

The National
Animal Identification
System (NAIS)

Animal Trace Processing
System

Version 1.0
ATD Technical Specification

Document Version 2.2
January 9, 2007

ATPS Version 1.0 Technical Specifications
1 ABOUT ATPS...1
2 SERVICE SPECIFICATIONS..2

2.1 WEB SERVICES ...2
2.1.1 Basic Web Service Use Case ...2
2.1.2 Get Requests Web Service..4
2.1.3 Submit Response Web Service ...31
2.1.4 Validate National Premises ID ..82
2.1.5 Verify USDA Animal ID (AIN ID) ...85
2.1.6 Web Services Security..86

2.2 WEB APPLICATION SERVICES ...88
2.2.1 Log In to Application ...88
2.2.2 Search Requests ...89
2.2.3 Upload Manual Response..91
2.2.4 Manage Account ..91
2.2.5 Manage Web Application User..93
2.2.6 Manage Contact...95
2.2.7 Manage ATD Client ...97
2.2.8 Create Case ...99
2.2.9 Search Cases..101
2.2.10 Close Case...102

2.3 AUTOMATED SERVICES ..104
2.3.1 Create Ping Case...104

3 APPENDIX..105
3.1 WEB SERVICE SIGNATURES ..105
3.2 ATPS WEB SERVICE CUSTOM CLASS ATTRIBUTION..106
3.3 RESPONSE DTD SPECIFICATION ...108

3.3.1 DTD ...108
3.3.2 Strict DTD..109

3.4 OFFICIAL ID CODES..112
3.5 SPECIES GROUP CODES...112
3.6 SPECIES CODES ...112
3.7 BREED CODES...113

Document History
Version Description Date Author

1.0 Initial version – only web service specs documented 10/5/2006 Slush
1.1 Modifications based on suggestions by Elliott R_ 10/10/2006 Slush
1.2 Modifications based on comments by Scott M_ 10/11/2006 Slush
1.3 Modifications based on comments by Nigel H_ 10/12/2006 Slush
1.4 Modifications based on comments by Scott Q_ 10/25/2006 Slush
1.5 Added section on Security 10/26/2006 Slush
1.6 Modifications based on 10-26 conference call 10/27/2006 Slush
1.7 Exception class modifications 11/14/2006 Slush
1.8 Modifications based on 11-21 conference call 11/24/2006 Slush
1.9 Added specifications for validate prem, AIN web ser-

vices
11/27/2006 Slush

2.0 Added detail to web application services 11/27/2006 Slush
2.1 Reformatted and edited 12/29/2006 GJMoore
2.2 Modification to 2.1.2.3 and

ATPSMessageValidationResultWS object
1/9/2007 Slush

National Animal Identification System Page 1

ATPS version 1.0 DRAFT ATD Technical Specifications

1 ABOUT ATPS
The Animal Trace Processing System (ATPS) is the application that satisfies NAIS phase 3
requirements. NAIS Phase 3 requirements specify the ability for the USDA to provide a com-
plete trace back for a diseased or suspected animal in 48 hours or less. ATPS enables this re-
quirement by providing a web-based application that allows clients who store and maintain
animal trace data (Animal Trace Database providers or ATDs) to provide this information to
the USDA as it is needed. Client systems include any public or private system that stores
animal movement, sighting, or event data.

This document details the technical interface requirements and specifications for ATPS and
all client applications that communicate with ATPS.

The ATPS client applications are known collectively and individually as Animal Trace Data-
bases (ATD).

ATPS is a J2EE application. Every ATD communicates with ATPS via web services. ATPS
also provides a web application interface that allows an ATD User to manage their Account,
run reports, and manually submit responses to ATPS.

National Animal Identification System Page 2

ATPS version 1.0 DRAFT ATD Technical Specifications

2 SERVICE SPECIFICATIONS
This section describes detailed specifications for all of the services ATPS provides to enable
full integration with an ATD.

A Service is defined as a function that ATPS provides to accomplish a use case. This re-
quirements document covers both Web Services and Web Application Services.

2.1 Web Services
Functions that are accessed via web service APIs only.
ATPS provides two web services:

• Get Requests web service

• Submit Response web service.

Each ATD will call the Get Requests web service both to receive new requests from ATPS,
and to check on the status of old requests.

The Get Requests web service is a synchronous web service and does not rely on message
queues to deliver information.

The ATD will call the Submit Response web service to respond to outstanding requests from
ATPS.

The Submit Response web service is backed by an asynchronous message queue. Therefore
the ATD will not know if the message was successfully processed until they call the Get Re-
quests web service and retrieve the original request with an updated status. Some fatal excep-
tions will be thrown before the response is sent to the message queue so the ATD will get
immediate feedback if possible.

2.1.1 Basic Web Service Use Case
More detailed Use Cases will be located in the Use Case document. However it is instructive
to outline the basic “happy path” web services Use Case when detailing the web services re-
quirements, in order to provide a bigger context to the service requirements.

The basic “happy path” web service request/response Use Case is as follows:

1. A Heath Official creates a Request. (Note that this may also be done by ATPS itself.)

2. ATPS generates and stores a NEW request.

3. The ATD calls the Get Requests web service and retrieves the request. (Request
moves to RETRIEVED.)

4. The ATD processes the request and builds a Response.

5. The ATD calls the Submit Response web service to respond to the Request.

6. ATPS validates the Response. (Request moves to RESPONDED.)

7. ATPS posts the Response to the Message Queue.

8. ATPS processes the Response. (Request moved to VALIDATED.)

National Animal Identification System Page 3

ATPS version 1.0 DRAFT ATD Technical Specifications

ATDs

ATPS
ATPS Web
Interface

Health Official

createRequest

ATPS
Engine

getRequests()

submitResponse()

Message
Service

JMS
Queue

onMessage

processResponse

void

createRequest

Get Requests
Web Service

getRequests(ATPSRequestCriteria)

ATPSRequest[] ATPSRequest[]

Submit Response
Web Service

postMessage

validateResponse

1
2

3

4

7

6

5

8

National Animal Identification System Page 4

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.2 Get Requests Web Service
ATPS provides a service that allows an ATD to get a Request from ATPS.

A Request is how ATPS asks an ATD for information.

A Request is also how an ATD will get status on the progress of a Request to which they may
have responded.

An ATD can Retrieve Requests from ATPS based on Request Status, Request ID, Case ID,
Request Date, and other attributes.

ATPS Requests have a Status. The Request Status indicates if the Request has been received
by the ATD, if it has been responded to, and if it has been successfully processed.

Each Request Status has a Category. The Status Category indicates if the Request needs to be
responded to (ACTIVE), if it may be responded to (ACTIONABLE), or if it can not be re-
sponded to (STATIC).

The Get Requests web service fulfills step 3 on the basic web service use case:

ATDs

ATPS
ATPS
Engine

getRequests()

Get Requests
Web Service

processResuest()

return requests

return

3

authenticateATD()

• The ATD calls the Get Requests web service, passing in a criteria object describing

the requests of interest.

• ATPS authenticates the ATD.

• ATPS processes the request synchronously, and returns 0-to-many Request objects
that fulfill the criteria passed in.

• NEW requests are moved to a state of RETRIEVED.

2.1.2.1 Basic Requirements
ATPS does not push requests directly to the ATD. The ATD must call a web service on
ATPS to retrieve requests.

National Animal Identification System Page 5

ATPS version 1.0 DRAFT ATD Technical Specifications

All requests are specific to a particular ATD. As such, ATPS will always return only requests
specific to the ATD making the service call.

ATPS recommends that every ATD check for NEW requests every 5 minutes.

An ATD may increase the frequency of request checking during an event, or technically
when ATPS has an open case that is not a ping Case.

Every ATD is required to respond to all NEW Status Requests within 15 minutes of receipt.

Even if the ATD does not have any events that match the Request, the ATD is required to re-
spond to the Request.

Every Request starts out with a Status of NEW, which is an ACTIVE Category.

When the ATD retrieves a NEW Request, the Request Status is changed to RETRIEVED. A
RETRIEVED Request is still in an ACTIVE status category.

ATPS will never return a NEW request more than once.

If the ATD responds to a Request and ATPS can not process the Response, the Request
Status will become ERROR. An ERROR Request is ACTIVE and must be responded to.

If the ATD responds to a Request, and ATPS can process the Response but there are data
validation errors, the Request Status will become VALIDATION_ERROR. This is an AC-
TIONABLE Status and the ATD may respond to the Request again, but it is not required to
do so.

When a Case is Closed, ATPS will send a Case Closed Request with no real request parame-
ters for the Case to every ATD.

2.1.2.2 Request Types
ATPS will generate four different types of requests.

• Official ID Request

• Premises Request

• Ping Request

• Case Closed Request.

The ATD is required to respond to Official ID, Premises, and Ping requests. Case Closed “re-
quests” are provided as a convenience to the ATD. This section describes the different re-
quest types.

2.1.2.2.1 Official ID Request
The Official ID Request is a request for all events pertaining to an Official ID or set of Offi-
cial IDs. An Official ID is defined as a unique animal identifier or group identifier, and it may
not be strictly numeric. ATPS may ask for information on up to 1,000 Official IDs in the
same request. Upon receipt of such a request, the ATD is responsible for returning all events
related to every Official ID in the request. Please refer to the appendix for the actual ATPS
Request object definition.

Usage Rules:

If the Official ID array is populated with values, the ATD will return all Events for all Offi-
cial IDs in the array.

National Animal Identification System Page 6

ATPS version 1.0 DRAFT ATD Technical Specifications

ATPS will not populate both the array of National Premises IDs and the array of Official IDs.

ATPS will not ask for more than 1,000 Official IDs in the same request.

ATPS will not populate the Begin Request Date or the End Request Date if the Official ID ar-
ray is populated. Unless the audit dates are populated, ATPS will always want all events for
all Official IDs in the request.

If the Begin Audit Date is populated, ATPS only wants events for the Official IDs in the ar-
ray if they have been added or modified in the ATD on or since the Audit Date. Otherwise
ATPS always wants all Events for all Official IDs in the array.

The ATPS request supports multiple ID types, not just USDA “840” ID Types. Therefore the
request object contains an array of Official ID “key-value” pairs, not simply an array of Offi-
cial IDs. The key-value is really defined as a type-ID pair. The ID and the type will both al-
ways be populated. The type is defined as the ID type (“N”,”U”, etc.); see the Official ID
Codes Appendix for a complete list), and the ID is the actual Official ID that is of interest. A
single Request may contain requests for multiple types of IDs and therefore, multiple ani-
mals.

ATPS will not put the same type-ID pair combination more than once per request, but the
same animal may be inadvertently requested more than once because different tag types are
allowed in the same request.

2.1.2.2.2 Premises Request
The Premises Request is a request for all events that indicate the presence of any animals at
the given premises over a specified date range. A date range will always be included in a
premises request. The ATD is instructed to use optimistic inventory logic when determining
which events to return. Essentially, if the ATD has an event that indicated that an animal
might be at the premises during the specified data range, it will return that event to ATPS.
This means the ATD will frequently return events that are outside of the specified date range.
ATPS may ask for information on up to 10 Premises in the same request.

Usage Rules:

ATPS will always populate the Begin Request Date or the End Request Date if the National
Premises ID array is populated.

If the National Premises ID array is populated with values, the ATD will return the “inven-
tory” of animals at the Premises in the array over the time period indicated by the Begin and
End Request Dates. The ATD will return the event or events that indicate that the animal
could be at the Premises during the requested timeframe. It is understood that the actual event
that indicated inventory will frequently be before or after the request dates.

ATPS will not populate both the array of National Premises IDs and the array of Official IDs.

ATPS will not ask for more than 10 National Premises IDs in the same request.

If the Begin Audit Date is populated, ATPS only wants events for the National Premises IDs
in the array if they have been added or modified in the ATD on or since the Audit Date, and
indicate inventory given the request dates. If the Begin Audit date is not populated, ATPS al-
ways wants all Events indicating inventory during the Request dates for all National Premises
IDs in the array.

2.1.2.2.3 Ping Request

National Animal Identification System Page 7

ATPS version 1.0 DRAFT ATD Technical Specifications

ATPS will create a “ping” Request for each ATD once per hour. The purpose of the Ping Re-
quest is to ensure that every ATD is available in the event of an actual disease event.

The Ping Request will have the same format as a Premises Request. In fact it will be a prem-
ises request for real premises, albeit a premises that does not contain animals. This ping
premises will likely be the NRCS in Ft. Collins, and the begin and end dates will be the day
of the request.

Every ATD is required to respond to each Ping Request as if it were an actual premises re-
quest. It is almost certain that the ATD will never have an actual real animal event at the
NRCS. In that case, a “no events” response is acceptable. If an ATD wants to create a
“dummy” event in their system that would return an event to ATPS that is also acceptable.

ATPS will have a Ping Request for every ATD every hour. ATPS expects a response from
each NEW Ping request returned to the ATD.

ATPS will not return more then one NEW Ping Request even if the ATD has not checked for
NEW Requests in more than 2 hours. In that event, only the oldest NEW Ping Request will be
returned, and the newer Ping(s) will be discarded by ATPS.

“Dummy” Ping Event:
Here are the specs for a standard “dummy” ping event that all ATD applications can put in
their production database in order to return an event to ATPS upon receiving a ping request.
This dummy event will be for an animal sighting event at the NRCS in Ft. Collins in
11/1/2005, for an animal with an official USDA 840 ID of “840003000000999”. This ID was
invalidated and will never be applied to an actual tag. Since it is a sighting event, and the
ATD has no other event that proves that the ping animal left the premises, this event will con-
tinue to pop up in search results long after the “event date”.

Here are the element and attribute values that will satisfy the ping request. The same values
can be used in test and production environments.

Element Value Notes
eventType.id 9 Animal “sighting” event
eventDate (see timestamp) It will be 11/1/2005, the date at which NAIS in-

validated this AIN ID.
rptPremId 0034P2K National Premises ID of the NRCS in Fort

Collins.
rptPremId.type N N = national, X = any other type.
id 840003000000999 AIN ID that was invalidated by NAIS.
id.type N N = official “840” ID.
remarks Not a real event. Used

for ATPS testing.
Please include this remark if possible.

timestamp.y 2005 Must be a 4-digit year.
timestamp.mo 11 1 = January, etc.
timestamp.d 1 Day of month.

An example of a ping response xml with the ping event will look like this:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>

National Animal Identification System Page 8

ATPS version 1.0 DRAFT ATD Technical Specifications

<atpsRequestId>12345</atpsRequestId>
<atdResponse final="Y">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>
<animalRecord>
 <eventType code="9"/>
 <eventDate>
 <timestamp y="2005" mo="11" d="1" />
 </eventDate>
 <rptPremId type="N">0034P2K</rptPremId>
 <id type="N">840003000000999</id>
 <remarks>Not a real event. Used for ATPS testing.</remarks>
</animalRecord>
</animalRecords>
</eventSub>

However ATPS will accept a ping response with no events. The ATD is not required to store
a ping event that will be returned. However, they must respond. An example of a ping re-
sponse xml with no ping event:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>
<atpsRequestId>12345</atpsRequestId>
<atdResponse final="Y">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>
</animalRecords>
</eventSub>

From the perspective of ATPS, a ping request is a simple Case with a single Request. The re-
quest will go into an ERROR state if the response fails. If there are data validation errors in
the response, the request will go to DATA_VALIDATION state.

If a ping request makes it to a closed state, the case that created the request will also auto-
matically go to a closed state, and ATPS will create a “case closed” request so the ATD can
identify the ping as having been completed. Note that each ping request to each ATD is as-
signed to a unique case.

In a future release of ATPS, ATD Users will be able to schedule downtime for the ATD. This
will allow ATPS to proactively not send ping requests to the ATD while they are in the main-
tenance window.

2.1.2.2.4 Case Closed Request
ATPS will generate a special Case Closed “request” when a Case is closed. This Request
does not require a Response from the ATD. It will have no Official IDs and no Premises IDs
in the request.

National Animal Identification System Page 9

ATPS version 1.0 DRAFT ATD Technical Specifications

Requirements:

ATPS will notify every Enabled ATD that a Case has moved from OPEN to CLOSED by
creating a New Request with no actual request parameters.

This Notification is provided as a service to the ATD so that it can manage ATPS responses.

The ATD will not respond to this Request since the caseStatus will be CLOSED (see Usage
Rules above).

In a Closed Case Notification, the Request object will be populated thusly:

• requestID will be populated and unique.

• caseID will be populated with the Case that has moved from OPEN to CLOSED.

• caseDescription will be populated.

• caseStatus will be set to CLOSED.

• requestStatus will be set to CASE_CLOSED.

• requestCreatedDate will be populated with the timestamp of the notification request.
This will represent the time at which the case was closed.

All other attributes will be empty or null.

2.1.2.3 Case
From the perspective of the ATPS, the ATPS Case is a container for requests. All requests
will be associated to a Case. Multiple Requests for multiple ATDs will be assigned to the
same Case. A Request cannot be in more than one Case.

General Rules:

Requests assigned to a CLOSED Case can not be responded to.

Requests assigned to a CLOSED Case can only be retrieved by an ATD by specifying the
Case ID.

Case Types:

There are two different types of cases: Ping Case and Program Case.

2.1.2.3.1 Ping Case
A Ping Case is created by ATPS when ATPS generates a Ping Request.

Every Ping Request is assigned 1-to-1 to an individual Case.

A System Case is OPEN until the ATD successfully responds to the Ping Request. Then it is
moved to CLOSED. The ATD is not notified that the Case ID CLOSED but they can check
on the status of the Ping Case if they want, by specifying the Case ID in the Request Criteria.

2.1.2.3.2 Program Case
A Program Case is created by an ATPS Health Official User when they begin a new Animal
Health investigation through ATPS.

Multiple requests for multiple ATDs will be assigned to the same Case.

National Animal Identification System Page 10

ATPS version 1.0 DRAFT ATD Technical Specifications

A Program Case is OPEN until the ATPS Health Official User closes the case. At that point a
Case Closed Request is made available to each ATD, so they can clear the Case off their sys-
tem if the so choose.

2.1.2.4 Case Status
The Case Status indicates if the case is Open or Closed.

An ATD may not respond to any Request associated to a Closed Case.

Valid Values:

Case
Status Description

OPEN The Case is open and ATD must respond to the message depending on the Request
Status value.

CLOSED The case is closed and no further action by the ATD is required.

Flow:

OPEN CLOSED

Case Status Flow

closeCase

A Case will begin in a State of OPEN. It will move to a State of CLOSED when an ATPS
closeCase service is executed upon the Case. A CLOSED Case can not return to OPEN.

Usage Rules:

CLOSED Cases:

An ATD can not respond to a Closed Case Request, regardless of the Request Status.

OPEN Cases:

If the Request Case is OPEN, refer to Request Status Usage Rules to determine the correct
ATD action.

Case Status ATD Response
OPEN Must or May

CLOSED May not

2.1.2.5 Request Life Cycle
ATPS Requests follow a Life Cycle from beginning to end. The Request Status indicates
where the Request is in its Life Cycle.

There are technically two Request Life Cycles; Request Life Cycle and Program Case Closed
Request Life Cycle.

The Program Case Closed Request Life Cycle begins and ends with a PRO-
GRAM_CASE_CLOSED Status. It is not changeable by an ATD or ATPS.

The Request Life Cycle is more complex.

All (non-case closed) Requests start out in a NEW Status.

National Animal Identification System Page 11

ATPS version 1.0 DRAFT ATD Technical Specifications

When the ATD receives the Request for the first time, the Status is changed to RECEIVED.

When the ATD responds to the request, the Request Status changes to RESPONDED

In the case of a Split Response, the Request Status changes to INCOMPLETE_SPLIT until
all Split Responses are received. Then the Status changes to RESPONDED.

In the event that ATPS receives the Response, but the Response contains a fatal error (XML
formatting error is the likely culprit), the Status will move to ERROR.

In the event that ATPS receives the Response, and one or more Response Event Data Ele-
ments have formatting or validation errors, the Status will move to VALIDATION_ERROR.

If there are no problems with the Response, the Status moves to VALIDATED.

When the ATD retrieves a VALIDATED Request, the status automatically moves to
CLOSED.

The picture below illustrates the Life Cycle Flow:

NEW RETRIEVED

Request Status Flow

getRequests

RESPONDEDERROR VALIDATION_ERROR

VALIDATED

CLOSED

postM
essage

onM
essage

validateMessage

postMessage

onMessage

postMessage

getR
equests

INCOMPLETE_SPLIT
postMessage

postMessage

PROGRAM_CASE_CLOSED

National Animal Identification System Page 12

ATPS version 1.0 DRAFT ATD Technical Specifications

Usage:

An ATPS Request contains a Status which describes where the Request is in its Life Cycle.
Based on the Status, and the Status’ associated Category, the ATD will know if it is required
to respond to the Request.

Depending on the Request Status, the ATD either Must, May, or May Not Respond to the
Request. This rule is driven by the Request Status Category of the Request. All Request
Statuses resolve to one of three categories; Active, Actionable, and Static. Active Requests
Must be responded to, Actionable Requests May be responded to, and Static Requests May
Not be responded to. In all cases if the Case Status is Closed (see the Case Status section), the
Request May Not be responded to, regardless of the Request State.

Must Respond:

An ATD is required to respond to an Open Case Request if the Request Status is New or Re-
trieved, or Error.

May Respond:

An ATD may respond to an Open Case Request if the Request Status is Validation Error.

May Not Respond:

An ATD may not respond to an Open Case Request if the Request Status is Responded, Veri-
fied or Closed.

ATD Response Responsibility Table:

Case Status Request States
Category Request Status ATD Response

ACTIVE NEW Must
ACTIVE RETRIEVED Must
STATIC RESPONDED May Not
ACTIVE INCOMPLETE_SPLIT Must
ACTIVE ERROR Must

ACTIONABLE VALIDATION_ERROR May
STATIC VALIDATED May Not

OPEN

STATIC CLOSED May Not
STATIC PROGRAM_CASE_CLOSED May Not CLOSED

ANY ANY May Not

2.1.2.6 Request Status Category
The Request Status Category is a Request Status Sub-Type that indicates the responsibility of
the ATD in terms of Responding to the Request. All Request Statuses will have a Status
Category. Multiple Request Status Types can have the same category.

Valid Values:

Request Status
Category Description

ACTIVE A Request that still requires a response from an ATD is an ACTIVE Request.
ACTIONABLE An ACTIONABLE Request allows a response from and ATD but does not re-

quire a response from an ATD.
STATIC A STATIC Request does not allow a response from an ATD.

Flow:

National Animal Identification System Page 13

ATPS version 1.0 DRAFT ATD Technical Specifications

STATICACTIVE ACTIONABLE
validateMessage

postMessage

onMessage

postMessage

Request Status Category Flow

Usage:

An ATD must respond to a Request if it contains an ACTIVE Request Status Category. Cur-
rently there are 3 Active States: NEW, RETRIEVED, and ERROR. They are described in de-
tail below.

Requests with an ACTIONABLE Request Status Category permit an ATD to respond, but do
not require an ATD to respond. In other words, the ATD May respond to an ACTIONABLE
Request. Currently there is 1 Actionable Request State: VALIDATION_ERROR.

At various points in a Request life cycle, ATPS will not allow the ATD to Respond. These
states are either when the Request is being processed by ATPS, or when the Request is com-
pleted. These are known as STATIC Requests States. Currently ATPS has 3 Static Request
States: RESPONDED, VALIDATED, and CLOSED.

ATD Responsibility Table:

Case Status Request Status
Category ATD Response

ACTIVE Must
ACTIONABLE May

OPEN

STATIC May Not
CLOSED ANY May Not

2.1.2.7 Request Status
The Request Status describes the state of the Request. A Request will go through several
states while it is being processed, before it is set to a Closed State. The various states are
achieved via ATD service calls and internal ATPS service calls.

Valid Values:

Request Status Category Description
NEW ACTIVE Request that has not been retrieved by an ATD.

RETRIEVED ACTIVE Request that has been retrieved by an ATD but
no response has been processed.

RESPONDED STATIC Request that has been responded and validated,
but not processed.

INCOMPLETE_SPLIT ACTIVE Request that has been partially responded to.
ERROR ACTIVE Request that has been responded but did not pass

validation and has not been processed.
VALIDATION_ERROR ACTIONABLE Request that has been responded and passed vali-

dation but has data validation errors.
VALIDATED STATIC Request that has been responded, validated, and

processed successfully.
CLOSED STATIC Request that has been validated and subsequently

retrieved by the ATD.

National Animal Identification System Page 14

ATPS version 1.0 DRAFT ATD Technical Specifications

PROGRAM_CASE_CLOSED STATIC Special status for notifying the ATD that a case is
closed.

Status Rules:

2.1.2.7.1 NEW Request Status
A NEW Request is a Request that has not been retrieved by the ATD. It is created by ATPS
and will remain NEW until the ATD retrieves it by calling the getRequests web service.
NEW is an ACTIVE Request Status Category, so it must be responded to by an ATD.

2.1.2.7.2 RETRIEVED Request Status
A RETRIEVED Request is a Request that has been returned to an ATD as a result of its call-
ing the getRequests web service. The ATD does not actively set the Request to RETRIEVED;
simply by calling getRequests with parameters that result in a NEW Request being returned,
the Status of the Request will be updated to RETRIEVED.

For example, if an ATD calls getRequests and ATPS returns a single NEW Request, and the
ATD does no other action, if they call getRequests again with parameters that will return the
same Request, it will now have a Status of RETRIEVED.

Likewise, an ATPS will only return a NEW Request once. After that the Request will have a
state of RETRIEVED.

It is possible that a Request is only in a RETRIEVED Status because the ATD is currently
working on its Response, in which case the ATD does not need to respond to the Requests
again. However a Request might also have a RETRIEVED Status because the ATD at-
tempted a Respond, but ATPS could not identify to which Request the ATD was attempting
to respond. For example if an ATD does not supply the Request ID in its Response, or if the
Response Request ID is not valid, then ATPS can not update the Status of the Request (it
doesn’t know which Request to update!), and the Request will remain RETRIEVED.

In this scenario, ATPS will throw an exception to the ATD. The ATD is expected to catch
this exception, analyze the error, make the appropriate changes, and re-submit the response.
The status of the request, however, will remain RETRIEVED, and the exception will not be
stored.

Therefore RETRIEVED is actually an ACTIVE Request Status Category so it must be re-
sponded to by an ATD.

2.1.2.7.3 RESPONDED Request Status
A RESPONDED Request is a Request that has been responded to by an ATD. RESPONDED
indicates that ATPS has received the Response from the ATD, but has not completed process-
ing it. The implication is that ATPS is responsible for completing the processing of the re-
sponse and the ATD does not need to take any action on the Request, as long at it remains in
a RESPONDED state.

RESPONDED is a STATIC Status Category so it can not be responded to by an ATD.

A RESPONDED Request will likely not remain RESPONDED long; it will go to ERROR,
VALIDATION_ERROR, INCOMPLETE_SPLIT, or VALIDATED during the processing of
the Response.

2.1.2.7.4 INCOMPLETE_SPLIT Request Status

National Animal Identification System Page 15

ATPS version 1.0 DRAFT ATD Technical Specifications

In the case of a Split Response by the ATD, the Request Status will remain INCOM-
PLETE_SPLIT until all the split responses have been received by ATPS. See below for more
information on Split Responses and how they affect Request Status.

INCOMPLETE_SPLIT is an ACTIVE Request Status Category so it must be responded to by
an ATD.

Split Response Status:

In the event that the ATD has submitted multiple or Split responses to an ATPS Request,
ATPS will track all of the responses with the single Request object. Since it is possible for the
splits to result in different statuses for the Request, ATPS will employ a hierarchy of Statuses
when providing feedback on a Split Response.

Here are the Split Response cases and the Request Status for each scenario:

• Scenario 1: Not all Splits received.

Request Status: INCOMPLETE_SPLIT.

For example, if an ATD has split the Response into 2 parts, and ATPS has received one Split
but not the other, then the status of the Request will be INCOMPLETE_SPLIT. The ATD
will not know if the first Split was successfully processed until ATPS receives all of the
splits. If the ATD receives an exception from the postMessage web service when it submits
the first of two Splits, which would result in an ERROR if there was no second split forth-
coming, the Request will remain at INCOMPLETE_SPLIT until the second (last) split is re-
ceived. Then it will move to ERROR (see scenario 2 below).

• Scenario 2: All Splits received. At least one Split results in an ERROR.

Request Status: ERROR

No matter what else happens, if all of the Splits are received and at least one of them results
in an ERROR status, the Response will have a status of ERROR, and the first ERROR excep-
tion will be returned. If another Split was validated or had validation errors, this information
will not be reflected in the status of the Request.

• Scenario 3: All Splits received. No splits result in ERROR. At least one Split results
in VALIDATION_ERROR.

Request Status: VALIDATION_ERROR

If all the splits are received and none of them resulted in an ERROR status, but one or more
did result in a VALIDATION_ERROR, then the Response will be VALIDATION_ERROR,
and the first 100 Invalid Items will be returned, even if they span multiple splits. Note that
ATPS will only store the first 100 Invalid Items found, even if the ATD Response contains
more than 100 Invalid Items.

• Scenario 4: All Splits Received, all splits Validated.

Request Status: VALIDATED

In this case (“happy path”), the Request status will be VALIDATED (and will move to
CLOSED when retrieved by the ATD).

• Scenario 5: Duplicate Split number received.

Request Status: INCOMPLETE_SPLIT

National Animal Identification System Page 16

ATPS version 1.0 DRAFT ATD Technical Specifications

If ATPS receives a duplicate Split number for a Request from an ATD, it will assume that the
ATD is resubmitting the Response and will inactivate the original response.

2.1.2.7.5 ERROR Request Status
An ERROR Request is a Request that has been responded to by an ATD, but that cannot be
processed at all by ATPS due to an error on the part of the ATD. ATPS requires the ATD re-
solve the error and resubmit the Response.

Generally ERROR Requests can be divided into two categories; XML errors and fatal data
validation errors.

XML errors happen when the XML sent by the ATD has formatting flaws that prevent the
XML from passing the Response DTD specifications.

Fatal data validation errors occur when the XML format passes the DTD specifications, but
the content of the Response data prevents ATPS from processing the message.

However, there is a third category of “error” which will not update the Request to an ERROR
Status. Any time ATPS can not determine the Request ID that is being responded to, or if the
ATD is responding to an invalid Request ID, the Status of the Request will remain what it
was before, and ATPS will throw an ATPSException to the ATD. In this case, ATPS will not
know which request to update, so it will not update any Request.

An Invalid Request ID is any Request ID that is not assigned to the ATD responding to it, or
has a Status Category of STATIC, or has a Case Status of CLOSED.

In all scenarios, ATPS will throw an ATPSException with a “detailed reason” why the Re-
sponse failed.

If the ATD calls getRequests and receives a Request that has an ERROR Status, the Request
object will have the ATPSExceptionInfoWS attribute populated. This will allow the ATD to
retrieve the cause of the ERROR status.

If the ATD responds to the same Request two times, and both Responses result in an ER-
ROR, ATPS will only store the latest ATPSExceptionInfoWS in the Request.

ERROR is an ACTIVE Request Status Category so it must be responded to by an ATD.

2.1.2.7.6 VALIDATION_ERROR Request Status
A VALIDATION_ERROR Request is a Request that has been successfully responded to, but
not fully validated. Typically this means one or more Response Events could not be proc-
essed by ATPS due to either Data Format or Data Integrity errors. A Request in this state may
be responded to by the ATD again, but it is not required.

If an ATD responds to a Request that has a state of VALIDATION_ERROR, they must re-
spond with the entire Response. The ATD is not allowed to respond with only the Response
Events that are invalid. This is because ATPS will not know exactly which items are sup-
posed to be replaced, since ATPS is not required to store the ATD Event ID. This is also due
to the fact that the ATD source data may have changed between the initial Response that re-
sulted in the VALIDATION_ERROR, and the new Response.

There are two categories of VALIDATION_ERROR issues: Data Format, and Data Integrity.

A Data Format error results from a Response Event that has one or more elements that can
not be stored by ATPS due to basic formatting errors. An example of this is a Date element
that is of the incorrect format, or a Premises ID that is too many characters.

National Animal Identification System Page 17

ATPS version 1.0 DRAFT ATD Technical Specifications

A Data Integrity error results from a Response Event Element that does not match an agreed-
upon or standard list of possible values. For example, a National Premises ID value that does
not match the National Registry, or a Species Code that does not match the agreed-upon list
of Species Codes are both Data Integrity Errors.

If an ATD submits a response that results in a Status of VALIDATION_ERROR, the ATD
will not receive the results immediately. This is because the result submission is asynchro-
nous. In the event of a VALIDATION_ERROR, the ATD will receive a successful return
from the call to ATPS. The “Success” means that ATPS was able to process the Response –
i.e. it made it past the ERROR Status. It does not mean that all items in the Response are
valid. The ATD must get the Request and check the status of the request to determine if the
Response was fully valid.

When an ATD gets a Request that has a state of VALIDATION_ERROR, ATPS will popu-
late a list of Invalid Items that describe the reasons why particular events were not validated.
See below for more information on the Invalid Items list.

ATPS will only record up to 100 validation errors per ATD Response. For example if a par-
ticular Response contains 102 validation errors, the last two will not be presented back to the
ATD when the Request is retrieved.

If a particular Response Event contains multiple validation errors, all of the errors will be
added to the Invalid Item list. Therefore, it is possible for the same ATDEventID to be pre-
sent multiple times in the Invalid Item list, but it is likely that even if the same Event Element
has multiple validation errors, only the first error found will be present in the list.

Finally, ATPS will only persist the results of the last Response from an ATD. If an ATD re-
sponds to a Request two times, and both responses had validation errors, when the ATD re-
trieves the Request only the Invalid Items from the latest Response will be included in the
Response object.

2.1.2.7.7 VALIDATED Request Status
A VALIDATED Request is a request that has been successfully processed with no errors. If
the ATD submitted Split Responses, it further indicates that all the splits have been received
and they are all successfully processed.

Successfully Processed means that there were no errors with the Response, and that no Re-
sponse Events had validation errors of any sort. A VALIDATED Response does not indicate
any level of data quality.

VALIDATED is a STATIC Status Category, so it can not be responded to by an ATD. A
VALIDATED Request will be moved to CLOSED when it is retrieved by the ATD (see be-
low).

2.1.2.7.8 CLOSED Request Status
A CLOSED Request is a Request that was VALIDATED, and subsequently returned to an
ATD as a result of the ATD retrieving the Request in a VALIDATED state. A Request will
remain in a VALIDATED state indefinitely until retrieved by the ATD.

CLOSED is a STATIC Status Category so it can not be responded to by an ATD.

2.1.2.7.9 PROGRAM_CASE_CLOSED Request Status
A PROGRAM_CASE_CLOSED Request Status indicates a special Request that will serves
to notify every ATD that a Program Case has been moved to a CLOSED status.

National Animal Identification System Page 18

ATPS version 1.0 DRAFT ATD Technical Specifications

This Request Status is STATIC and can not be responded to by the ATD.

2.1.2.8 Get Requests Web Service Specification
Signature:
ATPSRequestWS[] getRequests(
String encryptedATDId,
String pin,
ATPSRequestCriteriaWS criteria)
throws SOAPException;

Arguments:

2.1.2.8.1 encryptedATDId
Type: String, 50 characters max, special characters allowed

Null: No

The Encrypted ATD ID is a required argument. The ATD ID coupled with the PIN is how
ATPS authenticates the ATD. The Encrypted ATD ID can only be accessed by an Applica-
tion User assigned to an Account containing the ATD, and can only be accessed via the web
application.

2.1.2.8.2 pin
Type: String, 10 characters max, special characters allowed

Null: No

The C is a required argument. The Eauth ID coupled with the PIN is how ATPS authenticates
the ATD. The V can only be accessed by an Application User assigned to an Account con-
taining the ATD, and can only be accessed via the web application.

2.1.2.8.3 criteria
Type: ATPSRequestCriteriaWS

Null: No

The ATPS Request Criteria is how the ATD will specify which requests it wishes to get.

2.1.2.8.4 return
Type: ATPSRequestWS[]

Null: No, but may be empty

The ATPS Request contains the Request information. Depending on the Status of the Re-
quest, the ATD may be required to respond.

2.1.2.9 ATPSRequestWS Object
Attribution:
ATPSRequestWS{
Long requestId;
ATPSCaseWS case;
String requestStatusCategory;
String requestStatus;

National Animal Identification System Page 19

ATPS version 1.0 DRAFT ATD Technical Specifications

Date requestCreatedDate;
Date requestModifiedDate;
ATPSOfficialIdWS[] officialIds;
String[] nationalPremisesIds;
String species;
Date beginRequestDate;
Date endRequestDate;
Date beginAuditDate;
Date endAuditDate;
ATPSInvalidItemWS [] invalidItems;
ATPSInvalidItemWS [] exceptionItems;
}

Attributes:

2.1.2.9.1 ATPSRequestWS.requestId
Type: Long integer

Size: 15 digits or less

Null: No

Description:

The ATPS request ID is a unique, ATPS-generated numeric ID for the request. Every request
will have a unique ID.

Usage Rules:

ATDs will include the request number on all responses relating to the request.

2.1.2.9.2 ATPSRequestWS.case
Type: ATPSCaseWS

Null: No

Description:

This object contains information about the Case to which this Request is attached. All Re-
quests are attached to a Case.

2.1.2.9.3 ATPSRequestWS.requestStatusCategory
Type: String

Size: 20 characters max

Null: No

Valid Values:

Request Status
Category Description

ACTIVE A Request that still requires a response from an ATD is an ACTIVE Request.
ACTIONABLE An ACTIONABLE Request allows a response from and ATD but does not

require a response from an ATD.
STATIC A STATIC Request does not allow a response from an ATD.

National Animal Identification System Page 20

ATPS version 1.0 DRAFT ATD Technical Specifications

Description:

There are three Request Status Categories: ACTIVE, ACTIONABLE, and STATIC. Their
use is described in detail in the Request Life Cycle section.

2.1.2.9.4 ATPSRequestWS.requestStatus
Type: String

Size: 20 characters max

Null: No

Valid Values:

Request Status Category Description
NEW ACTIVE Request that has not been retrieved by an ATD.

RETRIEVED ACTIVE Request that has been retrieved by an ATD but
no response has been processed.

RESPONDED STATIC Request that has been responded and validated,
but not processed.

INCOMPLETE_SPLIT ACTIVE Request that has been partially responded to.
ERROR ACTIVE Request that has been responded but did not pass

validation and has not been processed.
VALIDATION_ERROR ACTIONABLE Request that has been responded and passed

validation but has data validation errors.
VALIDATED STATIC Request that has been responded, validated, and

processed successfully.
CLOSED STATIC Request that has been validated and subsequently

retrieved by the ATD.
PROGRAM_CASE_CLOSED STATIC Special status for notifying the ATD that a case

is closed.

Description:

The Request Status describes where the Request is in its Life Cycle.

See the Request Life Cycle section for more information.

2.1.2.9.5 ATPSRequestWS.requestCreatedDate
Type: Date

Null: No

Description:

The ATPS Request Created Date is the date when the Request was generated by ATPS.

Usage Rules:

No Usage Rules. The created date is provided as a convenience to the ATD.

2.1.2.9.6 ATPSRequestWS.requestModifiedDate
Type: Date

Null: No

Description:

National Animal Identification System Page 21

ATPS version 1.0 DRAFT ATD Technical Specifications

The ATPS Request Modified Date is the date when the Request was last modified. For NEW
requests, the created and modified dates should be identical. As the Request moves through
Statuses because of actions by the ATD, the modified date will change to reflect the last time
the Request was modified.

Usage Rules:

No Usage Rules. The created date is provided as a convenience to the ATD.

2.1.2.9.7 ATPSRequestWS.officialIds
Type: ATPSOfficialIdWS[]

Null: No, but may be empty

Size: 1,000 maximum

Description:

The Official ID array represents the list of all Official IDs for which ATPS wants event in-
formation. The array will be empty (but not null) if the request is a premises request.

The Official ID object contains an ID and a Type attribute. The ID is the actual ID, and the
Type indicates what type of ID it is. ATPS may ask for information on IDs of multiple types
in the same Request. The Type is included so that the ATD does not have to “guess” at the
type of ID that is being requested.

2.1.2.9.8 ATPSRequestWS.nationalPremisesIds
Type: String[]

Null: No, but may be empty

Size: 10 maximum

Description:

The National Premises ID array represents the list of all National Premises for which ATPS
wants event information. The array may be empty if the Request contains no National Prem-
ises for which information is required.

The National Premises ID will always be a National Premises ID.

2.1.2.9.9 ATPSRequestWS.species
Type: String

Null: Can be null

Size: 3

Valid Values: See Species Category Code Appendix

Description:

The Species is a qualifier for a particular species. This attribute is included as a convenience
to the ATD. If this attribute is populated, ATPS is only interested in events for the species in-
dicated in the Request. If the ATD does not store events for the indicated species, they can
automatically submit a response with no events without even checking their persisted data.

If populated, the species attribute will contain a species category, and not an individual spe-
cies code.

National Animal Identification System Page 22

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.2.9.10 ATPSRequestWS.beginRequestDate
Type: Date

Precision: Day

Null: Null unless nationalPremisesID array is populated, then not null

Description:

Begin Request Date is the start date of the date range for which ATPS is requesting animal
inventory for one or more premises.

Usage:

Begin Request Date is used in tandem with the National Premises ID array. The ATD will re-
turn all animal events that indicate that the animal may be at any premises in the National
Premises ID array on or after the Begin Request Date specified. Even if the event that indi-
cated inventory occurred before the Begin Request Date the ATD is expected to return that
event if there is no other event that proved that the animal was not at the premises.

Begin request Date will only be populated if the National Premises ID array is not empty.
Otherwise it will be null.

Begin Request Date must be populated if End Request Date is populated. End Request Date
can be the same day as Begin Request Date but can not be earlier than Begin Request Date.

2.1.2.9.11 ATPSRequestWS.endRequestDate
Type: Date

Precision: Day

Null: Null unless nationalPremisesID array is populated, then not null

Description:

End Request Date is the end date of the date range for which ATPS is requesting animal in-
ventory for one or more premises.

Usage:

End Request Date is used in tandem with the National Premises ID array. The ATD will re-
turn all animal events that indicate that the animal may be at any premises in the National
Premises ID array on or before the End Request Date specified. Even if the event that indi-
cated inventory occurred after the End Request Date the ATD is expected to return that event
if there is no other event that proved that the animal was not at the premises.

End request Date will only be populated if the National Premises ID array is not empty. Oth-
erwise it will be null.

Begin Request Date must be populated if End Request Date is populated. End Request Date
can be the same day as Begin Request Date but can not be earlier than Begin Request Date.

2.1.2.9.12 ATPSRequestWS.beginAuditDate
Type: Date

Precision: Day

Null: May be null

Description:

National Animal Identification System Page 23

ATPS version 1.0 DRAFT ATD Technical Specifications

If the Begin Audit Date is populated, this indicates that ATPS is only interested in events that
match the Request criteria, and furthermore only events that were added or modified in the
ATD on or later than the Begin Audit Date.

This allows ATPS to ask a “follow up” to an older request. The ATD can provide updated in-
formation only without having to respond with information it has already sent.

Begin Audit Date may be populated for any Request.

End Audit Date must be populated if Begin Audit Date is populated. End Audit Date can be
the same day as Begin Audit Date but can not be earlier than Begin Audit Date. If the dates
are the same, ATPS wants all events “audited” (inserted or updated) that day.

2.1.2.9.13 ATPSRequestWS.endAuditDate
Type: Date

Precision: Day

Null: May be null

Description:

If the End Audit Date is populated, this indicates that ATPS is only interested in events that
match the Request criteria, and furthermore only events that were added or modified in the
ATD on or earlier than the End Audit Date.

This allows ATPS to ask a “follow up” to an older request. The ATD can provide updated in-
formation only without having to respond with information it has already sent.

End Audit Date may be populated for any Request.

Begin Audit Date must be populated if End Audit Date is populated. End Audit Date can be
the same day as Begin Audit Date but can not be earlier than Begin Audit Date. If the dates
are the same, ATPS wants all events “audited” (inserted or updated) that day.

2.1.2.9.14 ATPSRequestWS.invalidItems
Type: ATPSInvalidItemWS[]

Null: No, will be empty unless Request Status is VALIDATION_ERROR.

Size: 100 maximum

Description:

This is an array of Invalid Items that indicate specific field-level validation errors in the ATD
Response.

The Invalid Item may contain up to eight attributes that identify the invalid item: The ATD
Response ID, the Split Number, the ATD Event ID (if supplied by the ATD), The Response
Record Sequence, Element Name, Element Value, Cause code, and Reason or description of
the invalid cause. See the description of the Invalid Item object for more information.

The array will be empty unless the Request Status is VALIDATION_ERROR. Then it will
have at least one item and at most 100 items in the array.

2.1.2.9.15 ATPSRequestWS.execptionItems
Type: ATPSInvalidItemWS[]

Null: Will be null unless Request Status is ERROR

National Animal Identification System Page 24

ATPS version 1.0 DRAFT ATD Technical Specifications

Description:

ATPS Exception Items will only be present if the Request Status is ERROR, or INCOM-
PLETE_SPLIT. All other times it will be null. In these cases an exception was raised when
the client attempted to submit the response. This exception contained a message and a fault
code. The Request itself will retain the message and fault code so that the client can retrieve
this information later without having to hang on to the exception information.

2.1.2.10 ATPSCaseWS Object
Attribution:
ATPSCaseWS{
Long caseId;
String caseDescription;
String caseStatus;
}

Attributes:

2.1.2.10.1 ATPSCaseWS.caseId
Type: Long integer

Size: 15 digits or less

Description:

The ATPS Case ID is a unique ATPS-generated numeric ID for the case. The same Case ID
will exist for multiple Request IDs. The Case ID is provided as a convenience to the ATDs.

Usage Rules:

No required Usage.

2.1.2.10.2 ATPSCaseWS.caseDescription
Type: String

Size: 256 characters max

Null: No

Description:

The ATPS Case Description is a text description of the Case. The Case ID is provided as a
convenience to the ATDs, and is provided because the ATDs have specifically asked for its
inclusion in this object.

To Do: Determine what information is permissible in the Case Description. It is probable that
the description will not include the disease type.

Usage Rules:

No required Usage.

2.1.2.10.3 ATPSCaseWS.caseStatus
Type: String.

Size: 20 characters max.

National Animal Identification System Page 25

ATPS version 1.0 DRAFT ATD Technical Specifications

Null: No

Valid Values:

Case
Status Description

OPEN The Case is open and ATD must respond to the message depending on the Request
Status value.

CLOSED The case is closed and no further action by the ATD is required.

Description:

The ATPS Case Status describes the Case Status. Current allowed values include “OPEN”
and “CLOSED”.

2.1.2.11 ATPSOfficialIdWS Object
Attribution:
ATPSOfficialIdWS{
String officialId;
String officialIdType;
}

Description:

2.1.2.11.1 ATPSOfficialIdWS.officialId
Type: String

Null: No

Size: 17 characters

Description:

The Official ID is the Official Animal Identification Number for the animal. It is not required
to be a USDA “840” number. The Official ID will not be null.

2.1.2.11.2 ATPSOfficialIdWS.officialIdType
Type: String

Null: No

Size: 1 character

Valid Values: See Official ID Codes in the Appendix.

Description:

The Official ID Type is a descriptor of the Official ID. This attribute is included as a conven-
ience to the ATD. It is likely that the ATD will know by the format of the ID itself what Type
it is, but the Type attribute takes all guesswork out of the Request. ATPS will only request in-
formation for Official ID Types.

2.1.2.12 ATPSInvalidItemWS Object
Attribution:
ATPSInvalidItemWS{

National Animal Identification System Page 26

ATPS version 1.0 DRAFT ATD Technical Specifications

 String ATDResponseId;
 Integer split;
 String ATDEventId;
 Long recordSequence;
 String elementName;
 String elementValue;
 ATPSExceptionInfoWS exceptionInfo;
}

Description:

2.1.2.12.1 ATPSInvalidItemWS.ATDResponseId
Type: String (20 max)

Null: No

Description:

This is the ATD-supplied Response ID that contains the invalid item. It is included to allow
the ATD to look up the response more quickly.

2.1.2.12.1 ATPSInvalidItemWS.split
Type: Integer

Null: Can be null

Description:

If the response is a split response, the split attribute will contain the split number containing
the invalid item.

2.1.2.12.1 ATPSInvalidItemWS.ATDEventId
Type: String

Null: Can be null

Description:

If the ATD supplies an ATD Event ID with its Response, ATPS will include that ID in the
Invalid Item. This should help the ATD quickly identify the Event that caused the validation
error, but it is an optional Response Element so it may be null.

2.1.2.12.2 ATPSInvalidItemWS.recordSequence
Type: Long

Null: No

Description

The Record Sequence identifies the particular record that contains the element with the data
validation error. The first record in the list of records will have a record sequence of 0. This
helps the ATD identify the particular record with the validation error in the event the ATD
does not supply the ATDEventId Element in its Response.

2.1.2.12.3 ATPSInvalidItemWS.elementName
Type: String

National Animal Identification System Page 27

ATPS version 1.0 DRAFT ATD Technical Specifications

Null: No

Description:

The Element Name will be the element name of the element that failed. For example if the
“species” element failed validation because the value was “XXXX”, then the Element Name
would be “species”

2.1.2.12.4 ATPSInvalidItemWS.elementValue
Type: String

Null: No

Description:

The Element Value will be the value of the element that failed. For example if the “species”
element failed validation because the value was “XXXX”, then the Element Value would be
“XXXX”

2.1.2.12.5 ATPSInvalidItemWS.exceptionInfo
Type: ATPSExceptionInfoWS

Null: No

Valid values (subject to change):

Description:

This will contain the exception code and description relating to the invalid item. For instance,
a data format invalid item will have a different cause than a validation error.

2.1.2.13 ATPSExceptionInfoWS Object
Attribution:
ATPSExceptionInfoWS {
String cause;
String message;
}

Description:

This is a generic “exception” object that stores a cause or ID, and a description of the prob-
lem. It is used by both invalid items and “real” exceptions.

2.1.2.13.1 ATPSExceptionInfoWS.cause
Type: String

Null: No

Valid values (subject to change):

Error causes:

Cause Description
8000 Unknown Exception
8001 Incomplete response
8002 Response parsing error

National Animal Identification System Page 28

ATPS version 1.0 DRAFT ATD Technical Specifications

8003 Connection Refused
8004 Disabled ATD failure
8005 Authorization failure

Invalid Item causes:

Cause Description
7000 Element value data format error
7001 Element value data validation error

Description:

The cause is a code that the ATD can use to categorize and potentially automatically respond
to a Request that is in an ERROR state.

The Fault Code will be present in the exception when it is thrown initially as well.

2.1.2.13.2 ATPSExceptionInfoWS.message
Type: String

Null: No

Description:

The Message is a text description of the exception. It may the description in the table of val-
ues in the Cause item above, or a more detailed description may be included instead.

The message will be a text description that details why the element failed.

For example if the “species” element failed validation because the value was “XXXX”, then
the message would likely be “value too long.” Note that in this example the element is likely
both too long and not a valid value, but ATPS does not guarantee that it will return every er-
ror for the element.

2.1.2.14 ATPSRequestCriteriaWS Object
Attribution:
ATPSRequestCriteriaWS{
Long requestId;
Long caseId;
String[] requestStatus;
String requestStatusCategory;
Date beginRequestCreatedDate;
Date beginRequestModifiedDate;
}

General Usage Rules:

At least one attribute besides Created Date and Modified Date must be populated when call-
ing getRequests.

Requests that are in CLOSED Cases will only be returned if the ATD specifies the Case ID in
the request criteria, or if the ATD specifies the individual request ID. This is to prevent ATPS
from returning potentially massive numbers of Requests.

National Animal Identification System Page 29

ATPS version 1.0 DRAFT ATD Technical Specifications

If multiple criteria are populated, the search logic acts like an AND qualifier. The exception
is Request Status array element. If the request status array has multiple items in it, they will
act like an OR qualifier.

Example: To get requests created after 9/25/2006, and having a status of NEW or RE-
TRIEVED, the ATD will populate the Request Created Date with a Date of 9/25/2006, and
the Status array with NEW and RETRIEVED items.

Description:

2.1.2.14.1 ATPSRequestCriteriaWS.requestId
Type: Long

Size: 15 digits or less

Null: Can be null

Description:

The Request ID is the ATPS-generated ID of the Request. The ATD can populate this attrib-
ute to get a single Request matching the Request ID.

If the Request matching the Request ID exists, and it is a Request for the ATD, ATPS will re-
turn the request.

If the Request ID does not exist, ATPS will return an empty array.

If the Request ID exists but the Request was for a different ATD, ATPS will return an empty
array. Note that even if ATPS requests the same information from every ATD, each ATD is
assigned a unique request ID, even though the rest of the request parameters will be identical.

2.1.2.14.2 ATPSRequestCriteriaWS.caseId
Type: Long

Size: 15 digits or less

Null: Can be null

Description:

The Case ID is the ATPS-generated ID of a Case. The ATD can populate this attribute to get
all requests matching the Case ID for the ATD.

If the Case ID does not exist, ATPS will return an empty array.

If the Case ID does exist, ATPS will return all requests matching the Case ID for the ATD.
ATPS will not return any requests for any other ATD.

2.1.2.14.3 ATPSRequestCriteriaWS.requestStatus
Type: String[]

Null: Can be null or empty

Valid Values: See ATPSResponse.requestStatus.

Description:

The Request Status is an array of Status values that the ATD can set in order to get Requests
matching any of the Status values in the array. See above for valid values.

If there are no requests matching any of the Statuses, ATPS will return an empty array.

National Animal Identification System Page 30

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.2.14.4 ATPSRequestCriteriaWS.requestStatusCategory
Type: String[]

Null: Can be null

Valid Values: See ATPSResponse.requestStatusCategory.

Description:

The Request Status Category is a string that the ATD can set in order to get Requests match-
ing the Status Category. See above for valid Status Category values.

If there are no requests matching the Status Category, ATPS will return an empty array.

2.1.2.14.5 ATPSRequestCriteriaWS.beginRequestCreatedDate
Type: Date

Precision: Day

Null: Can be null

Description:

The Begin Request Created Date is the initial date when the Request was created and set to
NEW. The ATPS can set this attribute to instruct ATPS to return Requests that were created
on the day specified or later.

If no Requests were created on the date specified or later, ATPS will return an empty array.

2.1.2.14.6 ATPSRequestCriteriaWS.beginRequestModifiedDate
Type: Date

Precision: Day

Null: Can be null

Description:

The Begin Request Modified Date is the initial date when the Request was last modified. A
request is typically modified when the ATPS responds to the Request. The ATPS can set this
attribute to instruct ATPS to return Requests that were modified on the day specified or later.

If no Requests were modified on the date specified or later, ATPS will return an empty array.

National Animal Identification System Page 31

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.3 Submit Response Web Service
A Response is how an ATD returns requested information to ATPS.

More specifically this is how an ATD will submit a Response to a Request.

The Get Requests web service fulfills step 5 on the basic web service use case:

authenticateATD

validateResponse

onMessage

postMessage

process

validation result

submitResponse()

ATD
Web

service

JMS
queueMessage

Service

ATPS
Engine

ATPS

The “happy path” steps to processing a response are outlined below:

• The ATD calls the Submit Response web service to respond to a message.

• ATPS authenticates the ATD.

• ATPS validates the message for format errors.

• Request moves to RESPONDED if validation is successful.

• Request will usually move to ERROR if validation is not successful, and an excep-
tion will be thrown.

• ATPS posts the response to the internal message queue, where it is processed inter-
nally and asynchronously.

• Without waiting for the response to be processed, ATPS completes the web service
transaction and returns control to the ATD.

2.1.3.1 Basic Requirements
All responses are submitted as an XML String.

National Animal Identification System Page 32

ATPS version 1.0 DRAFT ATD Technical Specifications

The response XML has a DTD against which all Responses are validated when they are sub-
mitted.

Additionally ATPS will ensure the validity of the Request ID before processing the Re-
sponse.

2.1.3.1.1 Required Response Data
ATPS has 4 required data fields in each response. The four fields are: Official ID, Premises
ID, Event Type, and Event Date. These required elements are discussed in more detail below
but some general explanation is provided in this section.

• Official ID

An Official ID is an animal ID that uniquely identifies an animal. ATPS allows several types
of official IDs. The list is included in the specifications for the response XML.

• Premises ID

A Premises ID uniquely identifies a premise. ATPS allows NAIS National Premises IDs and
other types of premises IDs as well.

• Event Type

The event type is a code describing the event that occurred. The list of codes and events is de-
scribed in the XML specification below.

• Event Date

The Event Date is the date upon which the event occurred.

2.1.3.1.2 Multiple IDs and Official IDs
Often times, animals are identified by multiple IDs. Here are some guidelines for processing
animal events with multiple IDs.

The animal event specification contains a required “official” ID and an (optional) list of “op-
tional” IDs. An Official ID is an animal ID that uniquely identifies an animal. Optional IDs
may or may not uniquely identify an animal.

For an animal with multiple IDs, ATPS would like to receive as many optional IDs as possi-
ble, so ATDs are requested to fill in the list of optional IDs with all IDs other than the official
ID.

Given a choice of official IDs, the ATD must put one in the official ID element, and may put
the others in the optional IDs element. The Official ID may be repeated in the Optional IDs
element but this is not preferred.

The ATD may put any of the Official IDs in the official ID element, but ATPS prefers that
ATDs use the following logic when determining which ID to put in the Official ID element:

• When responding to an Official ID Request: The ATD is requested to put the re-
quested ID in the official ID element, and any other ID in the optional ID element.

• When responding to a Premises ID Request: Any Official ID can be put in the official
ID element, but ATPS would prefer that the ATD rank official IDs in the following
order of ID Types: N, U, A, R, F, B, T, G (see below for code descriptions).

National Animal Identification System Page 33

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.3.2 Response XML
This section describes the format of the response XML. Also the DTD and the Strict DTD are
presented here.

2.1.3.2.1 Response DTD
ATPS provides the DTD against which the Response XML is validated. This DTD is publicly
available on the internet. The ATD should validate their response against the DTD before
submitting it to ATPS, but ATPS can not enforce this. ATPS will validate all responses
against this DTD. Any response that does not validate will not get processed. An exception
will be thrown to the ATD, and if possible the Request itself will get set to ERROR and the
exception details will be stored with the Request.

Here is a copy of the DTD:
<?xml version="1.0" encoding="UTF-8"?>
<!—DTD for submission of Animal and Group Events -->
<!ELEMENT eventSub (header,(animalRecords|groupRecords))>
<!ELEMENT header (atpsRequestId,atdResponse)>
<!ELEMENT atpsRequestId (#PCDATA)>
<!ELEMENT atdResponse (responseId)>
 <!ATTLIST atdResponse
 final (Y|N) #REQUIRED
 split CDATA #IMPLIED
 >
<!ELEMENT responseId (#PCDATA)>
<!ELEMENT animalRecords (animalRecord*)>
<!ELEMENT animalRecord (ATDEventId*, eventType, eventDate, rptPre-
mId, id, srcDestPremId*, animal*, remarks*, reTagId*, optIds*)>
 <!ATTLIST animalRecord
 elecRead CDATA #IMPLIED
 status CDATA #IMPLIED
 >
<!ELEMENT groupRecords (groupRecord*)>
<!ELEMENT groupRecord (ATDEventId*, eventType, eventDate, rptPremId,
id, srcDestPremId*, group*, remarks*)>
 <!ATTLIST groupRecord
 elecRead CDATA #IMPLIED
 status CDATA #IMPLIED
 >
<!ELEMENT ATDEventId (#PCDATA)>
<!ELEMENT eventType EMPTY>
 <!ATTLIST eventType
 code CDATA #REQUIRED >
<!ELEMENT eventDate (timestamp)>
<!ELEMENT rptPremId (#PCDATA)>
 <!ATTLIST rptPremId
 type CDATA #IMPLIED>
<!ELEMENT id (#PCDATA)>
 <!ATTLIST id
 type CDATA #IMPLIED>
<!ELEMENT srcDestPremId (#PCDATA)>
 <!ATTLIST srcDestPremId
 type CDATA #IMPLIED>
<!ELEMENT animal (DOB*,age*)>
 <!ATTLIST animal
 species CDATA #IMPLIED

National Animal Identification System Page 34

ATPS version 1.0 DRAFT ATD Technical Specifications

 gender CDATA #IMPLIED
 breed CDATA #IMPLIED
 >
<!ELEMENT DOB (timestamp)>
 <!ATTLIST DOB
 est CDATA #REQUIRED>
<!ELEMENT age (#PCDATA)>
 <!ATTLIST age
 scale (D|M|Y) #REQUIRED>
<!ELEMENT remarks (#PCDATA)>
<!ELEMENT reTagId (#PCDATA)>
 <!ATTLIST reTagId
 type CDATA #IMPLIED>
<!ELEMENT optIds (optId*)>
<!ELEMENT optId (#PCDATA)>
 <!ATTLIST optId
 type CDATA #IMPLIED>
<!ELEMENT group (groupSubsetId*, groupCount*)>
 <!ATTLIST group
 groupType CDATA #IMPLIED
 species CDATA #IMPLIED
 breed CDATA #IMPLIED
 >
<!ELEMENT groupSubsetId (#PCDATA)>
<!ELEMENT groupCount (#PCDATA)>
<!ELEMENT timestamp EMPTY>
 <!ATTLIST timestamp
 y CDATA #REQUIRED
 mo CDATA #REQUIRED
 d CDATA #REQUIRED
 h24 CDATA "0"
 mi CDATA "0"
 s CDATA "0"
 tz CDATA #IMPLIED
 >

2.1.3.2.2 Strict DTD:
ATPS will also provide a “strict” DTD that the ATD can use to validate their Response. This
DTD provides some data validation checks. An ATD that validates against this DTD will be
ensured that most data validation errors will be avoided during processing.

Here is a copy of the Strict DTD:
<?xml version="1.0" encoding="UTF-8"?>
<!—Strict DTD for submission of Animal and Group Events -->
<!ELEMENT eventSub (header,(animalRecords|groupRecords))>
<!ELEMENT header (atpsRequestId,atdResponse)>
<!ELEMENT atpsRequestId (#PCDATA)>
<!ELEMENT atdResponse (responseId)>
 <!ATTLIST atdResponse
 final (Y|N) #REQUIRED
 split CDATA #IMPLIED
 >
<!ELEMENT responseId (#PCDATA)>
<!ELEMENT animalRecords (animalRecord*)>
<!ELEMENT animalRecord (ATDEventId*, eventType, eventDate, rptPre-
mId, id, srcDestPremId*, animal*, remarks*, reTagId*, optIds*)>

National Animal Identification System Page 35

ATPS version 1.0 DRAFT ATD Technical Specifications

 <!ATTLIST animalRecord
 elecRead (Y|N) #IMPLIED
 status (C) #IMPLIED
 >
<!ELEMENT groupRecords (groupRecord*)>
<!ELEMENT groupRecord (ATDEventId*, eventType, eventDate, rptPremId,
id, srcDestPremId*, group*, remarks*)>
 <!ATTLIST groupRecord
 elecRead (Y|N) #IMPLIED
 status (C) #IMPLIED
 >
<!ELEMENT ATDEventId (#PCDATA)>
<!ELEMENT eventType EMPTY>
 <!ATTLIST eventType
 code (0|1|2|3|4|5|6|7|8|9|10|11|12|13) #REQUIRED >
<!ELEMENT eventDate (timestamp)>
<!ELEMENT rptPremId (#PCDATA)>
 <!ATTLIST rptPremId
 type (N|X) #REQUIRED>
<!ELEMENT id (#PCDATA)>
 <!ATTLIST id
 type (A|U|R|F|N|B|G|T|X) #REQUIRED>
<!ELEMENT srcDestPremId (#PCDATA)>
 <!ATTLIST srcDestPremId
 type (N|X) #REQUIRED>
<!ELEMENT animal (DOB*,age*)>
 <!ATTLIST animal
 species (ACQ|BOV|CAM|CAP|CER|EQU|OVI|AVI|POR) #IMPLIED
 gender (M|F|C|S|X) #IMPLIED
 breed CDATA #IMPLIED
 >
<!ELEMENT DOB (timestamp)>
 <!ATTLIST DOB
 est (Y|N) #REQUIRED>
<!ELEMENT age (#PCDATA)>
 <!ATTLIST age
 scale (D|M|Y) #REQUIRED>
<!ELEMENT remarks (#PCDATA)>
<!ELEMENT reTagId (#PCDATA)>
 <!ATTLIST reTagId
 type (A|U|R|F|N|B|G|T|X) #REQUIRED>
<!ELEMENT optIds (optId*)>
<!ELEMENT optId (#PCDATA)>
 <!ATTLIST optId
 type (A|U|R|F|N|B|G|T|X) #REQUIRED>
<!ELEMENT group (groupSubsetId*, groupCount*)>
 <!ATTLIST group
 groupType CDATA #IMPLIED
 species (AQU|CLM|CRA|CTF|MSL|OYS|SAL|SBA|SHR|SLP|TIL|TRO|
 BOV|BIS|BEF|DAI|CAM|CAP|CER|DEE|ELK|EQU|OVI|
 AVI|CHI|DUC|GEE|GUI|PGN|PHE|QUA|TUR|OTH|POR) #IMPLIED
 breed CDATA #IMPLIED
 >
<!ELEMENT groupSubsetId (#PCDATA)>
<!ELEMENT groupCount (#PCDATA)>
<!ELEMENT timestamp EMPTY>
 <!ATTLIST timestamp

National Animal Identification System Page 36

ATPS version 1.0 DRAFT ATD Technical Specifications

 y CDATA #REQUIRED
 mo (1|2|3|4|5|6|7|8|9|10|11|12) #REQUIRED
 d (1|2|3|4|5|6|7|8|9|
 10|11|12|13|14|15|16|17|18|19|
 20|21|22|23|24|25|26|27|28|29|30|31) #REQUIRED
 h24 (0|1|2|3|4|5|6|7|8|9|10|11|12|
 13|14|15|16|17|18|19|20|21|22|23) "0"
 mi (0|1|2|3|4|5|6|7|8|9|
 10|11|12|13|14|15|16|17|18|19|
 20|21|22|23|24|25|26|27|28|29|
 30|31|32|33|34|35|36|37|38|39|
 40|41|42|43|44|45|46|47|48|49|
 50|51|52|53|54|55|56|57|58|59) "0"
 s (0|1|2|3|4|5|6|7|8|9|
 10|11|12|13|14|15|16|17|18|19|
 20|21|22|23|24|25|26|27|28|29|
 30|31|32|33|34|35|36|37|38|39|
 40|41|42|43|44|45|46|47|48|49|
 50|51|52|53|54|55|56|57|58|59) "0"
 tz (GMT|GMT-1|GMT-2|GMT-3|GMT-4|GMT-5|GMT-6|
 GMT-7|GMT-8|GMT-9|GMT-10|GMT-11|GMT-12|
 GMT12|GMT11|GMT10|GMT9|GMT8|GMT7|GMT6|
 GMT5|GMT4|GMT3|GMT2|GMT1) #IMPLIED
 >

2.1.3.2.3 ATD Response XML Examples
• Example 1: Response indicating no records found

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>
<atpsRequestId>12345</atpsRequestId>
<atdResponse final="Y">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>
</animalRecords>
</eventSub>

• Example 2: Response with one record, minimally populated
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>
<atpsRequestId>12345</atpsRequestId>
<atdResponse final="Y">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>

National Animal Identification System Page 37

ATPS version 1.0 DRAFT ATD Technical Specifications

<animalRecord>
 <eventType code="4"/>
 <eventDate>
 <timestamp y="2006" mo="9" d="25"/>
 </eventDate>
<rptPremId type="N">002GCNK</rptPremId>
 <id type="N">840002123456789</id>
</animalRecord>
</animalRecords>
</eventSub>

• Example 3: Response with one “fully” populated record. This is a Corrected moved
out record for a cow. The cow has an official 840 ID, and also has an optional breed
registry ID.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>
<atpsRequestId>12345</atpsRequestId>
<atdResponse final="Y">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>
<animalRecord elecRead="Y" status="C">
 <eventType code="4"/>
<eventDate>
 <timestamp y="2006" mo="9" d="25"/>
 </eventDate>
 <rptPremId type="N">002GCNK</rptPremId>
 <id type="N">840002123456789</id>
 <srcDestPremId type="N">003FY38</srcDestPremId>
 <animal species="BOV" gender="M" breed="HB">
 <DOB est="Y">
 <timestamp y="2006" mo="9" d="25"/>
 </DOB>
 <age scale="M">5</age>
 </animal>
 <remarks>recorded by Joe</remarks>
 <optIds>
 <optId type="B">00T1234001</optId>
 </optIds>
</animalRecord>
</animalRecords>
</eventSub>

• Example 4: Response with two records, minimally populated
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>

National Animal Identification System Page 38

ATPS version 1.0 DRAFT ATD Technical Specifications

<atpsRequestId>12345</atpsRequestId>
<atdResponse final="Y">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>
<animalRecord>
 <eventType code="4"/>
 <eventDate>
 <timestamp y="2006" mo="9" d="25"/>
 </eventDate>
 <rptPremId type="N">002GCNK</rptPremId>
 <id type="N">840002123456789</id>
</animalRecord>
<animalRecord>
 <eventType code="4"/>
 <eventDate>
 <timestamp y="2006" mo="9" d="25"/>
 </eventDate>
 <rptPremId type="N">002GCNK</rptPremId>
 <id type="N">840002123456790</id>
</animalRecord>
</animalRecords>
</eventSub>

• Example 5a: Split response with one record, minimally populated, first split of 3.
(Note, normally a split response that is not the final split contains 5,000 events.)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>
<atpsRequestId>12345</atpsRequestId>
<atdResponse final="N" split="1">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>
<animalRecord>
 <eventType code="4"/>
 <eventDate>
 <timestamp y="2006" mo="9" d="25"/>
 </eventDate>
 <rptPremId type="N">002GCNK</rptPremId>
 <id type="N">840002123456789</id>
</animalRecord>
</animalRecords>
</eventSub>

• Example 5b: Split response with one record, minimally populated, second split of 3.
(Note, normally a split response that is not the final split contains 5,000 events.)

<?xml version="1.0" encoding="UTF-8"?>

National Animal Identification System Page 39

ATPS version 1.0 DRAFT ATD Technical Specifications

<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>
<atpsRequestId>12345</atpsRequestId>
<atdResponse final="N" split="2">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>
<animalRecord>
 <eventType code="4"/>
 <eventDate>
 <timestamp y="2006" mo="9" d="25"/>
 </eventDate>
 <rptPremId type="N">002GCNK</rptPremId>
 <id type="N">840002123456789</id>
</animalRecord>
</animalRecords>
</eventSub>

• Example 5c: Split response with one record, minimally populated, final split of 3
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE eventSub PUBLIC
\"http://localhost/atps/dtds/eventSub.dtd\"
\"http://localhost/atps/dtds/eventSub.dtd\">
<eventSub>
<header>
<atpsRequestId>12345</atpsRequestId>
<atdResponse final="Y" split="3">
 <responseId>32543</responseId>
</atdResponse>
</header>
<animalRecords>
<animalRecord>
 <eventType code="4"/>
 <eventDate>
 <timestamp y="2006" mo="9" d="25"/>
 </eventDate>
 <rptPremId type="N">002GCNK</rptPremId>
 <id type="N">840002123456789</id>
</animalRecord>
</animalRecords>
</eventSub>

2.1.3.3 Response Elements and Attributes
This section describes all of the elements and attributes in the response. Element/Attribute re-
quirements and behavior are detailed as well.

Summary:

A Response DTD Element and Attribute summary chart is provided here. Each element and
attribute is detailed at length below.

Element and Attribute Summary chart:

National Animal Identification System Page 40

ATPS version 1.0 DRAFT ATD Technical Specifications

element field
required format size description notes

eventSub Y Elements na Root element Contains header plus animal-
Records or groupRecords ele-
ments

header Y Elements na Header root element Conatins atpsRequestId and
atdResponse elements

atpsRequestId Y Numeric 15 ATPS ID of the origi-
nal request

ATPS will create a unique ID
for each request. Clients must
include this ID when submit-
ting this response

atdResponse Y Elements na ATD response root
element

atdResponseId Y Alpha-
numeric

20 ATD unique ID for the
response

Value supplied by client; must
be unique for all messages sent
by a client, except for a split
response.

atdResponse.
final

Y (Y|N) 1 Indicates if this is the
final response

Always "Y" for non-split re-
sponses. Only "Y" for the last
split response.

atdResponse.
split

See notes Numeric 9 Split response number Starts with 1, increment by 1's.
Only required if split response.

animalRecords See notes Elements na Animal records root
element

animalRecords or groupRe-
cords element must be present
but may be empty. Contains 0
to many animalRecord ele-
ments

animalRecord N Elements na Single animal record
root element

Represents a single animal
event. Contains several ele-
ments corresponding to animal
event data attributes

animalRecord.
elecRead

N (Y|N) 1 Is event electronically
read

N=false, Y=true. No human
intervention in recording proc-
ess.

animalRecord.
status

N (C) 1 Event status (C)orrected record.

groupRecords See notes Elements na Group records root
element

animalRecords or groupRe-
cords element must be present
but may be empty. Contains 0
to many groupRecord elements

groupRecord N Elements na Single group record
root element

Represents a single group
event. Contains several ele-
ments corresponding to group
event data attributes

groupRecord.
elecRead

N (Y|N) 1 Is event electronically
read

N=false, Y=true. No human
intervention in recording proc-
ess.

groupRecord.
status

N (C) 1 Event status (C)orrected record.

ATDEventId N Alpha-
numeric

20 ATD’s unique event
identifier

National Animal Identification System Page 41

ATPS version 1.0 DRAFT ATD Technical Specifications

eventType Y Empty na Event type element Actual event type code is in the
element's attribute so it can be
validated by the DTD

eventType.code Y Numeric 2 Event type code Refer to Requirements docu-
ment for current list of valid
event codes.

eventDate Y Elements na Date of the event Contains a timestamp element
(see below for definition of
timestamp element)

rptPremId Y Alpha-
numeric

7 Sighting/reporting
national premises ID

National Premises refers to
National Premises ID in regis-
try

rptPremId.type N (N|X) 1 Indicated if the prem-
ises ID is a national
premises ID or not

N=national, X=any other type.

id Y Alpha-
numeric

17 Official ID Official ID.

id.type N (A|U|R|F|
N|B|G|T|X
)

1 Official ID type N="840" ID. See requirements
for more information.

srcDestPremId N Alpha-
numeric

7 Source/destination
premises ID

Used for moved in and moved
out event types

srcDestPremId.
type

N (N|X) 1 Indicated if the prem-
ises ID is a national
premises ID or not

N=national, X=any other type.

animal N Elements na Contains animal in-
formation

Includes date of birth, age, spe-
cies, gender, and breed

animal.species N Alpha-
numeric

3 Animal species code Refer to requirements docu-
ment for current list of valid
species codes

animal.gender N Alpha-
numeric

1 Animal gender Refer to requirements docu-
ment for current list of valid
gender codes

animal.breed N Alpha-
numeric

2 Animal breed Refer to requirements docu-
ment for current list of valid
breed codes

DOB N Elements na Animal date of birth Contains a timestamp element
(see below for definition of
timestamp element)

DOB.est See notes (Y|N) 1 Is animal date of birth
estimated?

Required if DOB element is
present

age N Numeric 4 Animal age Numeric qualifier for animal
age. Only makes sense coupled
with the scale attribute (see
below). Assumed estimated.

age.scale See notes (D|M|Y) 1 “Scale” of the age
value

D=Days, M=Months, Y=Years.
Required if age element is pre-
sent.

remarks N Alpha-
numeric

50 Event remarks Description/other comments on
event. “sold to Stan
Humphries” or herd manage-
ment id.

National Animal Identification System Page 42

ATPS version 1.0 DRAFT ATD Technical Specifications

reTagId See notes Alpha-
numeric

17 Retagged animal ID Required for tag replacement
event (event ID 6). Forbidden
otherwise. This is the OLD tag,
not the new tag.

reTagId.type N Alpha-
numeric

1 Retagged animal ID
type

Required if re tag ID is present.
Refer to requirements docu-
ment for current list of valid re
tag types

optIdRecords N Elements na Optional ID records
root element

May be empty or missing alto-
gether. Contains 0 to many
optional official ID record ele-
ments

optIdRecord N Elements na Optional ID record
single element

Represents a single optional ID
(ID and type).

optId N Alpha-
numeric

17 Optional ID

optId.type N Alpha-
numeric

1 Optional ID type Required if optId element is
present.

timestamp See notes Empty na Timestamp element Used in two spots in the DTD.
Required if eventDate element
is present (so it's required), and
also required if DOB element
is present.

timestamp.y Y Numeric 4 Year Must be 4 digit year
timestamp.mo Y Numeric

1-12
2 Month 1=January, etc.

timestamp.d Y Numeric
1-31

2 Day

timestamp.h24 N Numeric
0-23

2 Hour Midnight=0, 1pm = 13, 11pm
=23

timestamp.mi N Numeric
0-59

2 Minute

timestamp.s N Numeric
0-59

2 Second

timestamp.tz See notes GMT[1-
12]|-1-12]

6 Timezone If h24, mi, or s are populated it
is optional. Value relative to
GMT: round to nearest hour if
in offset timezone. Examples:
Mountain Daylight
Ttime=GMT-6, Mountain
Standard Time=GMT-7. Nor-
malize to EST (GMT-5) if pos-
sible.

group N Elements na Contains group infor-
mation

Includes species, breed, group-
Type attributes, and groupSub-
setId and groupCount elements

group.type N alpha-
numeric

3 Group type Refer to requirements docu-
ment for current list of valid
group type codes

group.species N Alpha-
numeric

3 Group species group
code

Refer to requirements docu-
ment for current list of valid
species codes

group.breed N Alpha-
numeric

2 Group breed Refer to requirements docu-
ment for current list of valid

National Animal Identification System Page 43

ATPS version 1.0 DRAFT ATD Technical Specifications

breed codes

groupSubsetId N Alpha-
numeric

20 Group sub set ID

groupCount N Numeric 10 Group count

Detail:

Each element and attribute is detailed at length in this section.

2.1.3.3.1 eventSub Element
DTD:
<!ELEMENT eventSub (header,(animalRecords|groupRecords))>

Required: Yes

Description:

The eventSub element encapsulates the entire Response from the ATD. It contains a Header
element and either an animalRecords element or a groupRecords element. It has no attributes.
Only one eventSub pre response is allowed.

2.1.3.3.2 header Element
DTD:
<!ELEMENT header (atpsRequestId,atdResponse)>

Required: Yes

Description:

The header element encapsulates “header” information about the Response, namely the ATPS
Request ID and the ATD Response elements.

2.1.3.3.3 atpsRequestId Element
DTD:
<!ELEMENT atpsRequestId (#PCDATA)>

Required: Yes

Format: Numeric, 15 digits max.

Description:

The atpsRequestId element contains the ID if the Request to which this is a Response. If this
is a Split Response, all Splits will have the same Request ID. This is a required element so if
it is not present, or if it is empty, or if it does not match a Request for the ATD that is in an
ACTIVE or ACTIONABLE status, the Response will not be processed and the Request will
go to an ERROR state.

2.1.3.3.4 atdResponse Element
DTD:
<!ELEMENT atdResponse (responseId)>
 <!ATTLIST atdResponse

National Animal Identification System Page 44

ATPS version 1.0 DRAFT ATD Technical Specifications

 final (Y|N) #REQUIRED
 split CDATA #IMPLIED
 >

Required: Yes

Description:

The atdResponse element contains basic information about the Response. It consists of a re-
sponseId element, and two attributes: final, and split.

2.1.3.3.4.1 atdResponse.final Attribute
DTD:
atdResponse final (Y|N) #REQUIRED

Required: Yes

Valid values:

Y

N

Description:

The atdResposne.final Attribute indicates if the Response from the ATD is the final Response
from them pertaining to a specific ATPS Request ID. The valid values are Y and N. If the
ATD only has one response to a Request, the atdResposne.final attribute will be set to Y. If
the ATD is submitting multiple responses to a single Request ID (a split response), then the
atdResposne.final attribute will be N until the final split, then it will be Y.

In chart form:

Split Response? Last Split? Final
N n/a Y

N N Y
Y Y

2.1.3.3.4.2 atdResposne.split Attribute
DTD:
split CDATA #IMPLIED

Required: Yes, if ATD is responding with a split response, otherwise no

Format: Integer

Description:

The atdResponse.split attribute describes which “split number” is being submitted by the
ATD for a particular ATPS Request. This attribute is required if the ATD is submitting a split
response, otherwise it is not present. The split attribute can be thought of as the “page” of the
response. The split is a numeric value.

In the event of a split response, the ATD will start numbering splits with 1, and count con-
secutively until it reached the final split. For example if an ATD is responding to a request
with three split responses, the first split will have a split value of 1. The second will have a

National Animal Identification System Page 45

ATPS version 1.0 DRAFT ATD Technical Specifications

split value of 2, and the third and final split will have a split value of 3. The following chart
further illustrates:

Split Split Attribute Final
Attribute

ATPS Request
ID Element

ATD Response
ID Element

1 1 N [12345] [54321]
2 2 N [12345] [54321]
3 3 Y [12345] [54321]

2.1.3.3.5 responseId Element
DTD:
<!ELEMENT responseId (#PCDATA)>

Required: Yes

Format: String, max length 20 characters

Description:

The responseId Element is generated by the ATD. When responding to a Request, the ATD is
required to supply a unique Response ID (except for Split Responses; see below). The ID
may be numeric, alpha-numeric, or alpha. The Response ID may only contain numbers and
letters (no special characters). The Response ID is case sensitive.

If an ATD is submitting split responses, each Split will have the same Response ID.

If an ATD is responding to the same Request multiple times, the ATD will supply a unique
Response ID for each response.

Illustrated:

Non-split response:

Response
Attempt Split Split

Attribute
Final

Attribute
ATPS Request

ID Element
ATD Response

ID Element
First attempt n/a n/a Y [12345] [54321]
Second
attempt

n/a n/a Y [12345] [54322]

Split response:

Response
Attempt Split Split

Attribute
Final

Attribute
ATPS Request

ID Element
ATD Response

ID Element
1 1 N [12345] [54321]
2 2 N [12345] [54321]

First attempt

3 3 Y [12345] [54321]
1 1 N [12345] [54322]
2 2 N [12345] [54322]

Second
attempt

3 3 Y [12345] [54322]

2.1.3.3.6 animalRecords Element
DTD:
<!ELEMENT animalRecords (animalRecord*)>

Required: Either animalRecords or groupRecords Element is required.

Description:

National Animal Identification System Page 46

ATPS version 1.0 DRAFT ATD Technical Specifications

The animalRecords Element is a container for 0-to-many animalRecord Elements. Note the in
the event that an ATD is responding to a Request, but the response is essentially that the ATD
has no events matching the request criteria, then an animalRecord Element is required, but it
will be empty.

2.1.3.3.7 animalRecord Element
DTD:
<!ELEMENT animalRecord (ATDEventId?*, eventType, eventDate, rptPre-
mId?, id, srcDestPremId?*, animal*, remarks*, reTagId?*, optIds*)>
<!ATTLIST animalRecord
elecRead CDATA #IMPLIED
status CDATA #IMPLIED
>

Strict DTD:
<!ELEMENT animalRecord (ATDEventId?*, eventType, eventDate, rptPre-
mId?, id, srcDestPremId?*, animal*, remarks*, reTagId?*, optIds*)>
<!ATTLIST animalRecord
elecRead (Y|N) #IMPLIED
status (C) #IMPLIED
>

Required: No

Description:

The animalRecord Element is a representation of a single animal event. From 0-to-many ani-
malRecord Elements may be present in a single Response. ATPS recommends that an ATD
only submit 5,000 animalRecord Elements in a single response. If the ATD needs to return
more than 5,000 animalRecord Elements, they need to “split” the response into multiple Split
Responses, none of which contain more than 5,000 animalRecord elements.

The animalRecord Element contains several sub-elements, as well as two Attributes. These
are all discussed individually below.

2.1.3.3.7.1 animalRrecord.elecRead Attribute
DTD:
elecRead CDATA #IMPLIED

Strict DTD:
elecRead (Y|N) #IMPLIED

Required: No

Valid Values:

Y

N

Description:

The animalRecord.elecRead Attribute indicates if the event described by this animalRecord
Element was completely “electronically” processed. If at any point between the collection of

http://ainmngt-test.aphis.usda.gov/atpsWiki/jsp/Wiki?topic=ATDEventId&action=action_edit
http://ainmngt-test.aphis.usda.gov/atpsWiki/jsp/Wiki?topic=PremId&action=action_edit
http://ainmngt-test.aphis.usda.gov/atpsWiki/jsp/Wiki?topic=DestPremId&action=action_edit
http://ainmngt-test.aphis.usda.gov/atpsWiki/jsp/Wiki?topic=TagId&action=action_edit
http://ainmngt-test.aphis.usda.gov/atpsWiki/jsp/Wiki?topic=ATDEventId&action=action_edit
http://ainmngt-test.aphis.usda.gov/atpsWiki/jsp/Wiki?topic=PremId&action=action_edit
http://ainmngt-test.aphis.usda.gov/atpsWiki/jsp/Wiki?topic=DestPremId&action=action_edit
http://ainmngt-test.aphis.usda.gov/atpsWiki/jsp/Wiki?topic=TagId&action=action_edit

National Animal Identification System Page 47

ATPS version 1.0 DRAFT ATD Technical Specifications

the data and the storage of the data in the ATD database was manually processed, the ele-
cRead Attribute must be “N”. Otherwise it can be set to “Y”.

If the ATD does not know if the event was manually processed, this attribute should not be
included in the Response.

Illustrated:

Data Processing Condition XML
Completely automated
(no manual intervention required)

<animalRecord elecRead = “Y”>

All or part manual processing <animalRecord elecRead = “N”>
Unknown <animalRecord>

2.1.3.3.8 animalRecord.status Attribute
DTD:
status CDATA #IMPLIED

Strict DTD:
status (C) #IMPLIED

Required: No

Valid Values:

C

Description:

The animalRecord.status Attribute is meant to indicate if the event record has been corrected
at some point. The only valid value for this Attribute is “C”. If this is not a corrected event,
the attribute should be left out entirely.

In the event that a particular record has been corrected, depending on how the ATD stores
and processes data multiple “versions” of the same event may show up in the same response.
ATPS prefers that only the most recent corrected event is returned. In the event that the ATD
can not discriminate and filter out older non-corrected versions of the event, ATPS requests
that the ATD populate the ATDEventId with the same event ID for each event. Furthermore,
in the event that an event has been corrected multiple times, if the ATD is returning all events
ATPS recommends that the ATD only add the status attribute to the most recently corrected
event (it is assumed that the most recent event is also the most correct).

Examples:

Event
ID

Corrected
Record

Latest
Correc
tion?

Status
Attribute atdEventId Element

[54321] N N <animalRecord> <ATDEventId>54321</ATDEventId>
[54321] Y N <animalRecord> <ATDEventId>54321</ATDEventId>
[54321] Y Y <animalRecord

status=”C”>
<ATDEventId>54321</ATDEventId>

ATPS would prefer in this example that only the last (most recently processed) event is re-
turned.

2.1.3.3.9 ATDEventId Element

National Animal Identification System Page 48

ATPS version 1.0 DRAFT ATD Technical Specifications

DTD:
<!ELEMENT ATDEventId (#PCDATA)>

Required: Only required in the event the ATD is returning the same event multiple times
with corrections in the same response.

Format: String, max length 50 characters

Description:

This is an optional element that the ATD can include in their response events. It is a key for
the Event that is internal to the ATD. ATPS has no restrictions on the format of the ATDE-
ventId other than it can not be longer than 50 characters.

The ATDEventId is required if the ATD is responding with multiple versions of the same
event, one or more of which are corrected versions of the event. In this scenario, ATPS pre-
fers that the ATD simply return the latest corrected version of the event. In that case the AT-
DEventId not required. In the event the ATD can not return only the latest corrected version
of the event and must return all versions of the event, ATPS requires that the ATS supply an
identical ATDEventID with each event so that ATPS can determine the “most correct” ver-
sion of the event.

Otherwise, ATPS will use the ATDEventId to provide more useful information about data
validation errors to the ATD. For example if a particular ATD event contains an invalid spe-
cies code, ATPS will include the fact that the species code for event response sequence “##”
was invalid. If the ATD also includes its event ID for that particular record, then ATPS will
also include the event ID as well as the sequence number. Then the ATD will be able to iden-
tify the invalid data item by the ATD Event ID, and not simply by the event sequence.

For Example, if the third response record contains a species element with a value of “ZZZ”,
but no ATD Event ID, then ATPS will return the following invalid item information:

InvalidItem attribute value

ATDEventId null
recordSequence 2
elementname species
elementvalue ZZZ
reason [invalid value]

However if the ATD populates the event ID with its own event ID, then the response will in-
clude that value in the ATDEventID attribute:

InvalidItem attribute value

ATDEventId 800005883942
recordSequence 2
elementname species
elementvalue ZZZ
reason [invalid value]

National Animal Identification System Page 49

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.3.3.10 eventType Element
DTD:
<!ELEMENT eventType EMPTY>
<!ATTLIST eventType
code CDATA #REQUIRED >

Strict DTD:
<!ELEMENT eventType EMPTY>
<!ATTLIST eventType
code (0|1|2|3|4|5|6|7|8|9|10|11|12|13) #REQUIRED >

Required: Yes

Valid values: Numbers 0 through 13

Description:

The eventType is one of the major “4” required values (the others being event date, reporting
premises, and id). The eventType describes what sort of event is represented in the record.
Currently 14 event types are allowed in ATPS. The event type is received as a numeric code.
In order to validate the code value, the XML DTD specifies that the event type code be sub-
mitted as an attribute of the eventType. If the event type element is not present or the ID at-
tribute is not present, ATPS will send the entire submission to an ERROR state since this
XML will not validate against the standard DTD. If the event type element is present but the
value is not valid, then the event will fail data validation but processing will continue.

XML Example ATPS Response Reason
[No eventType element] ERROR eventType element is required.
<eventType/> ERROR eventType.code attribute is required.
<eventType></eventType> ERROR eventType.code attribute is required.
<eventType>4</eventType> ERROR eventType element must be empty.
<eventType><code>4</code>
</eventType>

ERROR eventType element must be empty.

<eventType code=””/> VALIDATION ERROR ID value not valid.
<eventType code=”99”/> VALIDATION ERROR ID value not valid.
<eventType code=”4”/> VALIDATED

2.1.3.3.10.1 eventType.code Attribute
DTD:
<!ATTLIST eventType
code CDATA #REQUIRED >

Strict DTD:
<!ATTLIST eventType
code (0|1|2|3|4|5|6|7|8|9|10|11|12|13) #REQUIRED >

Required: Yes

Valid values: Numeric integers between 0 and 13.

Description:

The eventType.code attribute describes the event type. This is defined as an attribute so that
the Strong DTD can validate the content. ATPS will not put the entire request into ERROR if

National Animal Identification System Page 50

ATPS version 1.0 DRAFT ATD Technical Specifications

an event type code is not valid. This scenario will put the request into the VALIDATION
ERROR state, and the eventType will be added to the invalid items list for the request.

The following is a list of valid ATPS event type codes and descriptions:

Event
Code Description

0 Tag Shipped – not applied to animal
1 Tag Allocated
2 Tag applied – tag is applied to an animal
3 Moved in – Animal is moved into a premises
4 Moved out – Animal is moved out of a premises
5 Lost Tag – New tag is applied to an animal that lost a tag and previous tag is unknown
6 Replaced Tag or Re-Tagged – New tag is applied to an animal that lost a tag and previous

tag is known
7 Imported – Animal is imported into the U.S.
8 Exported – Animal is exported out of the U.S.
9 Sighting – Animal has a confirmed sighting at a location, no movement has occurred. (Ex:

veterinarian sighting)
10 Harvested – Animal was terminated at an abattoir
11 Died – Animal died of natural causes or euthanized at the farm/ranch
12 Tag retired – Tag retired by producer, packing house, etc.
13 Animal Missing (lost stolen, etc)

2.1.3.3.11 eventDate Element
DTD:
<!ELEMENT eventDate (timestamp)>

Required: Yes

Description:

The eventDate Element describes the date when the event occurred. This element does not
describe the date when the record was added to the database, although they may often be the
same date. eventDate is a required element. It contains a timestamp element that describes the
date and time values via attributes.

Examples:

XML Example ATPS Response Reason
[No eventDate element] ERROR eventDate element is required.
<eventDate/> ERROR timestamp element is required.
<eventDate></eventDate> ERROR timestamp element is required.
<eventDate>01-JUN-2005</eventDate> ERROR eventDate element must only be

a timestamp element.
<eventDate>20050601</eventDate> ERROR eventDate element must only be

a timestamp element.
<eventDate><timestamp>
</timestamp></eventDate>

ERROR timestamp element is missing
required attributes.

<eventDate><timestamp y=”2006” mo=”9” d”25”
tz=”GMT-6”/> </eventDate>

VALIDATED

National Animal Identification System Page 51

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.3.3.12 rptPremId Element
DTD:
<!ELEMENT rptPremId (#PCDATA)>
<!ATTLIST rptPremId
type CDATA #REQUIRED>

Strict DTD:
<!ELEMENT rptPremId (#PCDATA)>
<!ATTLIST rptPremId
type (N|X) #REQUIRED>

Required: Yes

Valid values: Depends on the type of premises.

Description:

rptPremId is the Reporting Premises ID for the event. ATPS allows the ATD to supply a Na-
tional Premises ID or another type of premises ID (typically a state-supplied premises ID).
This element is required and will cause the request to go into a status of ERROR if it is not
present. If the element is empty or not valid, the Request will go to VALIDATION ERROR.
If the premises is a national premises, ATPS will validate that it is a real National Premises
ID, and send the Request to VALIDATION ERROR if it is not; non-national premises IDs
will not be validated.

The ATD will supply a type attribute that indicates if the premises is a national premises, or
some other type of premises.

2.1.3.3.12.1 rptPremId.type Attribute
DTD:
<!ATTLIST rptPremId
type CDATA #IMPLIED>

Strict DTD:
<!ATTLIST rptPremId
type (N|X) #REQUIRED>

Required: Yes

Valid values:

Reporting Premises
ID Type Description

N USDA National Premises ID
X Any Other type of premises ID

Description:

The rptPremId.type attribute describes the type of reporting premises ID that is included in
the event record. This attribute is not required but will result in an VALIDATION_ERROR if
it is not present. The only allowable values for the type attribute are “N” and “X”. The ATD
will use “N” to indicate a National Premises ID, and an “X” for any other type of premises
ID.

National Animal Identification System Page 52

ATPS version 1.0 DRAFT ATD Technical Specifications

Examples:

XML Example ATPS Response Reason
[No rptPremId element] ERROR rptPremId element is required.
<rptPremId></rptPremId> ERROR rptPremId element is required—

cannot be empty/null.
<rptPremId>002GNCK</rptPremId> VALIDATION ERROR Missing type attribute.
<rptPremId type=””>002GNCK
</rptPremId>

VALIDATION ERROR Type attribute cannot be empty.

<rptPremId type=”USDA”>002GNCK
</rptPremId>

VALIDATION ERROR Type attribute must be “N” or “X”.

<rptPremId type=”N”>002GNC
</rptPremId>

VALIDATION ERROR National premises ID does not
validate. 7 digits are required.

<rptPremId type=”N”>NATLPREMID
</rptPremId>

VALIDATION ERROR National premises ID does not
validate.

<rptPremId type=”N”>002GNCK
</rptPremId>

VALIDATED

<rptPremId type=”X”>002GNCK
</rptPremId>

VALIDATED ATPS does not validate non-
national premises IDs (“X” type).

2.1.3.3.13 id Element
DTD:
<!ELEMENT id (#PCDATA)>
 <!ATTLIST id
 type CDATA #IMPLIED>

Strict DTD:
<!ELEMENT id (#PCDATA)>
 <!ATTLIST id
 type (A|U|R|F|N|B|G|T|X) #REQUIRED>

Required: Yes

Description:

The ID is the “official” animal identification for the event. It is recognized that a particular
animal may have multiple identifications, but only one may be used as the official identifier.
The ID element does not have to be a USDA “840” number only. An official ID may also in-
clude a manufacturer code, a USA tag code, or another country official code. The ATD will
supply a type attribute to indicate which type of official ID it is.

The ID element is required and the Request will go into ERROR state if it is not present. If
the ID element is a USDA “840” number, ATPS will validate that the tag has been shipped to
a producer. If it has not, the Request will go to VALIDATION ERROR. Other ID types will
not be validated.

2.1.3.3.13.1 id.type Attribute
DTD:
 <!ATTLIST id
 type CDATA #IMPLIED>

Strict DTD:
 <!ATTLIST id

National Animal Identification System Page 53

ATPS version 1.0 DRAFT ATD Technical Specifications

 type (A|U|R|F|N|B|G|T|X) #REQUIRED>

Required: Yes

Valid Values: See the Official ID Codes Appendix for valid values.

Description:

The id.type attribute qualifies the type of Official ID included in the event. The Type attribute
is required; lack of inclusion will result in the request going to a VALIDATION_ERROR
status. The type must be one of the types from the list above.

Examples:

XML Example ATPS Response Reason
[No id element] ERROR id element is required.
<id></id> ERROR id element is required—cannot be

empty/null.
<id>840002123456789</id> VALIDATION ERROR Missing type attribute.
<id type=””>840002123456789</id> VALIDATION ERROR Type attribute cannot be empty.
<id type=”USDA”>840002123456789
</id>

VALIDATION ERROR Type attribute must be from stan-
dard list

<id type=”N”>2123456789</id> VALIDATION ERROR NAIS “840” ID does not validate.
Must be 15 digits.

<id type=”N”>NATLPREMID</id> VALIDATION ERROR NAIS “840” ID does not validate.
Must be 15 digits.

<id type=”N”>840002123456789 </id> VALIDATED
<id type=”X”>840002123456789</id> VALIDATED ATPS does not validate non-

national premises IDs (“X” type).

2.1.3.3.15 srcDestPremId Element
DTD:
<!ELEMENT srcDestPremId (#PCDATA)>
<!ATTLIST srcDestPremId
type CDATA #REQUIRED>

Strict DTD:
<!ELEMENT srcDestPremId (#PCDATA)>
<!ATTLIST srcDestPremId
type (N|X) #REQUIRED>

Required: Yes

Valid values: Depends on the type of premises.

Description:

srcDestPremId is the Source or Destination Premises ID for the event. Not all events or event
types have a source or destination premises ID, and it is an optional element. ATPS allows
the ATD to supply a national premises ID or another type of premises ID (typically a state-
supplied premises ID). If the premises is a national premises, ATPS will validate that it is a
real National Premises ID, and send the Request to VALIDATION ERROR if it is not; non-
national premises IDs will not be validated.

The ATD will supply a type attribute that indicates if the premises is a national premises, or
some other type of premises.

National Animal Identification System Page 54

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.3.3.15.1 srcDestPremId.type Attribute
DTD:
<!ATTLIST srcDestPremId
type CDATA #REQUIRED>

Strict DTD:
<!ATTLIST srcDestPremId
type (N|X) #REQUIRED>

Required: Yes

Valid values:

Source/Destination
Premises ID Type Description

N USDA National Premises ID
X Any Other type of premises ID

Description:

The srcDestPremId.type attribute describes the type of reporting premises ID that is included
in the event record. Even though the srcDestPremId is not required, if it is included, its type
attribute is required and will result in an ERROR if it is not present. The only allowable val-
ues for the type attribute are “N” and “X”. The ATD will use “N” to indicate a National
Premises ID, and an “X” for any other type of premises ID. Any other value will result in a
VALIDATION_ERROR status.

Examples:

XML Example ATPS Response Reason
[no srcDestPremId element] VALIDATED srcDestPremId is optional.
<srcDestPremId></srcDestPremId> VALIDATED srcDestPremId is optional.
<srcDestPremId>002GNCK
</srcDestPremId>

VALIDATION ERROR Missing type attribute.

<srcDestPremId type=””>002GNCK
</srcDestPremId>

VALIDATION ERROR Type attribute cannot be
empty.

<srcDestPremId type=”USDA”>002GNCK
</srcDestPremId>

VALIDATION ERROR Type attribute must be “N” or
“X”.

<srcDestPremId type=”N”>002GNC
</srcDestPremId>

VALIDATION ERROR National premises ID does not
validate. 7 digits are required.

<srcDestPremId type=””>NATLPREMID
</srcDestPremId>

VALIDATION ERROR National premises ID does not
validate.

<srcDestPremId type=”N”>002GNCK
</srcDestPremId>

VALIDATED

<srcDestPremId type=”X”>002GNCK
</srcDestPremId>

VALIDATED ATPS does not validate non-
national premises IDs (“X”
type).

2.1.3.3.16 animal Element
DTD:
<!ELEMENT animal (DOB*,age*)>
 <!ATTLIST animal
 species CDATA #IMPLIED

National Animal Identification System Page 55

ATPS version 1.0 DRAFT ATD Technical Specifications

 gender CDATA #IMPLIED
 breed CDATA #IMPLIED
 >

Strict DTD:
<!ELEMENT animal (DOB*,age*)>
 <!ATTLIST animal
 species (ACQ|BOV|CAM|CAP|CER|EQU|OVI|AVI|POR) #IMPLIED
 gender (M|F|C|S|X) #IMPLIED
 breed CDATA #IMPLIED
 >

Required: No

Description:

The animal element describes optional information about the actual animal in the event. The
element contains two optional “sub” elements, and three optional attributes. There really is no
data validation on the Animal Element, but the sub elements and attributes have some valida-
tion.

XML Example ATPS Response Reason
[animal element not present VALIDATED Animal element not required.
<animal/> VALIDATED Animal element can be empty.
<animal></animal> VALIDATED Animal element can be empty.

2.1.3.3.16.1 animal.species Attribute
DTD:
species CDATA #IMPLIED

Strict DTD:
 species (AQU|CLM|CRA|CTF|MSL|OYS|SAL|SBA|SHR|SLP|TIL|TRO|
 BOV|BIS|BEF|DAI|CAM|CAP|CER|DEE|ELK|EQU|OVI|
 AVI|CHI|DUC|GEE|GUI|PGN|PHE|QUA|TUR|OTH|POR) #IMPLIED

Required: No

Valid values:

See the Species Code Appendix for all valid Species values:

Description:

The species attribute describes the general species or species group of the animal. If the spe-
cies attribute is present but empty, or is not on the list above, the Request will go to a VALI-
DATION ERROR state.

Examples:

XML Example ATPS Response Reason
<animal/> VALIDATED Species attribute not required.
<animal species=””/> VALIDATION ERROR Species attribute cannot be empty.
<animal species=”BIS”></animal> VALIDATION ERROR Species attribute must be from the

approved list of official types.
<animal species=”BOV”></animal> VALIDATED

National Animal Identification System Page 56

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.3.3.16.2 animal.gender Attribute
DTD:
gender CDATA #IMPLIED

Strict DTD:
gender (M|F|C|S|X) #IMPLIED

Required: No

Valid values:

Gender Code Description
M Male
F Female
C Neutered / castrated male
S Neutered / spayed female
X Mixed (used only in groups)

Description:

The optional gender attribute describes the gender of the animal in the event. If the gender at-
tribute is present but empty, or is not in the list above, the Request will go to a VALIDA-
TION ERROR status.

Examples:

XML Example ATPS Response Reason
<animal/> VALIDATED Gender attribute not required.
<animal gender=””/> VALIDATION ERROR Gender attribute cannot be empty.
<animal gender=”MALE”></animal> VALIDATION ERROR Gender attribute must be from the

approved list of official types.
<animal species=”M”></animal> VALIDATED

2.1.3.3.16.3 animal.breed Attribute
DTD
breed CDATA #IMPLIED

Strict DTD:
breed CDATA #IMPLIED

Required: No

Valid values*:

(Please see the appendix for the recognized breed values.)

* Values not validated in ATPS

Description:

The breed attribute is an optional description of the animal breed. If the breed attribute is pre-
sent but empty, the Request will go to a VALIDATION ERROR status. ATPS will not vali-
date the breed value against a list of breeds because the list is subject to frequent change.

National Animal Identification System Page 57

ATPS version 1.0 DRAFT ATD Technical Specifications

Examples:

XML Example ATPS Response Reason
<animal/> VALIDATED Breed attribute not required.
<animal breed=””/> VALIDATION ERROR Breed attribute cannot be empty.
<animal breed=”ZZ”></animal> VALIDATED ATPS will not validate the breed

value against the valid list.
<animal breed=”PH”></animal> VALIDATED

2.1.3.3.17 DOB Element:
DTD
<!ELEMENT DOB (timestamp)>
 <!ATTLIST DOB
 est CDATA #REQUIRED>

Strict DTD:
<!ELEMENT DOB (timestamp)>
 <!ATTLIST DOB
 est (Y|N) #REQUIRED>

Required: No

Format: Timestamp

Description:

The “DOB” Element is the Date of Birth of the animal. It is described by a timestamp Ele-
ment and an “est” attribute, which indicates if the DOB value is an estimate or not. It is an
optional attribute, although the timestamp element and est attribute are required if the DOB
element is present.

Examples:

XML Example ATPS Response Reason
[no DOB element] VALIDATED DOB element is optional.
<DOB></DOB> (or) <DOB/> ERROR est attribute is required.
<DOB est=”N”></DOB> ERROR timestamp element is required.
<DOB><timestamp/></DOB> ERROR est attribute is required.
<DOB est=”Y”><timestamp y=”2006” mo=”9”
d=”25” h24=”13” tz=”GMT-6”/></DOB>

VALIDATED

2.1.3.3.17.1 DOB.est Attribute
DTD:
DOB est CDATA #REQUIRED

Strict DTD:
DOB est (Y|N) #REQUIRED

Required: No

Valid Values:

Y

N

National Animal Identification System Page 58

ATPS version 1.0 DRAFT ATD Technical Specifications

Description:

The Date of Birth (DOB) estimated (est) attribute indicates if the animal date of birth is an es-
timated value or not. If it is not known if the DOB is an estimate, use “Y”. This is a required
attribute if the DOB Element is present, so it will result in an ERROR status if it is not popu-
lated and the DOB element exists. If the value is empty or invalid, it will cause a VALIDA-
TION ERROR status.

Examples:

XML Example ATPS Response Reason
<DOB><timestamp y=”2006” mo=”9” d=”25”
h24=”13” tz=”GMT-6”/></DOB>

ERROR est element is required.

<DOB est=””><timestamp y=”2006” mo=”9”
d=”25” h24=”13” tz=”GMT-6”/></DOB>

VALIDATION ERROR est attribute cannot be
empty.

<DOB est=”yes”><timestamp y=”2006” mo=”9”
d=”25” h24=”13” tz=”GMT-6”/></DOB>

VALIDATION ERROR est attribute is not valid.

<DOB est=”Y”><timestamp y=”2006” mo=”9”
d=”25” h24=”13” tz=”GMT-6”/></DOB>

VALIDATED

2.1.3.3.18 age Element
Strict DTD:
<!ELEMENT age (#PCDATA)>
 <!ATTLIST age
 scale CDATA #REQUIRED>

Strict DTD:
<!ELEMENT age (#PCDATA)>
 <!ATTLIST age
 scale (D|M|Y) #REQUIRED>

Required: No

Format: Numeric

Description:

The Age element describes the age of the animal in days, months, or years. This is supposed
to be the age of the animal when the event occurred, not the age of the animal when the Re-
quest is made. This element is optional, but if it is not numeric, the Request will go into
VALIDATION ERROR status. The age element contains a scale attribute that indicate if the
element value number represents Days, Months, or Years. It is assumed that this is an esti-
mated value so there is not need to add an estimated attribute.

Only one scale qualifier is allowed. If the animal is known to be 3 years and 6 months, indi-
cate that the animal is 30 months old. Day precision is not necessary; if the animal is one
month old or older, even if the age of the animal is known to the day, round the age to the
nearest month.

Logic Examples:

Known Age of Animal XML
1 day <age scale=”D”>1</age>
30 days <age scale=”D”>30</age>
1 month <age scale=”M”>1</age>
1 month, 1 day <age scale=”M”>1</age>

National Animal Identification System Page 59

ATPS version 1.0 DRAFT ATD Technical Specifications

1 month, 15 days <age scale=”M”>1</age>
1 month, 16 days <age scale=”M”>2</age>
11 months, 30 days <age scale=”M”>12</age>
1 year <age scale=”Y”>1</age>
1 year, 1 month, 1 day <age scale=”M”>13</age>
1 year, 6 months <age scale=”M”>18</age>
1 year, 11 months, 30 days <age scale=”M”>24</age>

XML Examples:

XML Example ATPS Response Reason
[No age element] VALIDATED age element is optional.
<age></age> (or) <age/> ERROR scale attribute is required.
<age scale=”Y”></age> VALIDATION ERROR age element cannot have empty

value.
<age scale=”Y”>3 years</age> VALIDATION ERROR age element must be numeric.
<age scale=”Y”>03</age> VALIDATED
<age scale=”Y”>3</age> VALIDATED

2.1.3.3.18.1 age.scale Attribute
DTD:
age scale CDATA #REQUIRED

Strict DTD:
age scale (D|M|Y) #REQUIRED

Required: Yes, if age Element is present

Valid Values:

Age Code Description
D Days
M Months
Y Years

Description:

The age.scale attribute qualifies the age element value in terms of Days, Months, or Years. If
the age element is present, the scale attribute is required, and if the attribute is not present in
this case it will result in an ERROR status for the request. If the scale attribute is empty or in-
valid, the request will go to a VALIDATION ERROR status.

Examples:

XML Example ATPS Response Reason
<age>2</age> ERROR scale element is required.
<age scale=””>2</age> VALIDATION ERROR scale attribute cannot be empty.
<age scale=”years”>2</age> VALIDATION ERROR scale attribute is not valid.
<age scale=”Y”>2</age> VALIDATED

2.1.3.3.19 remarks Element
DTD:

National Animal Identification System Page 60

ATPS version 1.0 DRAFT ATD Technical Specifications

<!ELEMENT remarks (#PCDATA)>

Required: No

Format: 50 characters max.

Description:

The remarks element can contain additional information about the event. “Sold to Stan
Humphries” or a herd management ID may be placed here. Any additional information that
may help animal disease officials with their search can be put in this element. It is optional so
the element can be left out, and it can be empty. If it is longer than 50 characters, ATPS will
truncate it and put the request into VALIDATION ERROR

Examples:

XML Example ATPS Response Reason
[no remarks element] VALIDATED remarks element is optional.
<remarks></remarks> VALIDATED remarks element can be empty.
<remarks/> VALIDATED remarks element can be empty.
<remarks>Sold to Stan Hum-
pries></remarks>

VALIDATED

<remarks>Sold to Stan Humphries on
Tuesday, August 17th at the McDonald
Sale Barn</remarks>

VALIDATION ERROR remarks element value must be 50
characters or less. Value will be
truncated.

2.1.3.3.20 reTagId Element
DTD:
<!ELEMENT reTagId (#PCDATA)>
 <!ATTLIST reTagId
 type CDATA #REQUIRED>

Strict DTD:
<!ELEMENT reTagId (#PCDATA)>
 <!ATTLIST reTagId
 type (A|U|R|F|N|B|G|T) #REQUIRED>

Required: No

Format: 17 characters maximum

Description:

The reTagId element is only used with a retagging event type (event type ID 6). If the event
type is any other type, the reTagId element should not be present, and will be ignored, and
will also cause the request to go into a VALIDATION ERROR status. The reTagId is the
OLD tag. The new tag should be in the ID element.

The reTagId element contains a type attribute that the ATD will use to indicate what type of
tag the old tag was.

If the ID element is a USDA “840” number, ATPS will validate that the tag has been shipped
to a producer. If it has not, the Request will go to VALIDATION ERROR. Other ID types
will not be validated.

2.1.3.3.20.1 reTagId.type attribute

National Animal Identification System Page 61

ATPS version 1.0 DRAFT ATD Technical Specifications

DTD:
 reTagId type CDATA #REQUIRED>

Strict DTD:
 reTagId type (A|U|R|F|N|B|G|T) #REQUIRED>

Required: No

Valid Values: See the Official ID Codes Appendix for valid values.

Description:

The reTagId.type attribute qualifies the type of replaced Official ID included in the event. If
the reTagId element is present, the reTagId.type attribute is required; lack of inclusion will
result in the request going to a VALIDATION_ERROR status. The type must be one of the
types from the list above.

Examples:

XML Example
(Event type ID=6 unless specified.) ATPS Response Reason

[no reTagId element], eventType id <>6 VALIDATED reTypeId forbidden if event type
is not “retagged”.

[no reTagId element] VALIDATION ERROR reTypeId required if event type is
“retagged”.

<reTagId type=”N”>840002123456789
</reTagId>, eventType id <>6

VALIDATION ERROR reTypeId forbidden if event type
is not “retagged”.

<reTagId>840002123456789</reTagId> VALIDATION ERROR Missing type attribute.
<reTagId type=””>840002123456789
</reTagId>

VALIDATION ERROR type attribute cannot be empty.

<reTagId type=”USDA”>
840002123456789</reTagId>,

VALIDATION ERROR type attribute must be from stan-
dard list.

<reTagId type=”N”>2123456789
</reTagId>

VALIDATION ERROR NAIS “840” reTagId does not
validate. Must be 15 digits.

<reTagId type=”N”>NATLPREMID
</reTagId>

VALIDATION ERROR NAIS “840” reTagId does not
validate. Must be 15 digits.

<reTagId type=”N”>840002123456789
</reTagId>

VALIDATED

<reTagId type=”X”>840002123456789
</reTagId>

VALIDATED ATPS does not validate non-
national premises IDs (“X” type).

2.1.3.3.21 optIds Element
DTD:
<!ELEMENT optIds (optId*)>

Required: No

Description:

The (Optional IDs) optIds element allows the ATD to indicate other IDs that may be associ-
ated to the animal. In no scenario does the Optional ID take the place of the ID element. The
ID element must always be included. The optIds element is optional so it does not have to be
present. It consists of zero to many optId elements, so it can be empty.

Examples:

National Animal Identification System Page 62

ATPS version 1.0 DRAFT ATD Technical Specifications

XML Example ATPS Response Reason
[No optIds element] VALIDATED optIds is not required.
<optIds/> VALIDATED optIds can be empty.
<optIds></optIds> VALIDATED optIds can be empty.
<optIds>840003123456789</optIds> ERROR optIds can only contain optId elements.

2.1.3.3.22 optId Element
DTD:
<!ELEMENT optId (#PCDATA)>
 <!ATTLIST optId
 type CDATA #REQUIRED>

Strict DTD:
<!ELEMENT optId (#PCDATA)>
 <!ATTLIST optId
 type (A|U|R|F|N|B|G|T) #REQUIRED>

Required: No

Format: 17 characters maximum

Description:

The optId element describes the optional ID that is assigned to the animal.

The optId element contains a type attribute that the ATD will use to indicate the optional tag
type.

If the ID element is a USDA “840” number, ATPS will validate that the tag has been shipped
to a producer. If it has not, the Request will go to VALIDATION ERROR. Other ID types
will not be validated.

2.1.3.3.22.1 optId.type Attribute
DTD:
optId type CDATA #REQUIRED>

Strict DTD:
optId type (A|U|R|F|N|B|G|T) #REQUIRED>

Required: No

Valid Values: See the Official ID Codes Appendix for valid values.

Description:

The optId.type attribute qualifies the type of replaced AIN ID included in the event. If the op-
tId element is present, the optId.type attribute is required; lack of inclusion will result in the
request going to an VALIDATION_ERROR status. The type must be one of the types from
the list above.

Examples:

XML Example ATPS Response Reason
<optId>840002123456789</optId> VALIDATION ERROR Missing type attribute.
<optId type=””>840002123456789 VALIDATION ERROR Type attribute cannot be empty.

National Animal Identification System Page 63

ATPS version 1.0 DRAFT ATD Technical Specifications

</optId>
<optId type=”USDA”>
840002123456789</optId>

VALIDATION ERROR Type attribute must be from stan-
dard list

<optId type=”N”>2123456789</optId> VALIDATION ERROR NAIS “840” ID does not validate.
Must be 15 digits.

<optId type=”N”>NATLPREMID
</optId>

VALIDATION ERROR NAIS “840” ID does not validate.
Must be 15 digits.

<optId type=”N”>840002123456789
</optId>

VALIDATED

<optId type=”X”>840002123456789
</optId>

VALIDATED ATPS does not validate non-
national premises IDs (“X” type).

2.1.3.3.23 timestamp Element
DTD:
<!ELEMENT timestamp EMPTY>
<!ATTLIST timestamp
y CDATA #REQUIRED
mo CDATA #REQUIRED
d CDATA #REQUIRED
h24 CDATA "0"
mi CDATA "0"
s CDATA "0"
tz CDATA #REQUIRED
>

Strict DTD:
<!ELEMENT timestamp EMPTY>
<!ATTLIST timestamp
y CDATA #REQUIRED
mo (1|2|3|4|5|6|7|8|9|10|11|12) #REQUIRED
d (1|2|3|4|5|6|7|8|9|
10|11|12|13|14|15|16|17|18|19|
20|21|22|23|24|25|26|27|28|29|30|31) #REQUIRED
h24 (0|1|2|3|4|5|6|7|8|9|10|11|12|
13|14|15|16|17|18|19|20|21|22|23) "0"
mi (0|1|2|3|4|5|6|7|8|9|
10|11|12|13|14|15|16|17|18|19|
20|21|22|23|24|25|26|27|28|29|
30|31|32|33|34|35|36|37|38|39|
40|41|42|43|44|45|46|47|48|49|
50|51|52|53|54|55|56|57|58|59) "0"
s (0|1|2|3|4|5|6|7|8|9|
10|11|12|13|14|15|16|17|18|19|
20|21|22|23|24|25|26|27|28|29|
30|31|32|33|34|35|36|37|38|39|
40|41|42|43|44|45|46|47|48|49|
50|51|52|53|54|55|56|57|58|59) "0"
tz (GMT|GMT-1|GMT-2|GMT-3|GMT-4|GMT-5|GMT-6|
GMT-7|GMT-8|GMT-9|GMT-10|GMT-11|GMT-12|
GMT12|GMT11|GMT10|GMT9|GMT8|GMT7|GMT6|
GMT5|GMT4|GMT3|GMT2|GMT1) #REQUIRED
>

National Animal Identification System Page 64

ATPS version 1.0 DRAFT ATD Technical Specifications

Required: Required as part of eventDate Element. It is also required as part of DOB Ele-
ment although the DOB element itself is not required.

Description:

The timestamp Element describes a Date field down to the second, and includes provision for
the time zone as well. Since XML 1.0 does not have a date data type, dates must be submitted
as strings. The only way to validate a string using DTD is via element attribution. Therefore
in order to ensure that valid dates are passed into ATPS, the actual date value of the time-
stamp is passed in solely as attributes of the element. The element itself is empty.

The attributes are divided into year (y), month (mo), day (d), hour (h24), minute (mi), second
(s), and time zone (tz). The hour, minute, and second attributes are optional. The time zone
attribute is not optional even though the timestamp element may not have precision below the
day value.

XML Example ATPS Response Reason
<timestamp></timestamp> ERROR timestamp element has re-

quired attributes.
<timestamp/> ERROR timestamp element has re-

quired attributes.
<timestamp>01-JUN-2005 </timestamp> ERROR timestamp element must be

empty.
<timestamp>20050601</timestamp> ERROR timestamp element must be

empty.
<timestamp y=”2006” mo=”9” d=”25”
tz=”GMT-6”/>

VALIDATED

The next sections describe the various attributes in more detail, and provide some examples.

2.1.3.3.23.1 timestamp.y Attribute
DTD:
y CDATA #REQUIRED

Strict DTD:
y CDATA #REQUIRED

Required: Yes

Valid Values: A 4-digit year is expected. “2006” for example.

Description:

This attribute describes the Year of the timestamp. It is a 4-digit year value. Because of the
enormous possible year values this attribute is not validated by the Strict DTD. If the year at-
tribute is not present the normal DTD will fail validation and result in an ERROR request
status, but an invalid value will result in a VALIDATION ERROR request status.

XML Example ATPS Response Reason
<timestamp y=”2006” mo=”9” d=”25”
tz=”GMT-6” />

VALIDATED

<timestamp y=”” mo=”9” d=”25” tz=”GMT-6”
/>

VALIDATION ERROR (y)ear cannot be empty.

<timestamp y=”06” mo=”9” d=”25” tz=”GMT-
6” />

VALIDATION ERROR (y)ear must be 4-digit year.

National Animal Identification System Page 65

ATPS version 1.0 DRAFT ATD Technical Specifications

<timestamp y=”MMVI” mo=”9” d=”25”
tz=”GMT-6” />

VALIDATION ERROR (y)ear is invalid format.

<timestamp mo=”9” d=”25” tz=”GMT-6” /> ERROR (y)ear is a required attribute.

2.1.3.3.23.2 timestamp.mo Attribute
DTD:
mo CDATA #REQUIRED

Strict DTD:
mo (1|2|3|4|5|6|7|8|9|10|11|12) #REQUIRED

Required: Yes

Valid Values: Numeric, 1-12.

Description:

The “mo” attribute describes the Month of the timestamp. It is required and will cause an
ERROR request status if it is not present. If it is invalid, the Request will go to a DATA
VALIDATION status. Valid values are 1-12 inclusive.

XML Example ATPS Response Reason
<timestamp y=”2006” mo=”” d=”25”
tz=”GMT-6” />

VALIDATION ERROR (mo)nth cannot be empty.

<timestamp y=”2006” mo=”15” d=”25”
tz=”GMT-6” />

VALIDATION ERROR (mo)nth invalid format.

<timestamp y=”2006” mo=”June” d=”25”
tz=”GMT-6” />

VALIDATION ERROR (mo)nth invalid format.

<timestamp y=”2006” d=”25” tz=”GMT-6” /> ERROR (mo)nth is a required attribute.

2.1.3.3.23.3 timestamp.d Attribute
DTD:
d CDATA #REQUIRED

Strict DTD:
d (1|2|3|4|5|6|7|8|9|
10|11|12|13|14|15|16|17|18|19|
20|21|22|23|24|25|26|27|28|29|30|31) #REQUIRED

Required: Yes

Valid Values: Numeric, 1-31.

Description:

The “d” attribute describes the Day of the timestamp. It is required and will cause an ERROR
request status if it is not present. If it is invalid, the Request will go to a DATA VALIDA-
TION status. Valid values are 1-31 inclusive.

XML Example ATPS Response Reason
<timestamp y=”2006” mo=”9” d=”” tz=”GMT-
6” />

VALIDATION ERROR (d)ay cannot be empty.

<timestamp y=”2006” mo=”9” d=”33”
tz=”GMT-6” />

VALIDATION ERROR (d)ay invalid format.

<timestamp y=”2006” mo=”9” d=”31” VALIDATION ERROR (d)ay invalid format. (mo)nth

National Animal Identification System Page 66

ATPS version 1.0 DRAFT ATD Technical Specifications

tz=”GMT-6” /> “9” only has 30 days.
<timestamp y=”2006” mo=”9” d=”25th”
tz=”GMT-6” />

VALIDATION ERROR (d)ay invalid format.

<timestamp y=”2006” mo=”9” tz=”GMT-6” /> ERROR (d)ay is a required attribute.

2.1.3.3.23.4 timestamp.h24 Attribute
DTD:
h24 CDATA"0"

Strict DTD:
h24 (0|1|2|3|4|5|6|7|8|9|10|11|12|
13|14|15|16|17|18|19|20|21|22|23) "0"

Required: No. Defaults to “0”

Valid Values: Numeric, 0-23

Description:

The “h24” attribute describes the Hour of the timestamp, in 24 hour format. It is not required.
If it is not present, ATPS will assume “0” for the hour value. If h24 is invalid, the Request
will go to a DATA VALIDATION status. Valid values are 0-23 inclusive.

XML Example ATPS Response Reason
<timestamp y=”2006” mo=”9” d=”25”
h24=”13” tz=”GMT-6” />

VALIDATED

<timestamp y=”2006” mo=”9” d=”25”
h24=”24” tz=”GMT-6” />

VALIDATION ERROR (h24) hour is invalid format.

<timestamp y=”2006” mo=”9” d=”25”
h24=”13:00” tz=”GMT-6” />

VALIDATION ERROR (h24) hour is invalid format.

2.1.3.3.23.5 timestamp.mi Attribute
DTD:
mi CDATA"0"

Strict DTD:
mi (0|1|2|3|4|5|6|7|8|9|
10|11|12|13|14|15|16|17|18|19|
20|21|22|23|24|25|26|27|28|29|
30|31|32|33|34|35|36|37|38|39|
40|41|42|43|44|45|46|47|48|49|
50|51|52|53|54|55|56|57|58|59) "0"

Required: No. Defaults to “0”

Valid Values: Numeric, 0-59

Description:

The “mi” attribute describes the Minute of the timestamp. It is not required. If it is not pre-
sent, ATPS will assume “0” for the hour value. If mi is invalid, the Request will go to a
DATA VALIDATION status. Valid values are 0-59 inclusive.

XML Example ATPS Response Reason
<timestamp y=”2006” mo=”9” d=”25” VALIDATED

National Animal Identification System Page 67

ATPS version 1.0 DRAFT ATD Technical Specifications

h24=”13” mi=”45” tz=”GMT-6” />
<timestamp y=”2006” mo=”9” d=”25” mi=”45”
tz=”GMT-6” />

VALIDATED It validates. The assumption is
that it is 12:45 a.m. (0:45).

<timestamp y=”2006” mo=”9” d=”25”
h24=”13” mi=”96” tz=”GMT-6” />

VALIDATION ERROR (mi)nute is invalid format.

2.1.3.3.23.6 timestamp.s Attribute
DTD:
s CDATA"0"

Strict DTD:
s (0|1|2|3|4|5|6|7|8|9|
10|11|12|13|14|15|16|17|18|19|
20|21|22|23|24|25|26|27|28|29|
30|31|32|33|34|35|36|37|38|39|
40|41|42|43|44|45|46|47|48|49|
50|51|52|53|54|55|56|57|58|59) "0"

Required: No. Defaults to “0”

Valid Values: Numeric, 0-59

Description:

The “s” attribute describes the Second of the timestamp. It is not required. If it is not present,
ATPS will assume “0” for the hour value. If s is invalid, the Request will go to a DATA
VALIDATION status. Valid values are 0-59 inclusive.

XML Example ATPS Response Reason
<timestamp y=”2006” mo=”9” d=”25”
h24=”13” mi=”45” s=”59” tz=”GMT-6” />

VALIDATED

<timestamp y=”2006” mo=”9” d=”25” s=”59”
tz=”GMT-6” />

VALIDATED It validates. The assumption is
that it is 12:00:59 a.m.

<timestamp y=”2006” mo=”9” d=”25”
h24=”13” mi=”45” s=”61” tz=”GMT-6” />

VALIDATION ERROR (s)econd is invalid format.

2.1.3.3.23.7 timestamp.tz Attribute
DTD:
tz CDATA #IMPLIED

Strict DTD:
tz (GMT|GMT-1|GMT-2|GMT-3|GMT-4|GMT-5|GMT-6|
GMT-7|GMT-8|GMT-9|GMT-10|GMT-11|GMT-12|
GMT12|GMT11|GMT10|GMT9|GMT8|GMT7|GMT6|
GMT5|GMT4|GMT3|GMT2|GMT1) #IMPLIED

Required: Yes, if hour, minute, or second are populated, no otherwise.

Valid Values: GMT, GMT[1-12], GMT[-1- -12]

Description:

National Animal Identification System Page 68

ATPS version 1.0 DRAFT ATD Technical Specifications

This describes the time zone of the timestamp. It is optional but ATPS recommends that
ATDs include the time zone attribute if the precision of the timestamp is at the hourly level or
smaller.

The time zone always relative to GMT. If the time zone format is invalid, the Request will go
to a DATA VALIDATION status. Valid values include “GMT” and GMT plus or minus 1 to
12 hours. If the time zone is not exactly one hour away from GMT, round to the nearest hour.
The DTD specification does not allow plus signs “+” in attribute validations, so the absence
of a minus sign between the GMT and the numeric qualifier implies a plus sign.

If possible, please normalize timestamps to the EST (GMT-5) time zone.

XML Example ATPS Response Reason
<timestamp y=”2006” mo=”9” d=”25” tz=””/> VALIDATION ERROR (tz)timezone cannot be empty.
<timestamp y=”2006” mo=”9” d=”25”
tz=”CMT”/>

VALIDATION ERROR (tz)timezone invalid format.

<timestamp y=”2006” mo=”9” d=”25”
tz=”GMT+18”/>

VALIDATION ERROR (tz)timezone invalid format.

<timestamp y=”2006” mo=”9” d=”25”
tz=”GMT18”/>

VALIDATION ERROR (tz)timezone invalid format.

<timestamp y=”2006” mo=”9” d=”25”/> VALIDATED tz not needed if precision is
day.

<timestamp y=”2006” mo=”9” d=”25”
tz=”GMT-5”/>

VALIDATED Although it is not required.

<timestamp y=”2006” mo=”9” d=”25”
h24=”13” tz=”GMT-5”/>

VALIDATED tz is not required.

<timestamp y=”2006” mo=”9” d=”25”
h24=”13”/>

VALIDATED tz is not required.

TODO: describe group elements

2.1.3.4 Response ERROR Conditions
General:

ATPS will do some pre-checking of the ATD Response before forwarding it to the JMS
queue for processing. In general it will check for two things: XML DTD Validation (this in-
cludes required elements) and a valid ATPS Request ID.

If the Response fails either case, an Exception will be thrown and the Response will not be
processed. If possible (see below), ATPS will update the status of the Request for which this
is a Response to ERROR. Otherwise the Exception will be the only way the ATPS will know
for sure that there was an error with the Response. Indirectly the ATD will know based on the
fact that they submitted a response yet the Request Status did not change.

2.1.3.4.1 XML DTD Validation Errors
If the XML fails DTD validation, the Response is not processed and an exception is thrown.
ATPS will inspect the XML for the ATPS Request ID element, and attempt to validate the
Request ID in order to update the status to ERROR.

If the Request ID can not be found or is not valid, no Request will be updated and the original
exception will be thrown.

Special Case – XML missing ATPS Request ID element

National Animal Identification System Page 69

ATPS version 1.0 DRAFT ATD Technical Specifications

If the atpsRequestID element is totally missing from the XML, then ATPS does not know
which Request to update and will not update any Request. Of course this condition will be
caught by the DTD validation since the request ID is a required XML element.

ATPS will indicate that the Request ID is missing.

2.1.3.4.2 ATPS Request ID Validation Errors
If the ATPS Request ID can not be identified, or is not a valid request ID, then the Request
can not be set to ERROR – either ATPS does not know what Request this is a response to, or
it is not appropriate to modify the Request since it is either STATIC, or another ATDs Re-
quest. In this case the Exception thrown by ATPS is the only way the ATD knows that the
Response was not processed.

There are several ATPS Request ID error cases. In each case ATPS will not update any Re-
quest records to ERROR, it will throw an exception only.

• ATPS Request ID Error Case – Unknown ATPS Request ID element:

If the element exists but is not a known Request ID, then ATPS does not know which Re-
quest to update and will not update any Request.

ATPS will indicate only that the Request ID is not valid.

• ATPS Request ID Error Case – Other ATD ATPS Request ID element:

If the element exists but is a Request ID for another ATD ATPS will not update any Request.

ATPS will indicate only that the Request ID is not valid.

• ATPS Request ID Error Case – Closed Case ATPS Request ID element:

If the element exists but is a Request ID for Closed Case ATPS will not update any Request.

ATPS will indicate only that the Request ID is not valid.

• ATPS Request ID Error Case – Static Status ATPS Request ID element:

If the element exists but is a Request ID for a Request in a Static Status, ATPS will not up-
date any Request.

ATPS will indicate only that the Request ID is not valid.

2.1.3.5 Split Responses
ATPS supports split responses to a single Request. The ATD is responsible for determining if
a split response is necessary, and formatting the split response so that ATPS knows that the
response is part of a split.

There are two response XML attributes that ATPS uses to determine if the response is split:
the ATPSResponse.split attribute and the ATPSresponse.final attribute. See the documenta-
tion related to these two attributes for more information on setting them.

The ATD will order the split responses by the split attribute. This will be a numeric sequence
starting at 1, and ending on the last split submitted. All of the splits will have the same AT-
DResponseID and ATPSRequestID values. The ATD will indicate the final split by setting
the final attribute to “Y”. This attribute will be “N” for all the other splits. ATPS will know
that the ATD is finished submitting splits when it receives the “Y” final split.

The splits must be consecutively numbered from 1 to n, n being the final split. For example a
split response containing 4 splits will have split values of 1, 2, 3, and 4, with 4 having a final

National Animal Identification System Page 70

ATPS version 1.0 DRAFT ATD Technical Specifications

attribute values of “Y”, and the other three having a final attribute value of “N”. ATPS will
accept the splits in any order.

ATPS recommends that the ATD submit only 5,000 events in a single response. So for exam-
ple, if the request from ATPS results in 5,001 events being returned from the ATD, then
ATPS would expect at a minimum two splits from the ATD, whose sum total of events equal
5,001 events, and non of which contain over 5,000 events.

The ATD may submit splits that are smaller than 5,000 events. The ATD may even submit a
split that contains no events, if for some reason they need to do that.

2.1.3.6 National Premises ID Request Response Logic
In general, the strategy for responding to National Premises ID requests is to return events
that indicate that an animal may be at the National Premises during the time period specified
in the Request. The word “may” is very important; the ATD is expected to employ “optimis-
tic” inventory logic. In other words if there is implicit evidence that an animal may have been
at the premises during the requested data range, even though there is not explicit evidence
proving that it was, the ATD is expected to return the Event that implies inventory. Very of-
ten this will mean that the ATD will return events that occurred before or after the requested
date range.

Event Categories
It is important to understand four different Event Categories when analyzing if an event
should be returned to ATPS. The Event categories are: Future Positive, Future Negative, Past
Positive, and Past Negative. All Event Codes are either Future Positive or Future Negative,
and either Past Positive or Past Negative.

2.1.3.6.1 Future Positive Events
A Future Positive Event Code is an event that implies presence on and after the event date.
For example, a Moved In Event implies that the animal may be present after the Moved In
Event, and therefore it is a Future Positive Event. It does not guarantee that the animal is at
the location after the event. Future Positive Events include the following event types (codes):

Future Positive Event Codes:

Event
Code Description

0 Tag Shipped – not applied to animal
1 Tag Allocated
2 Tag applied – tag is applied to an animal
3 Moved in – Animal is moved into a premises
5 Lost Tag – New tag is applied to an animal that lost a tag and previous tag is unknown

6 Replaced Tag or Re-Tagged – New tag is applied to an animal that lost a tag and previous
tag is known

7 Imported – Animal is imported into the U.S.
9 Sighting – Animal has a confirmed sighting at a location, no movement has occurred. (Ex:

veterinarian sighting)

2.1.3.6.2 Future Negative Events

National Animal Identification System Page 71

ATPS version 1.0 DRAFT ATD Technical Specifications

A Future Positive Event Code is an event that implies no presence on and after the event date.
For example, a Moved Out Event implies that the animal may not be present at the location
after the Moved Out Event, and therefore it is a Future Negative Event. It does not guarantee
that the animal was never at the location after the event (it may move back). Future Negative
Events include the following event types (codes):

Future Negative Event Codes:

Event
Code Description

4 Moved out – Animal is moved out of a premises
8 Exported – Animal is exported out of the U.S.

10 Harvested – Animal was terminated at an abattoir
11 Died – Animal died of natural causes or euthanized at the farm/ranch
12 Tag retired – Tag retired by producer, packing house, etc.
13 Animal Missing (lost stolen, etc)

2.1.3.6.3 Past Positive Events
A Past Positive Event Code is an event that implies presence before and on the event date.
For example, a Moved Out Event implies that the animal may be present before the Moved
Out Event, and therefore it is a Past Positive Event. It does not guarantee that the animal was
always at the location before the event. Past Positive Events include the following event types
(codes):

Past Positive Event Codes:

Event
Code Description

2 Tag applied – tag is applied to an animal
4 Moved out – Animal is moved out of a premises
5 Lost Tag – New tag is applied to an animal that lost a tag and previous tag is unknown

6 Replaced Tag or Re-Tagged – New tag is applied to an animal that lost a tag and previous
tag is known

8 Exported – Animal is exported out of the U.S.
9 Sighting – Animal has a confirmed sighting at a location, no movement has occurred. (Ex:

veterinarian sighting)
10 Harvested – Animal was terminated at an abattoir
11 Died – Animal died of natural causes or euthanized at the farm/ranch
12 Tag retired – Tag retired by producer, packing house, etc.
13 Animal Missing (lost stolen, etc)

2.1.3.6.4 Past Negative Events
A Past Negative Event Code is an event that implies no presence before the event date. For
example, a Moved In Event implies that the animal was not present at the location before the
Moved In Event, and therefore it is a Past Negative Event. It does not guarantee that the ani-
mal was never at the location before the event, but this event implies that the animal came
from another premises. Past Negative Events include the following event types (codes):

Past Negative Event Codes:

ID Description

National Animal Identification System Page 72

ATPS version 1.0 DRAFT ATD Technical Specifications

0 Tag Shipped – not applied to animal
1 Tag Allocated
3 Moved in – Animal is moved into a premises
7 Imported – Animal is imported into the U.S.

All events are either future positive or negative, and either past positive or negative. This
chart illustrates each event type and where it lies relative to positive/negative and past/future.
Each event type appears in the chart two times, and each event appears once in the Future
row, and once in the Past row:

Future Past
Positive Negative Positive Negative

0 Shipped 0 Shipped
1 Allocated 1 Allocated
2 Applied 2 Applied
3 Move In 3 Move In
 4 Move Out 4 Move Out
5 Lost 5 Lost
6 Replaced 6 Replaced
7 Imported 7 Imported
 8 Exported 8 Exported
9 Sighting 9 Sighting
 10 Harvested 10 Harvested
 11 Died 11 Died
 12 Retired 12 Retired
 13 Missing 13 Missing

Usage:

There are a lot of use cases which determine if the ATD should or should not return an event,
based on when the event occurred relative to the date range, and what type of event it was,
and in some cases if there is another event that may provide more information about the ani-
mal. The examples below should illustrate all the possible use cases.

In all of these examples, ATPS is requesting information for National Premises “001AAAA”
between specified beginning and ending dates. In the examples the ATD may have one or
more events for a single animal “840…1” at 001AAAA. In reality, the ATD may have events
for several hundred animals for the premises but one animal will suffice for the examples.

• Example 1:

ATD Scenario: Single Event; Any Event during Date Range

ATD Response: Return the event.

ATD has an event for the animal during the date range. This is the simplest example. In this
example, no matter what the event type, the ATD will return the event.

National Animal Identification System Page 73

ATPS version 1.0 DRAFT ATD Technical Specifications

Premises
001AAAA

Animal: 840...1
Event: (Any)
Return: YES

Begin
Request Date

End
Request Date

Example 1

• Example 2:

ATD Scenario: Single Event; Future Positive Event before Date Range

ATD Response: Return the Event.

ATD has one event for the animal before the date range. Depending on the event type, the
ATD should return the event or not return the Event. If the event type is a Positive Event, the
ATD will return the Event.

Premises
001AAAA

Animal: 840...1
Event: “future positive”*
Return: YES

Begin
Request Date

End
Request Date

Example 2

* Future Positive Event Codes include:
Allocated (1), Tag Applied (2), Moved In (3), Lost Tag (5),
Replaced Tag (6), Imported (7), Sighting (9).

• Example 3

ATD Scenario: Single Event; Future Negative Event before Date Range

ATD Response: Do not return the Event.

ATD has one event for the animal before the date range. Depending on the event type, the
ATD should return the event or not return the Event. If the event type is a Negative Event, the
ATD will return the Event.

National Animal Identification System Page 74

ATPS version 1.0 DRAFT ATD Technical Specifications

Premises
001AAAA

Animal: 840...1
Event: “future negative”*
Return: NO

Begin
Request Date

End
Request Date

Example 3

* Future Negative Events Codes include:
Moved Out (4), Exported (8), Harvested (10),
Died (11), Tag Retired (12), Missing (13).

• Example 4

ATD Scenario: Single Event; Past Positive Event after Date Range

ATD Response: Return the event.

ATD has one event for the animal after the date range. Depending on the event type, the ATD
should return the event or not return the Event. If the event type is a “Past Positive” Event
(indicating prior presence is possible), then the ATD will return the Event.

Premises
001AAAA

Animal: 840...1
Event: “past positive”*
Return: YES

Begin
Request Date

End
Request Date

Example 4

* Past Positive Event Codes include:
Moved Out (4), Lost Tag (5), Replaced Tag (6), Imported (7), Sighting (9),
Exported (8), Harvested (10), Died (11), Tag Retired (12), and Missing (13).

• Example 5

ATD Scenario: Single Event; Past Negative Event after Date Range

ATD Response: Do not return the event.

ATD has one event for the animal after the date range. Depending on the event type, the ATD
should return the event or not return the Event. If the event type is a “Past Negative” Event
(indicating prior presence is not possible), then the ATD will return the Event. Past Negative
Events include the following event types (codes): Allocated (1), Tag Applied (2), and Moved
In (3).

National Animal Identification System Page 75

ATPS version 1.0 DRAFT ATD Technical Specifications

Premises
001AAAA

Animal: 840...1
Event: “past negative”*
Return: NO

Begin
Request Date

End
Request Date

Example 5

* Past Negative Event Codes include:
Allocated (1), Tag Applied (2), and Moved In (3)..

Multiple Events, Same Premises:

The ATD may have multiple events for the same animal at the same premises. In this case,
some simple rules may be applied to determine if the ATD should or should not return the
Event.

If the event is inside of the Request Date range, return the event.

• Example 6

ATD Scenario: Multiple Events inside of date range

ATD Response: Return all events.

Premises
001AAAA

Animal: 840...1
Event: ANY
Return: YES

Begin
Request Date

End
Request Date

Example 6

Animal: 840...1
Event: ANY
Return: YES

If there are multiple events before the Begin Request Date Range, sort the events most recent
to oldest (i.e. start with the Event closest to the Request Begin Date and work backwards in
time). If the Event closest to the Begin Request Date is a Future Positive Event, return the
Event. Do not return any older events. If the most recent event is a Future Negative Event, do
not return any of the “old” events.

• Example 7

ATD Scenario: Multiple Events before Begin Date. Latest Event is Future Positive.

ATD Response: Return Latest Event only.

National Animal Identification System Page 76

ATPS version 1.0 DRAFT ATD Technical Specifications

Premises
001AAAA

Animal: 840...1
Event: future Positive
Return: YES

Begin
Request Date

Example 7

Animal: 840...1
Event: ANY
Return: NO

Animal: 840...1
Event: ANY
Return: NO

• Example 8

ATD Scenario: Multiple Events before Begin Date. Latest Event is Future Negative.

ATD Response: Return no events.

Premises
001AAAA

Animal: 840...1
Event: future negative
Return: NO

Begin
Request Date

Example 8

Animal: 840...1
Event: ANY
Return: NO

Animal: 840...1
Event: ANY
Return: NO

If there are multiple events after the End Request Date Range, sort the events oldest to most
recent (i.e. start with the event closest to the Request End Date and work forwards in time). If
the Event closest to the End Request Date is a Past Positive Event, return the event. Do not
return any newer events. If the most recent event is a Past Negative Event, do not return any
of the “new” events.

• Example 9

ATD Scenario: Multiple Events after End Date. Oldest Event is Past Positive.

ATD Response: Return Oldest Event only.

National Animal Identification System Page 77

ATPS version 1.0 DRAFT ATD Technical Specifications

Premises
001AAAA

Animal: 840...1
Event: past positive
Return: YES

End
Request DateExample 9

Animal: 840...1
Event: ANY
Return: NO

Animal: 840...1
Event: ANY
Return: NO

• Example 10

ATD Scenario: Multiple Events after End Date. Oldest Event is Past Negative.

ATD Response: Do not return any events.

Premises
001AAAA

Animal: 840...1
Event: past negative
Return: NO

End
Request DateExample 10

Animal: 840...1
Event: ANY
Return: NO

Animal: 840...1
Event: ANY
Return: NO

Multiple Events, Multiple Premises:

In certain cases an ATD may deduce that an animal was not at the requested premises by the
presence of an event for that animal at other premises.

The situation can only occur if both events are either before or after the Request Date Range.

If the ATD has a Future Positive Event before the date range, normally it would return the
event. However if the ATD also has ANY Event for the same animal at another Premises af-
ter the Future Positive event, but still before the date range, then the ATD will not return the
Future Positive event.

• Example 11

ATD Scenario: Multiple Events before begin date. Newer Event is Future Positive in Prem-
ises of interest. Older Event is for same animal in different premises.

ATD Response: Return the Event.

National Animal Identification System Page 78

ATPS version 1.0 DRAFT ATD Technical Specifications

Premises
001AAAA

Animal: 840...1
Event: future Positive
Return: YES

Begin
Request Date

Example 11

Animal: 840...1
Event: ANY
Return: NOPremises

002BBBB

• Example 12

ATD Scenario: Multiple Events before begin date. Older Event is Future Positive in Prem-
ises of interest. Newer Event is for same animal in different premises.

ATD Response: Do not return the Event.

Premises
001AAAA

Animal: 840...1
Event: ANY
Return: NO

Begin
Request Date

Example 12

Animal: 840...1
Event: ANY
Return: NO

Premises
002BBBB

If the ATD has a Past Positive Event after the date range, normally it would return the event.
However if the ATD also has ANY Event for the same animal at another Premises before the
Future Positive event, but still after the date range, then the ATD will not return the Past Posi-
tive event.

• Example 13

National Animal Identification System Page 79

ATPS version 1.0 DRAFT ATD Technical Specifications

ATD Scenario: Multiple Events after begin date. Older Event is Past Positive in Premises of
interest. Later Event is for same animal in different premises.

ATD Response: Return the Event.

Premises
001AAAA

Animal: 840...1
Event: past positive
Return: YES

End
Request Date

Example 13

Animal: 840...1
Event: ANY
Return: NOPremises

002BBBB

• Example 14

ATD Scenario: Multiple Events after begin date. Later Event is Future Positive in Premises
of interest. Older Event is for same animal in different premises.

ATD Response: Do not return the Event.

Premises
001AAAA

Animal: 840...1
Event: ANY
Return: NO

End
Request Date

Example 14

Animal: 840...1
Event: ANY
Return: NOPremises

002BBBB

2.1.3.7 Submit Response Web Service Specification
Signature:

National Animal Identification System Page 80

ATPS version 1.0 DRAFT ATD Technical Specifications

ATPSMessageValidationResultWS postMessage(
String encryptedATDId,
String pin,
String message)
throws SOAPException;

Arguments:

2.1.3.7.1 encryptedATDId
Type: String, 50 characters max, special characters allowed

Null: No

The Encrypted ATD ID is a required argument. The ATD ID coupled with the PIN is how
ATPS authenticates the ATD. The Encrypted ATD ID can only be accessed by an Applica-
tion User assigned to an Account containing the ATD, and can only be accessed via the web
application.

2.1.3.7.2 pin
Type: String, 10 characters max, special characters allowed

Null: No

The PIN is a required argument. The Eauth ID coupled with the PIN is how ATPS authenti-
cates the ATD. The PIN can only be accessed by an Application User assigned to an Account
containing the ATD, and can only be accessed via the web application.

2.1.3.7.3 message
Type: String

Null: No

The message contains the XML that is the Response.

2.1.3.7.4 Return
Type: ATPSMessageValidationResultWS

ATPS will return a “message validation” result that describes what, if anything, went wrong
when ATPS validated the message for submission. If ATPS encountered any conditions that
resulted in the request being set to an ERROR state, this information will be present in the re-
sult class. Otherwise, if ATPS was able to successfully validate the message, ATPS will indi-
cate that in the Result object as well.

ATPS may still throw a SOAP Exception. If an exception is thrown, ATPS did not process
the message, and it is quite possible ATPS will leave the request in a RETRIEVED state.

If the web service returns without throwing an exception, it does not mean that the message
passed validation and didn’t go to an ERROR state.

If ATPS returns a validation result without an exception in the object, then this means that the
message was processed to the point where it passed basic XML format validation and the cor-
responding Request will not go to the ERROR status (unless this is a Split Response, then
another Split could cause the Response to go to ERROR).

2.1.3.7.5 ATPSMessageValidationResultWS Object
ATPSMessageValidationResultWS {

National Animal Identification System Page 81

ATPS version 1.0 DRAFT ATD Technical Specifications

Boolean passedValidation;
Boolean passedException;
ATPSExceptionInfoWS [] exceptionItems;
}

2.1.3.7.5.1 ATPSMessageValidationResultWS.passedValidation
Type: Boolean

Null: No

Description:

The passed validation indicates if the message passed validation or not. If this Boolean is
“true”, then the invalid items info array will be empty. If it is false, the invalid items array
will have at least one item in it. If the message did not pass validation, it is still eligible to be
processed.

2.1.3.7.5.2 ATPSMessageValidationResultWS.passedException
Type: Boolean

Null: No

Description:

The passed exception indicates if the message passed all exception cases or not. If this Boo-
lean is “true”, then the exception items info array will be empty. If it is false, the exception
items array will have at least one item in it. If the message did not pass exception, it is not
eligible to be processed. Typically this will indicate a problem with the XML formatting.

2.1.3.7.5.3 ATPSMessageValidationResultWS.invalidItems
Type: ATPSInvalidItemWS []

Null: No

Description:

See Section 2.1.2.12 for description of the ATPSInvalidItemWS object.

2.1.3.7.5.4 ATPSMessageValidationResultWS.exceptionItems
Type: ATPSExceptionInfoWS[]

Null: No

Description:

See Section 2.1.2.13 for description of the ATPSExceptionInfoWS object.

National Animal Identification System Page 82

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.4 Validate National Premises ID
ATPS provides a web service that allows an ATD to validate a national premises. The service
accepts a fully-qualified (7 digit) premises ID, and returns an object that contains address in-
formation about the premises if it is found in the repository. An ATD can call this web ser-
vice to validate that a premises ID given to them is valid, and matches the address given to
them. If the ID passed in is invalid or null or does not match any national premises in the re-
pository, ATPS will return an empty result.

The address information will contain the premises ID, and the street, city, state, and zip code
for the premises. Clients will also be able to find out if the premises is an active ADDD or
health official location.

2.1.4.1 Validate National Premises ID Web Service Specification
Signature:
ATPSPremisesWS verifyPremises(
 String encryptedATDId,
 String pin,
 String premId)
throws SOAPException;

Arguments:

2.1.4.1.1 encryptedATDId
Type: String, 50 characters max, special characters allowed

Null: No

The Encrypted ATD ID is a required argument. The ATD ID coupled with the PIN is how
ATPS authenticates the ATD. The Encrypted ATD ID can only be accessed by an Applica-
tion User assigned to an Account containing the ATD, and can only be accessed via the web
application.

2.1.4.1.2 pin
Type: String, 10 characters max, special characters allowed

Null: No

The PIN is a required argument. The Eauth ID coupled with the PIN is how ATPS authenti-
cates the ATD. The PIN can only be accessed by an Application User assigned to an Account
containing the ATD, and can only be accessed via the web application.

2.1.4.1.3 premId
Type: String

Null: No

The premId contains the premises ID for which the client ATD wants verification / informa-
tion.

2.1.4.1.4 return
Type: ATPSPremisesWS

National Animal Identification System Page 83

ATPS version 1.0 DRAFT ATD Technical Specifications

ATPS will return a Premises object that contains information about the requested premises
ID. ATPS will return the ID itself, as well as address information, and Booleans indicating
whether or not the premises is an ADDD location, or a Health Official location. If the prem-
ises ID passed in does not exist in the repository, the premises object will be empty.

2.1.4.1.5 ATPSPremisesWS Object
ATPSPremisesWS {
String premisesId;
String street;
String city;
String ST;
String zip5;
String zip4;
Boolean isActiveADDD;
Boolean isActiveHealthOfficial;
}

2.1.4.1.5.1 ATPSPremisesWS.premisesId
Type: String

Null: Yes

This contains the premises ID passed into the service call, if and only if the input premises is
a valid premises. Otherwise it will be null.

2.1.4.1.5.2 ATPSPremisesWS.street
Type: String

Null: Yes

If not null, this contains the street address for the premises.

2.1.4.1.5.3 ATPSPremisesWS.city
Type: String

Null: Yes

If not null, this contains the city for the premises.

2.1.4.1.5.4 ATPSPremisesWS.ST
Type: String

Null: Yes

If not null, this contains the 2 character state code for the premises.

2.1.4.1.5.5 ATPSPremisesWS.zip5
Type: String

Null: Yes

If not null, this contains the zip 5 for the premises.

2.1.4.1.5.6 ATPSPremisesWS.zip4
Type: String

National Animal Identification System Page 84

ATPS version 1.0 DRAFT ATD Technical Specifications

Null: Yes

If not null, this contains the zip 4 for the premises.

2.1.4.1.5.7 ATPSPremisesWS.isActiveADDD
Type: Boolean

Null: Yes

True if premises is an active Animal Device Distribution Database. False if premises is not an
active ADDD. Null if the input premises ID is not valid.

2.1.4.1.5.8 ATPSPremisesWS.isActiveHealthOfficial
Type: Boolean

Null: Yes

True if premises is an active Health Official location. False if premises is not an active Health
Official. Null if the input premises ID is not valid.

National Animal Identification System Page 85

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.5 Verify USDA Animal ID (AIN ID)
ATPS provides a web service that allows an ATD to validate a USDA AIN ID. Other types of
IDs will not be validated. An AIN ID will assume to have been verified if the ID has been al-
located and shipped from the manufacturer. The service will return a Boolean; true of the
AIN ID is verified and false otherwise.

http://csurams.cstv.com/sports/w-volley/spec-rel/112606aaa.html

2.1.5.1 Verify USDA Animal ID (AIN ID) Web Service Specification
Signature:
Boolean verifyAinId(
 String encryptedATDId,
 String pin,
 String ainId)
throws SOAPException;

Arguments:

2.1.5.1.1 encryptedATDId
Type: String, 50 characters max, special characters allowed

Null: No

The Encrypted ATD ID is a required argument. The ATD ID coupled with the PIN is how
ATPS authenticates the ATD. The Encrypted ATD ID can only be accessed by an Applica-
tion User assigned to an Account containing the ATD, and can only be accessed via the web
application.

2.1.5.1.2 pin
Type: String, 10 characters max, special characters allowed

Null: No

The PIN is a required argument. The Eauth ID coupled with the PIN is how ATPS authenti-
cates the ATD. The PIN can only be accessed by an Application User assigned to an Account
containing the ATD, and can only be accessed via the web application.

2.1.5.1.3 ainId
Type: String

Null: No

The ainId contains the AIN ID for which the client ATD wants verification.

2.1.5.1.4 return
Type: Boolean

The service will return a Boolean; true of the AIN ID is verified and false otherwise.

National Animal Identification System Page 86

ATPS version 1.0 DRAFT ATD Technical Specifications

2.1.6 Web Services Security
ATPS web services security is divided into three main areas; ATD authentication, ATD au-
thorization, and SSL Transport Security. Each of these three items is discussed in detail be-
low.

2.1.6.1 Web Services Authentication
ATPS will authenticate each ATD making a web service call by utilizing an encrypted ATD
ID and an ATD “PIN”. The ATD is required to supply those two authentication keys every
time a web service call is made. If the PIN and ATD ID do not validate, ATPS will throw an
exception. The exception will be a “connection refused” exception, and will not provide any
details as to why the connection was refused.

ATPS will record connection refused exceptions and will make efforts to block clients that
appear to be attempting to “hack” into the ATPS or attempting a denial of service attack. In
addition, in certain cases (explained below) ATPS will automatically lock a client ATD if
they supply the incorrect ATD ID three times in a row.

2.1.6.1.1 ATD PIN
The ATD PIN serves a dual purpose. It is a unique number that identifies the client ATD, and
it also serves as the key to decrypt the encrypted client ID. The ATD PIN is a string and can
contain special characters, and can be up to 10 characters long.

A Client User can only obtain the PIN for its ATD or ATDs via a web application service.
The details of this service are explained in another section. The PIN may be reset but if it is
changed it will also automatically change the encrypted ATD ID.

2.1.6.1.2 Encrypted ATD ID
The Encrypted ATD ID is essentially the password for the ATD, encrypted by the ATD PIN.
The encryption serves to make the ATD ID more secure. The Encrypted ATD ID is a string
and can contain special characters, and can be up to 50 characters long.

A Client can only obtain the Encrypted ATD ID for its ATD or ATDs via a web application
service. The details of this service are explained in another section. The ATD ID may be reset
by the client.

2.1.6.1.3 Three Strikes Rule
If the ATD supplies a correct PIN but an incorrect encrypted ATD ID, ATPS will log that as
a “strike” against the ATD. If the ATD has three such unsuccessful authentication attempts
without a successful authentication, ATPS will lock the ATD for 30 minutes. In all cases
ATPS will return only a “connection refused” exception. This policy is in place to deter unau-
thorized access to ATPS.

A Web Application User can log into the application and unlock an ATD that is currently
locked. The details of this service are in another section.

2.1.6.2 Web Services Authorization
ATPS will authorize each ATD every time a web services is called. The authorization will be
role-based as well as utilizing an enabled/disabled flag.

2.1.6.2.1 ATD Enabled/Disabled

National Animal Identification System Page 87

ATPS version 1.0 DRAFT ATD Technical Specifications

An ATD can be set to enabled or disabled. A disabled ATD will not be authorized to call any
web services. A disabled ATD will receive a “disabled ATD failure” exception upon calling
any web service. ATPS Requests will continue to be created for a disabled ATD. Only an
Admin User has the ability to disable and enable an ATD.

2.1.6.2.2 ATD Role
An ATD can have one to many roles that allow them to be authorized to call a particular ser-
vice. ATD roles may also be used to enforce different business logic during response process-
ing. An ATD that fails due to role-based authorization failure will receive an “authorization
failure” exception. Only an Admin User can modify the roles of an ATD.

2.1.6.3 SSL Transport Layer Security
ATPS will utilize SSL Transport Layer Security to provide secure interned communication
between ATPS and its clients. ATPS will have a digital certificate that must be referenced by
the trust store of the client ATD. The ATD trust store is required since web service transac-
tions have no manual interaction. The trust store takes the place of the User verifying that the
server (ATPS) is trusted.

The following steps can be followed to create a trust store for ATPS.

Create a truststore containing the CA certificate that will authorize the certificate the web-
server returns when performing the SSL Handshake. Note that temporarily, ATPS is using a
Thawte certificate for the server certificate. When the permanent certificate is established, de-
tailed instructions on obtaining the CA certificate will be included in this section.

The command for creating the truststore is (note that keytool is in the [JAVA_JRE]/bin
folder):

keytool -import -noprompt -trustcacerts -alias thawteCACert -v –file [fully-qualified path
name to CA certificate] -keystore [path to trustStore file]/trustStore.jks -storepass [password]

Things to note:

• Even though the command is "keytool" and the destination filename flag is "key-
store", we're creating a truststore because we're importing the certificate we "trust"
that will authorize the certificate the server sends us when we connect to it (a "key-
store" is for holding the key and certificates that a server sends out).

• The trustcacerts setting says that we trust the certificate we're importing

• The storepass defines the password that will be required to access this truststore file
when we need to check some certificates.

Use the java jvm arguments when starting the webservices client:

Djavax.net.ssl.trustStore="[path to trustStore file]/trustStore.jks"

Djavax.net.ssl.trustStoreType=JKS -Djavax.net.ssl.trustStorePassword=[password set in step
1 above]

National Animal Identification System Page 88

ATPS version 1.0 DRAFT ATD Technical Specifications

2.2 Web Application Services
Services that are accessed via a web browser-based API.

2.2.1 Log In to Application
Description: An Account User can log into the application. The application will authorize us-
ing USDA eAuthentication.

Services:

2.2.1.1 User getUserForEauthId(Long eauthId)
Look for a User that matches the eAuth ID passed in.

Who Can Use: This is an “open” service; no session User is required.

2.2.1.2 User[] getUsersForAccount(Long accountId)
Given an Account ID, return all application Users assigned to the Account.

Who Can Use: This is an “Account” service; an Admin User can run for any Account. An
ATD or HO User can run for their own Account only.

2.2.1.3 User modifyUserForAccount(Long accountId, User user)
Modify (update) the User passed in to reflect the new attribution of the User class. The Ac-
count ID is required for authorization purposes.

Who Can Use: This is an “Account” service; an Admin User can run for any Account. An
ATD or HO User can run for their own Account only.

2.2.1.4 Account getAccount(Long accountId)
Who Can Use: This is an “Account” service; an Admin or HO User can run for any Account.
An ATD User can run for their own Account only.

2.2.1.5 Contact createContactForAccount(Long accountId, Con-
tact contact)
Who Can Use: This is an “Account” service; an Admin User can create for any Account. An
ATD User can run for their own Account only. An HO User can not create.

2.2.1.6 Contact[] getContactsForAccount(Long accountId)
Who Can Use: This is an “Account” service; an admin or HO User can get for any Account.
An ATD User can get for their own Account only. The Account contains contacts.

Actions:

2.2.1.6 BaseAction
For all actions. If the User is not found in session, forward to the entryPage, which is pro-
tected by eAuthentication.

National Animal Identification System Page 89

ATPS version 1.0 DRAFT ATD Technical Specifications

2.2.1.7 ProcessLoginAction
Call getUser (2.2.1.1), passing in the eAuthentication ID from the form/session. If User is not
found, forward to processFirstLoginAction (2.2.1.8). If User is found, forward to home page
or User request.

2.2.1.8 ProcessFirstLoginAction
Call getUser (2.2.1.1) passing in the PIN and email address from the form. If User is not
found, throw exception. If User is found, modify User with eAuthentication ID (2.2.1.3). Get
account for User (2.2.1.4). If account has no contacts (2.2.1.6), forward to accountContactAc-
tion (2.2.1.9) and force the User to create a contact. Otherwise, forward to home or User re-
quest.

2.2.1.9 AccountContactAction
Get a list of all contacts for the Account (2.2.1.4). Create a new Account based on the contact
info entered by the User (2.2.1.5).

Logic:

User logs in using USDA eAuthentication ID (2.2.1.7).

ATPS calls service (2.2.1.1) to look up User based on eAuthentication ID.

If the User is found, ATPS puts the User object into the http session, and forwards the request
to the home page or to the requested forwarding page if found.

If the User is not found, ATPS forwards to a page that asks the User for a PIN and email ad-
dress (2.2.1.8).

The User inputs the PIN and email address and submits the page. PIN and email are required.

ATPS looks up a User based on PIN and email address (2.2.1.1).

If a (single) User is found, validate that the User does not already have an eAuth ID attached
to it. If it does, throw an exception.

If it the User is found and the eAuth ID is empty/null, modify the User and assign the session
eAuth ID to the User (2.2.1.3).

Now verify that the User’s Account has at least one active contact (2.2.1.4)

If the User’s Account does not have a contact, forward to a page that requires them to create a
contact for the Account (2.2.1.9).

The User will create an Account. Required Account elements include name, phone, email,
and address (street, city, st, zip5).

Once the Account is successfully created (2.2.1.5), forward to the home page.

2.2.2 Search Requests
Search for Requests from ATPS based on Request Status, Request ID, and/or Request Date.

Services:

National Animal Identification System Page 90

ATPS version 1.0 DRAFT ATD Technical Specifications

2.2.2.1 ATPSRequest[] findRequests(Long accountId, ATPSRe-
questCriteria criteria)
Get all requests that match the input criteria. See 2.1.2.14 for usage rules. Note that this is the
same service that the web service will call. Note also that internally, a client ID is required.
The web service will always populate with the client’s ID. The web application will have to
get it from the User, since the User may have more than one client to choose from.

Who Can Use: Admin Users can get requests for any Account. HO Users can get requests
for any Account. ATD Users can only get requests for their own Account.

2.2.2.2 Account[] getAllAccounts(); (list service)
Get list of all clients matching the Account ID passed in.

Who Can Use: Admin Users can get any Account. HO Users can any Account. ATD Users
can only get their own Account.

2.2.2.3 Client[] getAllClients(Long accountId); (list service)
Get list of all clients matching the Account ID passed in.

Who Can Use: Admin Users can get clients for any Account. HO Users can get clients for
any Account. ATD Users can only get cliense for their own Account.

2.2.2.4 ATPSRequestStatus[] getAllATPSRequestStatus(); (list
service)
Get a list of all available request statuses

Who Can Use: public service.

2.2.2.5 ATPSRequestStatusCategory[] getAllATPSRequestStatus-
Category(); (list service)
Get a list of all available request status categories

Who Can Use: public service.

Actions:

2.2.2.6 FindClientRequestsAction

2.2.2.7 ClientRequestAction
Logic:

The User can enter a variety of criteria information (2.2.2.6) to locate ATPS Requests. If the
User has the Admin or HO role, the can choose from any client. An ATD User is forced to
get requests from a client that is in their Account only. Get the list of all clients, and filter out
all clients that do not have the same Account ID as the session User, unless the User is al-
lowed to call this service on any client. See 2.1.2.14 for usage rules on what criteria are re-
quired. When the User submits, call the findRequests service (2.2.2.1), and display a sum-
mary of the results. The action will have to call services 2.2.2.2, 2.2.2.2.3, 2.2.2.4, and 2.2.2.5
to populate the screen. 2.2.2.3 is populated solely based on the value of 2.2.2.2.

National Animal Identification System Page 91

ATPS version 1.0 DRAFT ATD Technical Specifications

The User can click on one of the results. This will forward to a page (2.2.2.7) that will display
all information about the request. The User can then click a link to view all the exceptions
and invalid items for the request, or click a link that allows them to respond to the request,
provided the request is in a “respond-able” state (see 2.2.3 below).

2.2.3 Upload Manual Response
Description: “Manually” Upload and Submit a Response to a Request.

Who can use: An Account User can manually upload and submit a Response for any of the
ATDs that are active in their Account.

Services:

2.2.3.1 ATPSMessageValidationResultWS validateResponse(Long
accountId, String response)
This service will execute the internal response validation service to determine if the response
will result in an ERROR state or not. The response string is XML. The web service will call
the exact same service.

Who can use: Admin Users can call for any Account. HO Users can not call this service.
ATD Users can call only for their own Account.

2.2.3.2 void submitResponse(Long accountId, String response)
This service will submit a response to a request. The response string is XML. The web ser-
vice will call the exact same service.

Who can use: Admin Users can call for any Account. HO Users can not call this service.
ATD Users can call only for their own Account.

Actions:

2.2.3.3 RequestResponseAction
Logic:

The User can access the RequestResponseAction action by clicking on a “respond-able” re-
quest (see 2.2.2 above). This page allows the User to upload an XML file and submit for re-
sponse validation (2.2.3.1). When submitted, the validation results will be displayed. Then
the User will have the option of submitting the response (2.2.3.2) or uploading a new re-
sponse and re-validating (2.2.3.1). When the response is submitted, since it is an asynchro-
nous service, ATPS will not display the results of the response. It will forward the User to the
search for requests page (2.2.2)

2.2.4 Manage Account
An Account is a collection of Web Application Users, Client Contacts, and Client ATDs. Ac-
counts can only be created by an ATPS Admin.

2.2.4.1 View Account
Services:

2.2.2.2 Account[] getAllAccounts(); (list service)
(See above for description)

National Animal Identification System Page 92

ATPS version 1.0 DRAFT ATD Technical Specifications

2.2.1.6 Contact[] getContactsForAccount(Long accountId)
(See above for description)

2.2.1.2 User[] getUsersForAccount(Long accountId)
Get all (application) Users for the Account.

Who Can Use: This is an “Account” service; an Admin User can get for any Account. An
ATD or HO User can get for their own Account only.

2.2.4.1.1 Client[] getClientsForAccount(Long accountId)
Get all (ATD) clients for the Account.

Who Can Use: This is an “Account” service; an Admin or HO User can get for any Account.
An ATD User can get for their own Account only.

Actions:

2.2.4.1.2 accountAction
Logic:

An ATD User can view the Account to which they are assigned (2.2.4.1.2). An Admin or HO
can view any Account. The action will contain a list of all Accounts (2.2.2.2). An Admin or
HO can choose the Account and submit to view its details. The Account details will include a
list of Contacts (2.2.1.6), Clients (2.2.4.1.1), and application Users (2.2.1.2) that are assigned
to the Account, in addition to the Account attributes.

2.2.4.1 Create Account (ATPS Admin)
Create a new Account.

Services:

2.2.4.1.1 Account createAccount(Account newAccount)
Create a new Account

Who can use: An Admin User can create a new Account. No other User can create.

Actions:

2.2.1.4.1 accountAction

Logic:

An Admin User can create a new Account from the Account Admin page. The new Account
will not have any Users or Contacts. The Account page will include a “create new” submit
button that executes this service.

2.2.4.2 Modify Account
Modify Account Attributes (not including enabled/disabled).

Services:

2.2.4.2.1 Account modifyAccount(Account account)
Modify Account parameters

National Animal Identification System Page 93

ATPS version 1.0 DRAFT ATD Technical Specifications

Who can use: An Admin User can modify any Account parameters. An ATD or HO User
can modify its own Account parameters.

Actions:

2.2.1.4.1 accountAction

Logic:

An Admin User can modify Account parameters from the Account Admin page. Contacts and
Users are modified using a different service; this only applies to Account attributes. The Ac-
count page will include a “modify” submit button that executes this service.

2.2.4.3 Disable/Enable Account (ATPS Admin)
Mark an entire Account as enabled or disabled

Services:

2.2.4.3.1 Account enableAccount(Long accountId)
Enables a disabled Account

Who can use: Only an Admin User can use this service

2.2.4.3.2 Account disableAccount(Long accountId)
Disables an enabled Account.

Who can use: Only an Admin User can use this service.

Actions:

2.2.1.4.1 AccountAction

Logic:

An Admin User can enable or disable an Account. The page (2.2.1.4.1) will have an enable
(2.2.4.3.1) or disable (2.2.4.3.2) submit button or link, depending on the current state of the
Account.

Disabling an Account effectively disables all User and Client ATDs assigned to the Account.
Users will fail all service authorization attempts. Client ATDs will not receive any requests,
and all responses from client ATDs will fail validation and be rejected.

2.2.5 Manage Web Application User
Web Application Users are associated to an Account. They have the ability to execute Web
Application Services for any ATD associated to the Account, and also manage all contacts
associated to the Account. A Web App User may only be associated to a single Account. An
Account may contain multiple Web App Users.

2.2.5.1 Create Web App User for Account
Create a new Web App User and assign to an Account.

2.2.5.1.1 User createUser (Long accountId, User user)
Creates a new User assigned to an Account.

Who can use: An Admin User can create a User for any Account. An HO or ATD User can
only create Users for their own Account.

National Animal Identification System Page 94

ATPS version 1.0 DRAFT ATD Technical Specifications

Actions:

2.2.1.4.1 AccountAction

2.2.5.1.2 UserAction
Logic:

Form the Account page (2.2.1.4.1) a User can access the list of Users (including themselves),
and will also have access to a submit button or link that takes them to the User page
(2.2.5.1.2). From there they can create a new User Account by filling in the required fields
and submitting the page. The new User will be assigned to the Account. Upon creation,
ATPS will send an email to the new User informing them that their Account has been created,
and how to complete the registration process. A new User required the following fields: first
and last name, phone number, email address. When the User is created, a PIN will be auto-
generated for the User. When the User completes the registration process by logging into the
application using eAuthentication and the email/PIN, their eAuthentication ID will be as-
signed to their Account as well.

2.2.5.2 View/Modify Web App User
View the User details / Modify Web App User Attributes

2.2.5.2.1 User getUser (Long accountId, UserSearchCriteria cri)
Gets the User for the Account. Note that the Account ID is not necessary to get the User, it is
used for service authorization purposes.

Who Can Use: Admin and HO User can call for any Account; ATD User can only call for
their own Account.

2.2.5.2.2 User modifyUser (Long accountId, User user)
Modifies a User assigned to an Account.

Who can use: An Admin User can modify a User for any Account. An HO or ATD User can
only modify Users for their own Account.

Actions:

2.2.1.4.1 AccountAction

2.2.5.1.2 UserAction
Logic:

Form the Account page (2.2.1.4.1) a User can access the list of Users (including themselves),
and will also have access to a link (2.2.5.2.1) that takes them to the User page (2.2.5.1.2).
From there the User can modify User attributes such as name, phone number, email
(2.2.5.2.2). Note, the PIN and eAuth ID are not modifiable.

2.2.5.3 Disable/Enable Web App User (Admin).
Disable a Web App User to deny all access to the Web App. Enable the User to allow access.

Services:

2.2.5.3.1 User enableUser(Long accountId, Long userId)

National Animal Identification System Page 95

ATPS version 1.0 DRAFT ATD Technical Specifications

Enables a disabled User

Who can use: Only an Admin User can use this service

2.2.5.3.2 User disableUser(Long accountId, Long userId)
Disables an enabled User.

Who can use: Only an Admin User can use this service.

Actions:

2.2.1.4.1 AccountAction
Logic:

An Admin User can enable or disable a User. The page (2.2.1.4.1) will have an enable
(2.2.5.3.1) or disable (2.2.5.3.2) submit button or link, depending on the current state of the
User.

A disabled User will fail all service authorization attempts.

2.2.5.4 Manage User Roles
Remove/Assign User roles to a User.

Currently there are three roles a User can have; ATD, HO (Helath Official), and Admin. Only
an Admin User can assign roles to another User.

Service:

2.2.5.4.1 User modifyUserRoles(Long accountId, User user)
This service updates the roles in the User to reflect the roles in the User object passed in.

Who Can Use: Only an Admin User can update User roles.

Action:

UserAction 2.2.5.1.2
Logic:

From the User page (2.2.5.1.2), a list of enabled and disabled roles is displayed. An Admin
User can modify the roles and click a submit button to modify the roles (2.2.5.4.1)

2.2.6 Manage Contact
A Contact is a client administrative entity associated to an Account, and therefore associated
to all ATDs on the Account. Contacts may receive automated ATPS emails relating to impor-
tant ATPS Events. Contacts may be contacted directly by ATPS production support. A con-
tact does not have to also be a Web App User. A Contact may only be associated to a single
Account. An Account may contain from one to many Contacts, but must contain at least one
contact.

2.2.6.1 Create Contact
A Web App User may create a new Contact for their Account.

Services:

2.2.6.1.1 Contact createContact(Long accountId, Contact newContact)

National Animal Identification System Page 96

ATPS version 1.0 DRAFT ATD Technical Specifications

Creates a new contact for the Account.

Who Can Use: An Admin User can create a contact for any Account. An HO or ATD User
can create a contact for their own Account only.

Actions:

2.2.1.4.1 AccountAction

2.2.6.1.2 ContactAction
Logic:

From the Account page (2.2.1.4.1) the User can click a submit button or link that will take
them to the contact page (2.2.6.1.2). From there the User can input the required contact in-
formation, and submit the page (2.2.6.1.1) which will create a new contact for the Account.
Required fields include first/last name, phone, email address.

2.2.6.2 View/Modify/Delete Contact
A Web App User may modify, disable, or delete an Account Contact.

Services:

2.2.6.2.1 Contact getContact(Long accountId, Long contactId)
Retrieves the contact.

Who can use: Admin and HO User can get any contact. ATD User can only get a contact as-
signed to their Account.

2.2.6.2.2 Contact modifyContact(Long accountId, Contact contact)
Modify modifiable contact attributes.

Who can use: Admin User can modify any contact. HO and ATD User can only modify a
contact assigned to their Account.

2.2.6.2.3 void deleteContact(Long accountId, Long contactId)
Delete an Account contact.

Who can use: Admin User can delete any contact. HO and ATD User can only delete a con-
tact assigned to their Account. ATPS will not allow an Account to have 0 contacts.

Actions:

2.2.1.4.1 AccountAction

2.2.6.1.2 ContactAction
Logic:

Modify contact:

From the Account page (2.2.1.4.1) the User can click a link (2.2.6.2.1) that will take them to
the contact page (2.2.6.1.2) for a particular contact. From there the User can modify contact
information, and submit the page (2.2.6.2.2) which will update the contact info.

Delete Contact:

National Animal Identification System Page 97

ATPS version 1.0 DRAFT ATD Technical Specifications

From the Account page (2.2.1.4.1) the User can click a link (2.2.6.2.3) that will delete the
contact. The app will pop up a warning before actually deleting the contact.

2.2.7 Manage ATD Client
The ATD is the ATPS representation of a Web Services Client. An ATD is assigned to one
and only one Account. An Account may contain multiple ATDs. Each ATD will have a
unique Authentication Identifier. All enabled ATDs are expected to respond to all ATPS Re-
quests.

2.2.7.1 Create Client ATD (ATPS Admin)
An Admin may create a new Client ATD for an Account. The ATD Authentication Identifier
will be created at this time.

Services:

2.2.7.1.1 Client createClient(Long accountId, Client newClient)
Creates a new contact for the Account.

Who Can Use: Only an Admin User can create client.

Actions:

2.2.1.4.1 AccountAction

2.2.7.1.2 ClientAction
Logic:

From the Account page (2.2.1.4.1) the User can click a submit button or link that will take
them to the client page (2.2.7.1.2). From there the User can input the required client informa-
tion, and submit the page (2.2.7.1.1) which will create a new client for the Account. Required
fields include client name. ATPS will automatically assign a PIN and authentication ID to the
client upon creation.

2.2.7.2 View/Modify Client ATD
A Web App User may view the Authentication Identifier for a Client ATD in their Account.
The Web App User may also modify Client ATD attribution. The ATD Authentication Iden-
tifier may be modified via the Authentication Identifier reset function (see below).

Services:

2.2.7.2.1 Client getClient(Long accountId, Long clientId)
Retrieves the client.

Who can use: Admin User can get any client. ATD User can only get a client assigned to
their Account. HO can not use this service.

2.2.7.2.2 Contact modifyClient(Long accountId, Client client)
Modify modifiable contact attributes.

Who can use: Admin User can modify any client. HO and ATD User can only modify a con-
tact assigned to their Account.

Actions:

National Animal Identification System Page 98

ATPS version 1.0 DRAFT ATD Technical Specifications

2.2.1.4.1 AccountAction

2.2.7.1.2 ClientAction
Logic:

From the Account page (2.2.1.4.1) the User can click a submit button or link (2.2.7.2.1) that
will take them to the client page (2.2.7.1.2). From there the User can update modifiable client
information, and submit the page (2.2.7.2.2) which will update the modifiable client informa-
tion.

2.2.7.3 Unlock ATD
A Web App User may Unlock an ATD Account that has been locked due to unsuccessful au-
thentication attempts.

Services:

2.2.7.3.1 Client unlockClient(Long accountId, Long clientId)
Unlocks the client by setting the number of invalid login attempts to 0 for the client.

Who can use: Admin can unlock any client. ATD can unlock a client in the User’s Account
only. HO can not use this service.

2.2.7.1.2 ClientAction
Logic:

The client page will indicate if the client is locked. The User can click a button that will sub-
mit a request (2.2.7.3.1) to unlock the client.

2.2.7.4 Reset Client ATD Authentication Identifier
A Web App User may reset the Authentication Identifier for a Client ATD in their Account.
A Reset will take effect immediately.

Services:

2.2.7.4.1 Client resetClientAuthentication(Long accountId, Long clientId)
Resets the client PIN and authentication ID

Admin can reset any client. ATD can reset a client in the User’s Account only. HO can not
use this service.

2.2.7.1.2 ClientAction
Logic:

The client page will display the PIN and encrypted authentication ID for the client. The User
can click a button that will submit a request (2.2.7.4.1) to reset these two values.

2.2.7.5 Disable/Enable Client ATD
An Admin may Disable an ATD. A Disabled ATD does not receive Requests. An Enabled
ATD receives Requests.

Services:

2.2.7.5.1 Client enableClient(Long accountId, Long clientId)

National Animal Identification System Page 99

ATPS version 1.0 DRAFT ATD Technical Specifications

Enables a disabled client

Only an Admin User can use this service

2.2.7.5.2 Client disableClient(Long accountId, Long clientId)
Disables an enabled client.

Who can use: Only an Admin User can use this service.

Actions:

2.2.7.1.2 ClientAction
Logic:

An Admin User can enable or disable a client. The page (2.2.7.1.2) will have an enable
(2.2.7.5.1) or disable (2.2.7.5.2) submit button or link, depending on the current state of the
client.

A disabled Client will not receive any new requests, and all responses from a disabled client
will be rejected.

2.2.7.6 Manage Client ATD Roles
Remove/Assign roles to a Client.

Currently there are three roles a User can have; ATD, HO (Helath Official), and Admin. Only
an Admin User can assign roles to another User.

Service:

2.2.7.6.1 Client modifyClientRoles(Long accountId, Client client)
This service updates the roles in the client to reflect the roles in the client object passed in.

Who Can Use: Only an Admin User can update client roles.

Action:

2.2.7.1.2 ClientAction
Logic:

From the Client page (2.2.7.1.2), a list of enabled and disabled roles is displayed. An Admin
User can modify the roles and click a submit button to modify the roles (2.2.7.6.1)

2.2.8 Create Case
ATPS has the ability to create several different types of “Cases”. All cases are a collection of
requests, which themselves contain responses. A User can create a case, and then get details
about the case. This section covers services related to creating various case types.

2.2.8.1 Create Manual Ping Case
A User can create a “ping” case that is specific to a single client ATD.

Services:

2.2.8.1.1 ATPSCase createManualPingCase(Client client, ATPSCase newCase)
Create a new case that specifically targets one ATD Client with a new ping request.

National Animal Identification System Page 100

ATPS version 1.0 DRAFT ATD Technical Specifications

Who can use: Admin can call for any Account. HO can not call. ATD can call for assigned
Account only.

2.2.2.2 Account[] getAllAccounts();

2.2.4.1.2 Client[] getClientsForAccount(Long accountId)
Actions:

2.2.8.1.2 ManualPingCaseAction
Logic:

Ping case page (2.2.8.1.2) will contain a list of Accounts (2.2.2.2) and a list of clients based
on the Account chosen (2.2.4.1.2). The User will select a client, and submit the page
(2.2.8.1.1) which will create a “manual” ping case specific to the chosen client.

Case creation logic:

The case “factory” will analyze the client. If the client already has a NEW ping request out-
standing, ATPS will not create the case and will throw an exception. ATPS allows ATD Cli-
ents to only have one outstanding NEW ping request assigned to them.

If the ATD Client does not have a NEW ping request assigned to them, the case “factory”
will recognize that this is a manual ping case, and build a request set that contains a single
ping request for the requested client.

2.2.8.2 Create Manual Request Case
A User can create a “real” case that is specific to a single client ATD.

Services:

2.2.8.2.1 ATPSCase createManualRequestCase(Client client, ATPSRequest re-
quest, ATPSCase newCase)
Create a new case that specifically targets one ATD Client with a single “real” request.

Who can use: Admin can call for any Account. HO can not call. ATD can call for assigned
Account only. Note, permissions may change for this service.

2.2.2.2 Account[] getAllAccounts();

2.2.4.1.2 Client[] getClientsForAccount(Long accountId)
Actions:

2.2.8.2.2 ManualRequestCaseAction
Logic:

Request case page (2.2.8.2.2) will contain a list of Accounts (2.2.2.2) and a list of clients
based on the Account chosen (2.2.4.1.2). It will also allow the User to enter a list of official
ID /type combos, or a list of national premises IDs, a begin/end date range, and a begin/end
audit date range. The User will select a client, and submit the page (2.2.8.2.1) which will cre-
ate a “manual” ping case specific to the chosen client. The use must supply either one or
more official ID /type pairs, but not more than 100, or one or more national premises ID val-
ues but not more than 10. If premises IDs are populated, the begin and end date are required.
Begin and end audit date are optional but if one is populated they both must be populated.

National Animal Identification System Page 101

ATPS version 1.0 DRAFT ATD Technical Specifications

Case creation logic:

The case “factory” will recognize that this is a manual request case, and build a request set
that contains a single request for the specified client.

2.2.8.3 Create “Real” Case
A User can create a “real” case. Note that requirements on this are incomplete.

Services:

2.2.8.3.1 ATPSCase createCase(ATPSRequest request, ATPSCase newCase)
Create a new case with a set of initial request parameters.

Who can use: Admin, HO can call. ATD cannot call.

Actions:

2.2.8.3.2 CaseAction
Logic:

Case page (2.2.8.3.2) will also allow the User to enter a list of official ID /type combos, or a
list of national premises IDs, a begin/end date range, and a begin/end audit date range. When
the User submits the page (2.2.8.2.1) ATPS will create a case utilizing the page parameters.
The use must supply either one or more official ID /type pairs, but not more than 100, or one
or more national premises ID values but not more than 10. If premises IDs are populated, the
begin and end date are required. Begin and end audit date are optional but if one is populated
they both must be populated.

Case creation logic:

The case “factory” will recognize that this is a real request case, and build a request set that
contains a requests for all enabled ATPS clients.

2.2.9 Search Cases
A User can search for Cases and introspect for case status and details.

Services:

2.2.2.2 Account[] getAllAccounts();

2.2.9.1 ATPSCase[] findATPSCases(Long accountId,
ATPSCaseSearchCriteria criteria)
Return cases that match the criteria elements passed in. The requestSets will not be popu-
lated.

Who can use: Admin can find cases created by any Account. HO and ATD Users can only
find cases created by their own Account.

2.2.9.2 ATPSRequestSet[] getRequestSetsForCase(Long ac-
countId, Long caseId)
Returns all the requests sets for a given case. The case ID is required so that proper service
authorization can be implemented.

National Animal Identification System Page 102

ATPS version 1.0 DRAFT ATD Technical Specifications

Who can use: Admin User can get request sets for any case. HO and ATD Users can only get
request sets for case created by their Account.

2.2.9.3 ATPSRequest[] getRequestsForRequestSet(Long ac-
countId, Long caseId, Long requestSetId)
Returns all the requests for a given request set. The case ID is required so that proper service
authorization can be implemented.

Who can use: Admin Users can get requests for any case. HO and ATD Users can only get
requests for case created by their Account.

2.2.9.4 ATPSResponse[] getResponsesForRequest(Long ac-
countId, Long caseId, Long requestId)
Returns all the responses for a given request. The case ID is required so that proper service
authorization can be implemented.

Who can use: Admin Users can get responses for any case. HO and ATD Users can only get
responses for case created by their Account.

2.2.9.5 Message[] getMessagesForResponse (Long accoun-
tId, Long caseId, Long reponseId)
Returns all the messages for a given response. The case ID is required so that proper service
authorization can be implemented.

Who can use: Admin Users can get messages for any case. HO and ATD Users can only get
messages for case created by their Account.

Actions:

2.2.9.6 CaseAdminAction
Logic:

The search case action (2.2.9.6) will contain an Account drop down and a set of case search
criteria, including case ID and case name (more criteria forthcoming probably). The User will
find cases by submitting a search request (2.2.9.1).

A User can then drill down into the case by continuing to click on a link on the case display
that will show all request sets for the case (2.2.9.2).

A User can then drill down into the request sets by continuing to click on a link on the request
sets display that will show all requests for the request set (2.2.9.3).

A User can then drill down into the request by continuing to click on a link on the request dis-
play that will show all responses for the request (2.2.9.4).

A User can then drill down into the response by continuing to click on a link on the response
display that will show all messages for the response (2.2.9.5).

2.2.10 Close Case
A User can close a case that is completed.

Services:

National Animal Identification System Page 103

ATPS version 1.0 DRAFT ATD Technical Specifications

2.2.10.1 ATPSCase closeCase(Long accountId, Long caseId)
This service will move the status of the case from open to closed. It will also create a new re-
quest set with a PROGRAM_CASE_CLOSED request for all client ATDs that participated in
the case (i.e. all client ATDs that have a request in this Case). Then a case is closed, if it is
not a “real” case, all messages tied to the case till be deleted. If it is a “real” case, all mes-
sages tied to the case will be archived and then deleted from the production db.

Who Can Use: An Admin can close any case. A HO or ATD can only close a case that
someone in their Account created.

Action:

2.2.9.6 CaseAdminAction

Logic:

In the case page (2.2.9.6), when a User has found an open case (2.2.9.1), they will have the
ability to click a link that will close the case (2.2.10.1). ATPS will warn the User that this is
not a reversible service.

National Animal Identification System Page 104

ATPS version 1.0 DRAFT ATD Technical Specifications

2.3 Automated Services
ATPS has the ability to create automated services. The only automated service is the regular
ping utility.

2.3.1 Create Ping Case
ATPS will attempt to ping all the enabled ATDs every hour.

Service:

2.3.1.1 ATPSCase createPingCase();
This is an automated service. ATPS will create a new ATPSCase, and will create a request set
with requests for every ATD that does not currently have a NEW ping request assigned to
them. Note that manual ping requests are not considered in determining which ATDs to cre-
ate a request for.

Who can use: Only an Admin “User” can run this service. Even though this is tied so some
automated process, the service will run as an actual User. Note that the “User” may not be
tied to an actual person though.

Action:

PingAction

Logic:

An Admin User can access a page to adjust the ping frequency, or to turn on or off the auto-
mated ping service. This may utilize the existing application environment page.

Admin Users can lookup the results of ping requests via the search ping page.

National Animal Identification System Page 105

ATPS version 1.0 DRAFT ATD Technical Specifications

3 APPENDIX

3.1 Web Service Signatures
These are provided here as a quick reference. For more detail, please see the Web Service
Requirements.

3.1.1 Get Requests Web Service Specification:
Signature:
ATPSRequestWS[] getRequests(
String encryptedATDId,
String pin,
ATPSRequestCriteriaWS criteria)
throws SOAPException;

3.1.2 Submit Response Web Service Specification:
Signature:
ATPSMessageValidationResultWS postMessage(
String encryptedATDId,
String pin,
String message)
throws SOAPException;

3.1.3 Validate National Premises ID Web Service Specification:
Signature:
ATPSPremisesWS verifyPremises(
String encryptedATDId,
String pin,
String premId)
throws SOAPException;

3.1.4 Verify USDA Animal ID (AIN ID) Web Service Specification:
Signature:
Boolean verifyAinId(
String encryptedATDId,
String pin,
String ainId)
throws SOAPException;

National Animal Identification System Page 106

ATPS version 1.0 DRAFT ATD Technical Specifications

3.2 ATPS Web Service custom class attribution
The Web Service Interface describes several custom classes. These are discussed in detail in
the requirements document, and are included here for lookup purposes. It can be assumed that
each attribute will have a get and set method that follow standard simple bean naming con-
ventions. For instance, the requestStatus attribute will be accessed via a getRequestStatus()
method and a setRequestStatus(String s) method.

3.2.1 ATPSRequestWS Class:
Attribution:
ATPSRequestWS{
Long requestId;
ATPSCaseWS case;
String requestStatusCategory;
String requestStatus;
Date requestCreatedDate;
Date requestModifiedDate;
ATPSOfficialIdWS[] officialIds;
String[] nationalPremisesIds;
String species;
Date beginRequestDate;
Date endRequestDate;
Date beginAuditDate;
Date endAuditDate;
ATPSInvalidItemWS [] invalidItems;
ATPSInvalidItemWS [] exceptionItems;
}

3.2.2 ATPSCaseWS Class:
Attribution:
ATPSCaseWS{
Long caseID;
String caseDescription;
String caseStatus;
}

3.2.3 ATPSOfficialIdWS Class:
Attribution:
ATPSOfficialIdWS{
String officialId;
String officialIdType;
}

3.2.4 ATPSInvalidItemWS Class:
Attribution:
ATPSInvalidItemWS{
String ATDResponseId;
Integer split;
String ATDEventId;

National Animal Identification System Page 107

ATPS version 1.0 DRAFT ATD Technical Specifications

Long recordSequence;
String elementName;
String elementValue;
ATPSExceptionInfoWS exceptionInfo;
}

3.2.5 ATPSExceptionInfoWS Class:
Attribution:
ATPSExceptionInfoWS {
String cause;
String message;
}

3.2.6 ATPSRequestCriteriaWS Class:
Attribution:
ATPSRequestCriteriaWS {
Long requestId;
Long caseId;
String[] requestStatus;
String requestStatusCategory;
Date beginRequestCreatedDate;
Date beginRequestModifiedDate;
}

3.2.7 ATPSMessageValidationResultWS Class:
Attribution:
ATPSMessageValidationResultWS {
Boolean passedValidation;
Boolean passedException;
ATPSExceptionInfoWS [] invalidItems;
ATPSExceptionInfoWS [] exceptionItems;
}

3.2.8 ATPSPremisesWS Class:
Attribution:
ATPSPremisesWS {
String premisesId;
String street;
String city;
String ST;
String zip5;
String zip4;
Boolean isActiveADDD;
Boolean isActiveHealthOfficial;

National Animal Identification System Page 108

ATPS version 1.0 DRAFT ATD Technical Specifications

3.3 Response DTD Specification
ATPS has defined two DTD files for the response XML. These are discussed in detail in the
requirements document, and are included here for lookup purposes.

3.3.1 DTD
<?xml version="1.0" encoding="UTF-8"?>
<!—DTD for submission of Animal and Group Events -->
<!ELEMENT eventSub (header,(animalRecords|groupRecords))>
<!ELEMENT header (atpsRequestId,atdResponse)>
<!ELEMENT atpsRequestId (#PCDATA)>
<!ELEMENT atdResponse (responseId)>
 <!ATTLIST atdResponse
 final (Y|N) #REQUIRED
 split CDATA #IMPLIED
 >
<!ELEMENT responseId (#PCDATA)>
<!ELEMENT animalRecords (animalRecord*)>
<!ELEMENT animalRecord (ATDEventId*, eventType, eventDate, rptPre-
mId, id, srcDestPremId*, animal*, remarks*, reTagId*, optIds*)>
 <!ATTLIST animalRecord
 elecRead CDATA #IMPLIED
 status CDATA #IMPLIED
 >
<!ELEMENT groupRecords (groupRecord*)>
<!ELEMENT groupRecord (ATDEventId*, eventType, eventDate, rptPremId,
id, srcDestPremId*, group*, remarks*)>
 <!ATTLIST groupRecord
 elecRead CDATA #IMPLIED
 status CDATA #IMPLIED
 >
<!ELEMENT ATDEventId (#PCDATA)>
<!ELEMENT eventType EMPTY>
 <!ATTLIST eventType
 code CDATA #REQUIRED >
<!ELEMENT eventDate (timestamp)>
<!ELEMENT rptPremId (#PCDATA)>
 <!ATTLIST rptPremId
 type CDATA #IMPLIED>
<!ELEMENT id (#PCDATA)>
 <!ATTLIST id
 type CDATA #IMPLIED>
<!ELEMENT srcDestPremId (#PCDATA)>
 <!ATTLIST srcDestPremId
 type CDATA #IMPLIED>
<!ELEMENT animal (DOB*,age*)>
 <!ATTLIST animal
 species CDATA #IMPLIED
 gender CDATA #IMPLIED
 breed CDATA #IMPLIED
 >
<!ELEMENT DOB (timestamp)>
 <!ATTLIST DOB
 est CDATA #REQUIRED>

National Animal Identification System Page 109

ATPS version 1.0 DRAFT ATD Technical Specifications

<!ELEMENT age (#PCDATA)>
 <!ATTLIST age
 scale (D|M|Y) #REQUIRED>
<!ELEMENT remarks (#PCDATA)>
<!ELEMENT reTagId (#PCDATA)>
 <!ATTLIST reTagId
 type CDATA #IMPLIED>
<!ELEMENT optIds (optId*)>
<!ELEMENT optId (#PCDATA)>
 <!ATTLIST optId
 type CDATA #IMPLIED>
<!ELEMENT group (groupSubsetId*, groupCount*)>
 <!ATTLIST group
 groupType CDATA #IMPLIED
 species CDATA #IMPLIED
 breed CDATA #IMPLIED
 >
<!ELEMENT groupSubsetId (#PCDATA)>
<!ELEMENT groupCount (#PCDATA)>
<!ELEMENT timestamp EMPTY>
 <!ATTLIST timestamp
 y CDATA #REQUIRED
 mo CDATA #REQUIRED
 d CDATA #REQUIRED
 h24 CDATA "0"
 mi CDATA "0"
 s CDATA "0"
 tz CDATA #IMPLIED
 >

3.3.2 Strict DTD
<?xml version="1.0" encoding="UTF-8"?>
<!—Strict DTD for submission of Animal and Group Events -->
<!ELEMENT eventSub (header,(animalRecords|groupRecords))>
<!ELEMENT header (atpsRequestId,atdResponse)>
<!ELEMENT atpsRequestId (#PCDATA)>
<!ELEMENT atdResponse (responseId)>
 <!ATTLIST atdResponse
 final (Y|N) #REQUIRED
 split CDATA #IMPLIED
 >
<!ELEMENT responseId (#PCDATA)>
<!ELEMENT animalRecords (animalRecord*)>
<!ELEMENT animalRecord (ATDEventId*, eventType, eventDate, rptPre-
mId, id, srcDestPremId*, animal*, remarks*, reTagId*, optIds*)>
 <!ATTLIST animalRecord
 elecRead (Y|N) #IMPLIED
 status (C) #IMPLIED
 >
<!ELEMENT groupRecords (groupRecord*)>
<!ELEMENT groupRecord (ATDEventId*, eventType, eventDate, rptPremId,
id, srcDestPremId*, group*, remarks*)>
 <!ATTLIST groupRecord
 elecRead (Y|N) #IMPLIED
 status (C) #IMPLIED
 >

National Animal Identification System Page 110

ATPS version 1.0 DRAFT ATD Technical Specifications

<!ELEMENT ATDEventId (#PCDATA)>
<!ELEMENT eventType EMPTY>
 <!ATTLIST eventType
 code (0|1|2|3|4|5|6|7|8|9|10|11|12|13) #REQUIRED >
<!ELEMENT eventDate (timestamp)>
<!ELEMENT rptPremId (#PCDATA)>
 <!ATTLIST rptPremId
 type (N|X) #REQUIRED>
<!ELEMENT id (#PCDATA)>
 <!ATTLIST id
 type (A|U|R|F|N|B|G|T) #REQUIRED>
<!ELEMENT srcDestPremId (#PCDATA)>
 <!ATTLIST srcDestPremId
 type (N|X) #REQUIRED>
<!ELEMENT animal (DOB*,age*)>
 <!ATTLIST animal
 species (ACQ|BOV|CAM|CAP|CER|EQU|OVI|AVI|POR) #IMPLIED
 gender (M|F|C|S|X) #IMPLIED
 breed CDATA #IMPLIED
 >
<!ELEMENT DOB (timestamp)>
 <!ATTLIST DOB
 est (Y|N) #REQUIRED>
<!ELEMENT age (#PCDATA)>
 <!ATTLIST age
 scale (D|M|Y) #REQUIRED>
<!ELEMENT remarks (#PCDATA)>
<!ELEMENT reTagId (#PCDATA)>
 <!ATTLIST reTagId
 type (A|U|R|F|N|B|G|T) #REQUIRED>
<!ELEMENT optIds (optId*)>
<!ELEMENT optId (#PCDATA)>
 <!ATTLIST optId
 type (A|U|R|F|N|B|G|T) #REQUIRED>
<!ELEMENT group (groupSubsetId*, groupCount*)>
 <!ATTLIST group
 groupType CDATA #IMPLIED
 species (AQU|CLM|CRA|CTF|MSL|OYS|SAL|SBA|SHR|SLP|TIL|TRO|
 BOV|BIS|BEF|DAI|CAM|CAP|CER|DEE|ELK|EQU|OVI|
 AVI|CHI|DUC|GEE|GUI|PGN|PHE|QUA|TUR|OTH|POR) #IMPLIED
 breed CDATA #IMPLIED
 >
<!ELEMENT groupSubsetId (#PCDATA)>
<!ELEMENT groupCount (#PCDATA)>
<!ELEMENT timestamp EMPTY>
 <!ATTLIST timestamp
 y CDATA #REQUIRED
 mo (1|2|3|4|5|6|7|8|9|10|11|12) #REQUIRED
 d (1|2|3|4|5|6|7|8|9|
 10|11|12|13|14|15|16|17|18|19|
 20|21|22|23|24|25|26|27|28|29|30|31) #REQUIRED
 h24 (0|1|2|3|4|5|6|7|8|9|10|11|12|
 13|14|15|16|17|18|19|20|21|22|23) "0"
 mi (0|1|2|3|4|5|6|7|8|9|
 10|11|12|13|14|15|16|17|18|19|
 20|21|22|23|24|25|26|27|28|29|
 30|31|32|33|34|35|36|37|38|39|

National Animal Identification System Page 111

ATPS version 1.0 DRAFT ATD Technical Specifications

 40|41|42|43|44|45|46|47|48|49|
 50|51|52|53|54|55|56|57|58|59) "0"
 s (0|1|2|3|4|5|6|7|8|9|
 10|11|12|13|14|15|16|17|18|19|
 20|21|22|23|24|25|26|27|28|29|
 30|31|32|33|34|35|36|37|38|39|
 40|41|42|43|44|45|46|47|48|49|
 50|51|52|53|54|55|56|57|58|59) "0"
 tz (GMT|GMT-1|GMT-2|GMT-3|GMT-4|GMT-5|GMT-6|
 GMT-7|GMT-8|GMT-9|GMT-10|GMT-11|GMT-12|
 GMT12|GMT11|GMT10|GMT9|GMT8|GMT7|GMT6|
 GMT5|GMT4|GMT3|GMT2|GMT1) #IMPLIED
 >

National Animal Identification System Page 112

ATPS version 1.0 DRAFT ATD Technical Specifications

3.4 Official ID Codes

Code Description
A Official ID with leading “USA”
U USDA ID, not “840”
R ID with lead manufacturer code
F Foreign Country ID
N USDA NAIS AIN ID with leading “840”
G Group Identification Number
T Tattoo
B Breed Registry number
X Unknown

3.5 Species Group Codes

Species Group Code Description
AQU Aquaculture
BOV Bovine (Bison and Cattle)
CAM Camelid (Alpaca and Llama)
CAP Caprine (Goats)
CER Cervids
EQU Equine (Horses)
OVI Ovine (Sheep)
AVI Avian
POR Porcine (Swine)

3.6 Species Codes
Includes Species and Species Group Codes

Code Description Code Description
AQU Aquaculture CAM Camelid (Alpaca and

Llama)
CLM Clams CAP Caprine

(Goats)

CRA Crawfish CER Cervids
CTF Catfish DEE Deer
MSL Mussels ELK Elk
OYS Oysters EQU Equine (Horses) 1
SAL Salmon OVI Ovine (Sheep)
SBA Striped Bass AVI Avian
SHR Shrimp CHI Chickens
SLP Scallops DUC Ducks

National Animal Identification System Page 113

ATPS version 1.0 DRAFT ATD Technical Specifications

TIL Tilapia GEE Geese
TRO Trout GUI Guineas

BOV Bovine (Bison and Cat-
tle)

 PGN Pigeon

BIS Bison PHE Pheasants

BEF Beef QUA Quail

DAI Dairy TUR Turkeys

 OTH Other
 POR Porcine (Swine)
 Feral
 Transitional
 Commercial

3.7 Breed Codes

Dairy Breeds Goat Breeds
Breed Code Breed Code

American Lineback LD Alpine AI
Ayrshire AY Angora AG
Brown Swiss BS Boer BZ
Canadian Lineback LK Cashmere CS
Galloway GD La Mancha LN
Guernsey GU Nigerian Dwarf ND
Holstein HO Nubian NU
Jersey JE Oberhasli OH
Kerry KY Pygmy PY
Red Holstein WW Saanen EN
Rouge Flamand FM Toggenburg TO
Shorthorn MS Sheep Breeds

Beef Breeds Breed Code
Breed Code Arcott – Canadian CD

Aberdeen Angus AN Arcott – Outaouais OU
Abondance AB Arcott – Rideau RI
Africander AF Barbados Black Belly LY
Alpine AL Black Face FB
American Breed AE Black Welsh Mountain BW
Amerifax AM Blue Faced Leister BF
Ankina AK Booroola BO
Ankole-Watusi AW Border Cheviot BC
Aubrac AU Charollais CO
Barzona BA Clun Forest CF
Beef Friesian BF Columbia CL

National Animal Identification System Page 114

ATPS version 1.0 DRAFT ATD Technical Specifications

Beefalo BE Coopworth CP
Beefmaster BM Corriedale CR
Belgian Blue BB Cottswold CW
Belted Galloway BG Crossbred – Large XL
Blonde d’Aquitane BD Crossbred – Medium XM
Bonsmara NS Crossbred – Small XS
Braford BO DLS DL
Brahman BR Dorper DO
Brahmental BH Dorset – Horned DH
Brahmousin BI Dorset – Polled DP
Braler BL Drysdale DY
Brangus BN East Friesian EF
Braunveih BU Finnish Landrace FN
British White BW Hampshire HS
Brown Swiss (beef/boeuf) SB Hybrid HY
Buelingo BQ Icelandic IL
Campine Red Pied CP Ile de France IF
Canadienne CN Jacob JA
Charbray CB Karakul KK
Charolais CH Katahdin KA
Chi-Angus CG Kerry Hill KH
Chianina CA Lacaune Dairy Sheep CU
Chi-Maine CM Leicester – Border BL
Crossbred Twinner XT Leicester – English LE
Crossbreeds XX Leister – Hexam HL
Cumberland CU Lincoln LI
Danish Black and White DB Merino MM
Danish Jersey DJ Merino Polled MP
Danish Red and White RW Montadale MT
Devon DE Newfoundland Loco NL
Dexter DR North Country Cheviot NC
Dutch Belted DL Oxford OX
East Flemish Red Pied FP Perendale PE
Eringer ER Polypay PO
Flamande FA Rambouillet RG
Fleckvieh FL Romanov RV
Florida Cracker FC Romnelet RM
Fribourg FR Romney RY
Friesian (Belgium) FB Rouge de l’Ouest RO
Friesian (Dutch) DF Ryeland RL
Galloway GA Scottish Blackface SC
Gasconne GS Shetland SL
Gelbray GE Shropshire SR
Gelbvieh GV Southdown ST
Grauvieh GI St. Croix SX
Groningen GR Suffolk SU
Guzera GZ Targhee TA
Gyr (or Gir) GY Texel TX

National Animal Identification System Page 115

ATPS version 1.0 DRAFT ATD Technical Specifications

Hays Converter HC Tunis TU
Hereford (black) HB Bison Breeds
Hereford (horned) HH Breed Code
Hereford (polled) HP Plains Bison PB

Highland (Scotch Highland) SH Wood Bison WO
Hybrid (Alberta Synthetic) HY Horse Breeds
Indu Brazil IB Breed Code
Kerry KY Andalusian AA
Kobe (Wagyu) KB American Bashkir Curly AC
Limousin LM Arabian AD
Lincoln Red LR Anglo-Arabian AO
Lowline (Loala) LO Appaloosa AP
Luing LU American Saddlebred AS
Maine-Anjou MA Buckskin BU
Mandalong Special ML Baden-Wurttemberg BW
Marchiginana MR Bayerisches Warmblood BY
Maremmana ME Canadian Horse CI
Mashone MH Connemara CM
Meuse-Rhine-Issel MI Cleveland Bay CV
Mexican Corriente MC Clydesdale CY
Montbeliard MO Dartmoor Pony DT
Murrah MU Danish Warmblood DW
Murray Grey MG Dutch Warmblood DW
Nellore NE Exmoor Pony EX

Normande NM
Cheval de Selle Francais (French
Saddle Horse) FC

Norwegian Red NR Fell Pony FE
Parthenaise PA French Horse FH
Pie Rouge PR Fjord FJ
Piedmontese PI Friesian FR
Pinzgauer PZ Belgian GI
Ranger RA Gelderlander GL
Red Angus AR Belgian Warmblood GW
Red Brahman RR Hessen HE
Red Brangus RB Haflinger HF
Red Dane (Danish Red) RD Highland Pony HG
Red Poll RP Hackney Pony HK
Romagnola RN Hackney Horse HN
Romosinuano RS Holsteiner HT
Rotbunte RO Hunter (Sport Horse) HU
Rouge du Nord DN Hanovarian HV
Sahiwal SW Hungarian Warmblood HW
Salers SA Icelandic IC
Santa Gertrudis SG Swiss Warmblood IW
Semepol SL Lipizzaner LZ
Senapol SE Missouri Foxtrotting MF
Shaver Beef Blend SV Morgan MN

National Animal Identification System Page 116

ATPS version 1.0 DRAFT ATD Technical Specifications

Shorthorn (polled) SP Miniature Horse MU
Shothorn (beef-scotch) SS New Forest NF
Shothorn (Illawarra) IS Noriker NK
Simbrah SI Anglo-Normand NO
Simmental SM Oldenburg OB
South Devon DS Polo Pony OL
Sussex SX Paso Fino PF
Taba-pua TB Percheron PH
Tarentaise TA Palomino PL
Tasmanian Grey TG Pinto PN
Taurindicus TN Paint PT
Texas Longhorn TL Peruvian PV
Tuli TI Polish Warmblood PW
Welsh Black WB Quarter Horse QH
West Flemish Red WF Rheinlander RH
White Park WP Rustic Pony RU
Yak YA Shetland SE

Swine breeds Suffolk Punch SF
Breed Code Standardbred SN

Berkshire BK Shire SY
Chester White CW Trotteur Francais TF
Duroc DU Thoroughbred TH
Hampshire HA Tarpan TP
Lacombe LC Trakehner TR
Landrace LA Tennessee Walking TW
Large Black (British) LB Viking VK
Large White LW Welsh WE
Pietrain PE Westfalen WF
Poland China PC German Warmblood WG
Red Wattle RW Swiss Horse WI

Spotted SO Wielkopolski (Polish Trakehner) WR
Tamworth TM Wurttemberg WU
Wessex Saddleback WS Swedish Warmblood WW

Yorkshire YO

	1 About ATPS
	2 Service Specifications
	2.1 Web Services
	Functions that are accessed via web service APIs only.
	2.1.1 Basic Web Service Use Case
	 2.1.2 Get Requests Web Service
	2.1.2.1 Basic Requirements
	2.1.2.2 Request Types
	2.1.2.2.1 Official ID Request
	2.1.2.2.2 Premises Request
	2.1.2.2.3 Ping Request
	“Dummy” Ping Event:

	2.1.2.2.4 Case Closed Request

	2.1.2.3 Case
	2.1.2.3.1 Ping Case
	2.1.2.3.2 Program Case

	2.1.2.4 Case Status
	2.1.2.5 Request Life Cycle
	2.1.2.6 Request Status Category
	2.1.2.7 Request Status
	2.1.2.7.1 NEW Request Status
	2.1.2.7.2 RETRIEVED Request Status
	2.1.2.7.3 RESPONDED Request Status
	2.1.2.7.4 INCOMPLETE_SPLIT Request Status
	2.1.2.7.5 ERROR Request Status
	2.1.2.7.6 VALIDATION_ERROR Request Status
	2.1.2.7.7 VALIDATED Request Status
	2.1.2.7.8 CLOSED Request Status
	2.1.2.7.9 PROGRAM_CASE_CLOSED Request Status

	2.1.2.8 Get Requests Web Service Specification
	2.1.2.8.1 encryptedATDId
	2.1.2.8.2 pin
	2.1.2.8.3 criteria
	2.1.2.8.4 return

	2.1.2.9 ATPSRequestWS Object
	2.1.2.9.1 ATPSRequestWS.requestId
	2.1.2.9.2 ATPSRequestWS.case
	2.1.2.9.3 ATPSRequestWS.requestStatusCategory
	2.1.2.9.4 ATPSRequestWS.requestStatus
	2.1.2.9.5 ATPSRequestWS.requestCreatedDate
	2.1.2.9.6 ATPSRequestWS.requestModifiedDate
	2.1.2.9.7 ATPSRequestWS.officialIds
	2.1.2.9.8 ATPSRequestWS.nationalPremisesIds
	2.1.2.9.9 ATPSRequestWS.species
	2.1.2.9.10 ATPSRequestWS.beginRequestDate
	2.1.2.9.11 ATPSRequestWS.endRequestDate
	2.1.2.9.12 ATPSRequestWS.beginAuditDate
	2.1.2.9.13 ATPSRequestWS.endAuditDate
	2.1.2.9.14 ATPSRequestWS.invalidItems
	2.1.2.9.15 ATPSRequestWS.execptionItems

	2.1.2.10 ATPSCaseWS Object
	2.1.2.10.1 ATPSCaseWS.caseId
	2.1.2.10.2 ATPSCaseWS.caseDescription
	2.1.2.10.3 ATPSCaseWS.caseStatus

	2.1.2.11 ATPSOfficialIdWS Object
	2.1.2.11.1 ATPSOfficialIdWS.officialId
	2.1.2.11.2 ATPSOfficialIdWS.officialIdType

	2.1.2.12 ATPSInvalidItemWS Object
	2.1.2.12.1 ATPSInvalidItemWS.ATDResponseId
	2.1.2.12.1 ATPSInvalidItemWS.split
	2.1.2.12.1 ATPSInvalidItemWS.ATDEventId
	2.1.2.12.2 ATPSInvalidItemWS.recordSequence
	2.1.2.12.3 ATPSInvalidItemWS.elementName
	2.1.2.12.4 ATPSInvalidItemWS.elementValue
	2.1.2.12.5 ATPSInvalidItemWS.exceptionInfo

	2.1.2.13 ATPSExceptionInfoWS Object
	2.1.2.13.1 ATPSExceptionInfoWS.cause
	2.1.2.13.2 ATPSExceptionInfoWS.message

	2.1.2.14 ATPSRequestCriteriaWS Object
	2.1.2.14.1 ATPSRequestCriteriaWS.requestId
	2.1.2.14.2 ATPSRequestCriteriaWS.caseId
	2.1.2.14.3 ATPSRequestCriteriaWS.requestStatus
	2.1.2.14.4 ATPSRequestCriteriaWS.requestStatusCategory
	2.1.2.14.5 ATPSRequestCriteriaWS.beginRequestCreatedDate
	2.1.2.14.6 ATPSRequestCriteriaWS.beginRequestModifiedDate

	 2.1.3 Submit Response Web Service
	2.1.3.1 Basic Requirements
	2.1.3.1.1 Required Response Data
	2.1.3.1.2 Multiple IDs and Official IDs

	2.1.3.2 Response XML
	2.1.3.2.1 Response DTD
	2.1.3.2.2 Strict DTD:
	2.1.3.2.3 ATD Response XML Examples

	2.1.3.3 Response Elements and Attributes
	2.1.3.3.1 eventSub Element
	2.1.3.3.2 header Element
	2.1.3.3.3 atpsRequestId Element
	2.1.3.3.4 atdResponse Element
	2.1.3.3.4.1 atdResponse.final Attribute
	2.1.3.3.4.2 atdResposne.split Attribute
	2.1.3.3.5 responseId Element
	2.1.3.3.6 animalRecords Element
	2.1.3.3.7 animalRecord Element
	2.1.3.3.7.1 animalRrecord.elecRead Attribute
	2.1.3.3.8 animalRecord.status Attribute
	2.1.3.3.9 ATDEventId Element
	2.1.3.3.10 eventType Element
	2.1.3.3.10.1 eventType.code Attribute
	2.1.3.3.11 eventDate Element
	2.1.3.3.12 rptPremId Element
	2.1.3.3.12.1 rptPremId.type Attribute
	2.1.3.3.13 id Element
	2.1.3.3.13.1 id.type Attribute
	2.1.3.3.15 srcDestPremId Element
	2.1.3.3.15.1 srcDestPremId.type Attribute
	2.1.3.3.16 animal Element
	2.1.3.3.16.1 animal.species Attribute
	2.1.3.3.16.2 animal.gender Attribute
	2.1.3.3.16.3 animal.breed Attribute
	2.1.3.3.17 DOB Element:
	2.1.3.3.17.1 DOB.est Attribute
	2.1.3.3.18 age Element
	2.1.3.3.18.1 age.scale Attribute
	2.1.3.3.19 remarks Element
	2.1.3.3.20 reTagId Element
	2.1.3.3.20.1 reTagId.type attribute
	2.1.3.3.21 optIds Element
	2.1.3.3.22 optId Element
	2.1.3.3.22.1 optId.type Attribute
	2.1.3.3.23 timestamp Element
	2.1.3.3.23.1 timestamp.y Attribute
	2.1.3.3.23.2 timestamp.mo Attribute
	2.1.3.3.23.3 timestamp.d Attribute
	2.1.3.3.23.4 timestamp.h24 Attribute
	2.1.3.3.23.5 timestamp.mi Attribute
	2.1.3.3.23.6 timestamp.s Attribute
	2.1.3.3.23.7 timestamp.tz Attribute

	2.1.3.4 Response ERROR Conditions
	2.1.3.4.1 XML DTD Validation Errors
	2.1.3.4.2 ATPS Request ID Validation Errors

	2.1.3.5 Split Responses
	2.1.3.6 National Premises ID Request Response Logic
	Event Categories
	2.1.3.6.1 Future Positive Events
	2.1.3.6.2 Future Negative Events
	2.1.3.6.3 Past Positive Events
	2.1.3.6.4 Past Negative Events

	2.1.3.7 Submit Response Web Service Specification
	2.1.3.7.1 encryptedATDId
	2.1.3.7.2 pin
	2.1.3.7.3 message
	2.1.3.7.4 Return
	2.1.3.7.5 ATPSMessageValidationResultWS Object
	2.1.3.7.5.1 ATPSMessageValidationResultWS.passedValidation
	2.1.3.7.5.2 ATPSMessageValidationResultWS.passedException
	2.1.3.7.5.3 ATPSMessageValidationResultWS.invalidItems
	2.1.3.7.5.4 ATPSMessageValidationResultWS.exceptionItems

	 2.1.4 Validate National Premises ID
	2.1.4.1 Validate National Premises ID Web Service Specification
	2.1.4.1.1 encryptedATDId
	2.1.4.1.2 pin
	2.1.4.1.3 premId
	2.1.4.1.4 return
	2.1.4.1.5 ATPSPremisesWS Object
	2.1.4.1.5.1 ATPSPremisesWS.premisesId
	2.1.4.1.5.2 ATPSPremisesWS.street
	2.1.4.1.5.3 ATPSPremisesWS.city
	2.1.4.1.5.4 ATPSPremisesWS.ST
	2.1.4.1.5.5 ATPSPremisesWS.zip5
	2.1.4.1.5.6 ATPSPremisesWS.zip4
	2.1.4.1.5.7 ATPSPremisesWS.isActiveADDD
	2.1.4.1.5.8 ATPSPremisesWS.isActiveHealthOfficial

	 2.1.5 Verify USDA Animal ID (AIN ID)
	2.1.5.1 Verify USDA Animal ID (AIN ID) Web Service Specification
	2.1.5.1.1 encryptedATDId
	2.1.5.1.2 pin
	2.1.5.1.3 ainId
	2.1.5.1.4 return

	 2.1.6 Web Services Security
	2.1.6.1 Web Services Authentication
	2.1.6.1.1 ATD PIN
	2.1.6.1.2 Encrypted ATD ID
	2.1.6.1.3 Three Strikes Rule

	2.1.6.2 Web Services Authorization
	2.1.6.2.1 ATD Enabled/Disabled
	2.1.6.2.2 ATD Role

	2.1.6.3 SSL Transport Layer Security

	2.2 Web Application Services
	2.2.1 Log In to Application
	2.2.1.1 User getUserForEauthId(Long eauthId)
	2.2.1.2 User[] getUsersForAccount(Long accountId)
	2.2.1.3 User modifyUserForAccount(Long accountId, User user)
	2.2.1.4 Account getAccount(Long accountId)
	2.2.1.5 Contact createContactForAccount(Long accountId, Contact contact)
	2.2.1.6 Contact[] getContactsForAccount(Long accountId)
	2.2.1.6 BaseAction
	2.2.1.7 ProcessLoginAction
	2.2.1.8 ProcessFirstLoginAction
	2.2.1.9 AccountContactAction

	2.2.2 Search Requests
	2.2.2.1 ATPSRequest[] findRequests(Long accountId, ATPSRequestCriteria criteria)
	2.2.2.2 Account[] getAllAccounts(); (list service)
	2.2.2.3 Client[] getAllClients(Long accountId); (list service)
	2.2.2.4 ATPSRequestStatus[] getAllATPSRequestStatus(); (list service)
	2.2.2.5 ATPSRequestStatusCategory[] getAllATPSRequestStatusCategory(); (list service)
	2.2.2.6 FindClientRequestsAction
	2.2.2.7 ClientRequestAction

	2.2.3 Upload Manual Response
	2.2.3.1 ATPSMessageValidationResultWS validateResponse(Long accountId, String response)
	2.2.3.2 void submitResponse(Long accountId, String response)
	2.2.3.3 RequestResponseAction

	2.2.4 Manage Account
	2.2.4.1 View Account
	2.2.2.2 Account[] getAllAccounts(); (list service)
	2.2.1.6 Contact[] getContactsForAccount(Long accountId)
	2.2.1.2 User[] getUsersForAccount(Long accountId)

	2.2.4.1.1 Client[] getClientsForAccount(Long accountId)
	2.2.4.1.2 accountAction

	2.2.4.1 Create Account (ATPS Admin)
	2.2.4.1.1 Account createAccount(Account newAccount)

	2.2.4.2 Modify Account
	2.2.4.2.1 Account modifyAccount(Account account)

	2.2.4.3 Disable/Enable Account (ATPS Admin)
	2.2.4.3.1 Account enableAccount(Long accountId)
	2.2.4.3.2 Account disableAccount(Long accountId)

	2.2.5 Manage Web Application User
	2.2.5.1 Create Web App User for Account
	2.2.5.1.1 User createUser (Long accountId, User user)
	2.2.1.4.1 AccountAction

	2.2.5.1.2 UserAction

	2.2.5.2 View/Modify Web App User
	2.2.5.2.1 User getUser (Long accountId, UserSearchCriteria cri)
	2.2.5.2.2 User modifyUser (Long accountId, User user)
	2.2.1.4.1 AccountAction
	2.2.5.1.2 UserAction

	2.2.5.3 Disable/Enable Web App User (Admin).
	2.2.5.3.1 User enableUser(Long accountId, Long userId)
	2.2.5.3.2 User disableUser(Long accountId, Long userId)
	2.2.1.4.1 AccountAction

	2.2.5.4 Manage User Roles
	2.2.5.4.1 User modifyUserRoles(Long accountId, User user)
	UserAction 2.2.5.1.2

	2.2.6 Manage Contact
	2.2.6.1 Create Contact
	2.2.6.1.1 Contact createContact(Long accountId, Contact newContact)
	2.2.1.4.1 AccountAction

	2.2.6.1.2 ContactAction

	2.2.6.2 View/Modify/Delete Contact
	2.2.6.2.1 Contact getContact(Long accountId, Long contactId)
	2.2.6.2.2 Contact modifyContact(Long accountId, Contact contact)
	2.2.6.2.3 void deleteContact(Long accountId, Long contactId)
	2.2.1.4.1 AccountAction
	2.2.6.1.2 ContactAction

	2.2.7 Manage ATD Client
	2.2.7.1 Create Client ATD (ATPS Admin)
	2.2.7.1.1 Client createClient(Long accountId, Client newClient)
	2.2.1.4.1 AccountAction

	2.2.7.1.2 ClientAction

	2.2.7.2 View/Modify Client ATD
	2.2.7.2.1 Client getClient(Long accountId, Long clientId)
	2.2.7.2.2 Contact modifyClient(Long accountId, Client client)
	2.2.1.4.1 AccountAction
	2.2.7.1.2 ClientAction

	2.2.7.3 Unlock ATD
	2.2.7.3.1 Client unlockClient(Long accountId, Long clientId)
	2.2.7.1.2 ClientAction

	2.2.7.4 Reset Client ATD Authentication Identifier
	2.2.7.4.1 Client resetClientAuthentication(Long accountId, Long clientId)
	2.2.7.1.2 ClientAction

	2.2.7.5 Disable/Enable Client ATD
	2.2.7.5.1 Client enableClient(Long accountId, Long clientId)
	2.2.7.5.2 Client disableClient(Long accountId, Long clientId)
	2.2.7.1.2 ClientAction

	2.2.7.6 Manage Client ATD Roles
	2.2.7.6.1 Client modifyClientRoles(Long accountId, Client client)
	2.2.7.1.2 ClientAction

	2.2.8 Create Case
	2.2.8.1 Create Manual Ping Case
	2.2.8.1.1 ATPSCase createManualPingCase(Client client, ATPSCase newCase)
	2.2.2.2 Account[] getAllAccounts();
	2.2.4.1.2 Client[] getClientsForAccount(Long accountId)

	2.2.8.1.2 ManualPingCaseAction

	2.2.8.2 Create Manual Request Case
	2.2.8.2.1 ATPSCase createManualRequestCase(Client client, ATPSRequest request, ATPSCase newCase)
	2.2.2.2 Account[] getAllAccounts();
	2.2.4.1.2 Client[] getClientsForAccount(Long accountId)

	2.2.8.2.2 ManualRequestCaseAction

	2.2.8.3 Create “Real” Case
	2.2.8.3.1 ATPSCase createCase(ATPSRequest request, ATPSCase newCase)
	2.2.8.3.2 CaseAction

	2.2.9 Search Cases
	2.2.2.2 Account[] getAllAccounts();
	2.2.9.1 ATPSCase[] findATPSCases(Long accountId, ATPSCaseSearchCriteria criteria)
	2.2.9.2 ATPSRequestSet[] getRequestSetsForCase(Long accountId, Long caseId)
	2.2.9.3 ATPSRequest[] getRequestsForRequestSet(Long accountId, Long caseId, Long requestSetId)
	2.2.9.4 ATPSResponse[] getResponsesForRequest(Long accountId, Long caseId, Long requestId)
	2.2.9.5 Message[] getMessagesForResponse (Long accountId, Long caseId, Long reponseId)
	2.2.9.6 CaseAdminAction

	2.2.10 Close Case
	2.2.10.1 ATPSCase closeCase(Long accountId, Long caseId)

	2.3 Automated Services
	2.3.1 Create Ping Case
	2.3.1.1 ATPSCase createPingCase();

	3 Appendix
	3.1 Web Service Signatures
	3.1.1 Get Requests Web Service Specification:
	3.1.2 Submit Response Web Service Specification:
	3.1.3 Validate National Premises ID Web Service Specification:
	3.1.4 Verify USDA Animal ID (AIN ID) Web Service Specification:

	3.2 ATPS Web Service custom class attribution
	3.2.1 ATPSRequestWS Class:
	3.2.2 ATPSCaseWS Class:
	3.2.3 ATPSOfficialIdWS Class:
	3.2.4 ATPSInvalidItemWS Class:
	3.2.5 ATPSExceptionInfoWS Class:
	3.2.6 ATPSRequestCriteriaWS Class:
	3.2.7 ATPSMessageValidationResultWS Class:
	3.2.8 ATPSPremisesWS Class:

	3.3 Response DTD Specification
	3.3.1 DTD
	3.3.2 Strict DTD

	3.4 Official ID Codes
	3.5 Species Group Codes
	3.6 Species Codes
	3.7 Breed Codes

