INVESTIGATION OF FOODBORNE DISEASES Mehrdad Tajkarimi University of California-Davis VMPHR 25007

(Materials from Dr. Dean O. Cliver & Maha Hajmeer)

Investigating outbreaks

- Focus on restaurants
- •Not considering outbreaks dispersed in time or place
- Will not cover "Investigate Outbreaks" or "Seek Sources" sections (read)

Analyze data

- Preliminary diagnosis, for later *laboratory* confirmation
- Tabulate signs and symptoms reported by patients
- Case definition

Table 3. Frequency of signsand symptoms			
	Signs & symptoms	Cases	%
	Diarrhea	260	88
	Abdominal cramps	122	41
	Fever	116	39
	Nausea	105	35
	Headache	68	23

56

55

42

19

19

14

Time of exposure

Muscular aches

Chills

Vomiting

- Common source—common incident
- •Subtract incubation period from median onset
- May use span of onsets to estimate incubation period

Analysis continues

- Diagnosis implies incubation time(s)
- •Tabulate & graph onset times
- ◆Time intervals ≤1/4 of incubation period

Epidemic curve

- Count total illnesses
- Determine median onset

Epidemic curve

- Count total illnesses: 70
- Determine median onset

Epidemic curve

- •Count total illnesses: 70
- ◆Determine median onset: #35 → a.m. on 10th

Meal attendance-attack rate

- Day/meal
- •Ate/drank vs did not eat/drink
- •Ill; well; total; attack rate (%)
- •Difference in rates (+35%)
- ◆<u>Relative risk</u> (1/17 L 6.1)
- ◆*p* value (1/17 L <10⁻⁶)

Food-specific attack rates

- Food/beverage
- •Ate/drank vs did not eat/drink
- •Ill; well; total; attack rate (%)
- •Difference in rates (%)
- ◆<u>Relative risk</u>
- ♦p value

Food-specific attack rates

Food	Rate	Rel.	p value
	diff.	risk	
Turkey	+65	9.1	<0.000001
Dressing	+43	2.5	0.000005
Peas	+31	1.8	0.0002
Rolls	+23	1.4	0.006

People missing?

If many of the people who attended the meal cannot be accounted for, or for other reasons, it may be necessary to locate *controls* (well) who match the ill persons according to *selected criteria* and get *food histories* from them. Then, one produces a "Casecontrol vehicle exposure table"

Case-control exposures

- Food/beverage
- Cases (ill) vs. Controls (well)
- •Ate; did not eat; total; %
- ◆Difference (%)
- ◆Odds ratio
- ♦p value

Food	Diff.	Odds	p value
	in %	ratio	
Turkey	+37	30.1	<0.000000
Dressing	+33	6.3	0.000006
Peas	+31	3.9	0.0002
Rolls	+24	2.7	0.007

Stratified analysis

- Two (or more) highly suspect foods
- May be eaten together (turkey & dressing; ice cream on pie)
- •Do stratified analysis

Dressing			
<u>Turkey</u>	Ate	Not	Totals
Ate	73	75	73
Not	0	8	8
Totals	73	30	

Comparisons
◆Difference:
(rate, ate) - (rate, didn't)
Relative risk:
$(rate, ate) \div (rate, didn't)$
Odds ratio (case-control):
[(# ate, ill)•(# didn't, well)]
\div [(# ate, well)•(# didn't, ill)]

No common meal?

- •Different people, different times same restaurant
- Foods from retail shops, supermarkets, cooked & eaten at home
- •Do *food preference* comparison

Food preference attack rates

- Food
- Always (usually) vs never eat; purchased (or not) within incubation period
- Percent difference in attack rates (substantial N)

Food	Eat	Never eat	Differ
	(% ill)	<u>(% ill)</u>	ence
Milk "A"	12.8	20.0	_7.2
Milk "B"	9.6	20.3	-10.7
Cheese "X"	17.7	0.0	+17.7
Cheese "Y"	13.8	15.4	-1.6
Cheese "Z"	14.5	12.2	+2.3

Choices

- Food preference for longincubation diseases (e.g., hepatitis A)
- Common, contaminated meal: retrospective cohort study (food-specific attack rates, relative risk)

Choices

- •Waterborne outbreaks, sporadic cases of foodborne disease: case-control studies, odds ratio
- Statistics: relative risk, odds ratio, chi-square, Fisher's exact test

Team assignments

First practice exercise