surfaces, & water used in food processing; limited penetration.


Antimicrobials: radiation

- Surface efficiency enhanced by pulsed laser application (some pulsed laser applications use visible light).
- •Ionizing radiation discussed earlier in course.

Interactions

 This kind of food design has heavy safety implications; modeling (discussed last time) is used to make choices, then validated by inoculated-pack, product-abuse trials before a new food product is marketed.
 Applied in HACCP.

Pathogen Modeling Program (PMP)

http://www.arserrc.gov/MFS/PATHOGEN.HTM

Summary

- •Food ecosystems govern which microorganisms may grow in them.
- ◆Factors, such as temperature, a_w, pH, etc., interact to determine the microbiologic safety of a food.
- •Food processing takes account of these factors to ensure food safety.